Г. С. Писаренко
А. П. Яковлев
В. В. Матвеев

СПРАВОЧНИК
по СОПРОТИВЛЕНИЮ
МАТЕРИАЛОВ

ИЗДАНИЕ ВТОРОЕ,
ПЕРЕРАБОТАННОЕ
И ДОПОЛНЕННОЕ

Киев Наукова Думка 1988
УДК 539.3 / 4 + 539.1 + 620.17 (031)

В справочнике приведены сведения по основным вопросам курса сопротивления материалов для высших технических учебных заведений, а также данные по результатам расчета наиболее типичных элементов конструкций.

Для инженерно-технических работников различных специальностей, практическая деятельность которых связана с расчетами на прочность, студентов высших технических учебных заведений, преподавателей и аспирантов, занимающихся вопросами сопротивления материалов и строительной механики.

Ил. 1114. Табл. 62. Библиогр.: с. 724—725.

Ответственный редактор
академик АН УССР Г. С. Писаренко

Печатается по постановлению ученого совета Института проблем прочности АН УССР
и решению редакционной коллегии справочной литературы АН УССР.

Редакция справочной литературы
Заведующий редакцией В. В. Паников
Редактор А. С. Слыщенко

ISBN 5-12-000299-4

© Издательство «Наукова думка», 1975

© Издательство «Наукова думка»,
Предисловие ко второму изданию .. 8
Предисловие ... 9

Глава 1. Введение ... 11
1.1. Общие сведения о сопротивлении материалов. Изучаемые объекты ... 11
1.2. Виды деформаций. Понятие о деформированном состоянии материала .. 13
1.3. Основные гипотезы ... 15

Глава 2. Геометрические характеристики плоских сечений 16
2.1. Статический момент площади. Центр тяжести площади .. 16
2.2. Моменты инерции плоских фигур ... 17
2.3. Моменты инерции сложных сечений ... 19
2.4. Моменты инерции относительно параллельных осей 20
2.5. Зависимость между моментами инерции при повороте координатных осей ... 20
2.6. Определение направления главных осей инерции. Главные моменты инерции ... 21
2.7. Графическое представление моментов инерции. Понятие о радиусе и эллипсе инерции ... 23
2.8. Моменты сопротивления ... 26
2.9. Порядок расчета ... 27

Глава 3. Внешние и внутренние силы. Метод сечений. Эпиоры внутренних сил. Напряжения в сечении 102
3.1. Классификация внешних сил ... 102
3.2. Внутренние силы. Метод сечений. Эпиоры внутренних сил ... 103
3.3. Балки и их опоры .. 106
3.4. Вычисление реакций .. 108
3.5. Усилия и моменты в сечениях балки. Построение эпиор Q и M ... 109
3.6. Дифференциальные зависимости при изгибе балок. Некоторые особенности эпиор Q и M .. 111
3.7. Построение эпиор для статически определимых рам 113
3.8. Построение эпиора для кривых стержней 114
3.9. Дифференциальные зависимости при изгибе плоских кривых стержней ... 136
3.10. Построение эпиора внутренних сил для пространственных стержней ... 136
3.11. Напряжения в сечении ... 138
3.12. Условия прочности и жесткости .. 140
Глава 4. Механические характеристики материала при растяжении и сжатии. Концентрация напряжений. Допускаемые напряжения .. 143
4.1. Напряжения и деформации при растяжении и сжатии .. 143
4.2. Испытание материалов на растяжение, сжатие и твердость 146
4.3. Понятие о механизме образования деформаций ... 153
4.4. Концентрация напряжений .. 156
4.5. Влияние различных факторов на механические свойства материалов 158
4.6. Допускаемые напряжения ... 163

Глава 5. Напряженное и деформированное состояние .. 184
5.1. Напряжения в точке Главные площадки и главные напряжения 184
5.2. Линейное напряженное состояние .. 185
5.3. Плоское напряженное состояние ... 186
5.4. Прямая задача при плоском напряженном состоянии. Круг напряжений 188
5.5. Обратная задача при плоском напряженном состоянии 189
5.6. Объемное напряженное состояние .. 190
5.7. Деformation при объемном напряженном состоянии. Обобщенный закон Гука 192
5.8. Потенциальная энергия деформации .. 154

Глава 6. Критерии прочности ... 196
6.1. Основные теории прочности ... 196
6.2. Понятие о некоторых новых теориях прочности ... 200

Глава 7. Растяжение и сжатие .. 208
7.1. Расчет стержней на растяжение (сжатие) с учетом собственного веса 208
7.2. Стержень равного сопротивления растяжению (сжатию). Ступенчатый стержень ... 209
7.3. Статически неопределенные конструкции ... 210
7.4. Расчет гибких нитей .. 215

Глава 8. Сдвиг ... 223
8.1. Сдвиг. Расчет на срез ... 223
8.2. Чистый сдвиг ... 224
8.3. Некоторые примеры расчета на срез .. 226

Глава 9. Кручение ... 233
9.1. Напряжения и деформации при кручении ... 233
9.2. Кручение стержней некруглого сечения .. 238
9.3. Расчет винтовых пружин ... 242
9.4. Концентрация напряжений при кручении ... 244

Глава 10. Изгиб .. 249
10.1. Нормальные напряжения при плоском изгибе .. 249
10.2. Касательные напряжения при изгибе ... 252
10.3. Расчет на прочность при изгибе ... 254
10.4. Концентрация напряжений при изгибе .. 257
10.5. Дифференциальное уравнение изогнутой оси балки (упругой линии) 261
10.6. Определение перемещений в балках по методу начальных параметров 265
10.7. Расчет балок переменного сечения на прочность и жесткость 269
10.8. Расчет на изгиб с учетом сила инерции ... 274
10.9. Касательные напряжения при изгибе балок тонкостенного профиля. Центр изгиба 275
10.10. О расчете балок на упругом основании ... 278
10.11. Изгиб балок, материал которых не следует закону Гука 282

Глава 11. Сложное сопротивление .. 303
11.1. Сложный и косой изгиб ... 303
11.2. Изгиб с растяжением ... 307
11.3. Изгиб с кручением .. 311

Глава 12. Общие теоремы об упругих системах. Общие методы определения перемещений ... 318
12.1. Обобщенные силы и перемещения ... 318
12.2. Работа внешних сил ... 320
12.3. Работа внутренних сил ... 321
12.4. Применение начала возможных перемещений к упругим системам 323
12.5. Теоремы о взаимности работ и перемещений ... 326
12.6. Общие формулы для определения перемещений. Метод Мора 326
12.7. Перемещения, вызванные изменениями температуры 328
12.8. Вычисление интеграла Мора ... 329
12.9. Потенциальная энергия деформации .. 331
12.10. Теорема Касильп. Теорема Лагранжа ... 332
12.11. Теорема о минимуме потенциальной энергии .. 334

Глава 13. Статически неопределенные системы .. 340
13.1. Основные этапы расчета статически неопределенных систем 340
13.2. Канонические уравнения метода сил .. 343
13.3. Многоопорные неразрезные балки. Уравнение трех моментов 356
13.4. Расчет статически неопределенных криволинейных стержней 359
13.5. Определение перемещений в статически неопределенных системах 361
13.6. О расчете пространственных рамных систем .. 363

Глава 14. Расчет плоских кривых брусьев ... 392
14.1. Определение напряжений в брусьях большой кривизны 392
14.2. Расчет на прочность ... 397
14.3. Определение перемещений .. 397

Глава 15. Расчет толстостенных цилиндров и вращающихся дисков 410
15.1. Толстостенный цилиндр, подверженный внутреннему и наружному давлению 410
15.2. Расчет составных цилиндров .. 415
15.3. Температурные напряжения в толстостенных цилиндрах 417
15.4. Расчет вращающихся дисков ... 421

Глава 16. Расчет тонкостенных оболочек ... 428
16.1. Расчет тонкостенных оболочек по безмоментной теории 428
16.2. Распорные кольца в оболочках .. 432
Глава 17. Расчет конструкций по предельным состояниям
17.1. Основные понятия о предельном состоянии
17.2. Расчеты при растяжении и сжатии
17.3. Расчет при кручине
17.4. Расчет при изгибе

Глава 18. Устойчивость сжатых стержней
18.1. Устойчивое и неустойчивое упругое равновесие
18.2. Формула Эйлера для определения критической нагрузки сжатого стержня
18.3. Влияние условий закрепления концов стержня на величину критической силы
18.4. О потере устойчивости при напряжениях, превышающих предел пропорциональности материала
18.5. Расчет сжатых стержней на устойчивость с помощью коэффициентов уменьшения основного допускаемого напряжения
18.6. Выбор материала и рациональной формы поперечных сечений сжатых стержней
18.7. Продольно-поперечный изгиб

Глава 19. Упругие колебания
19.1. Классификация механических колебаний
19.2. Свободные колебания системы с одной степенью свободы
19.3. Вынужденные колебания систем с одной степенью свободы при гармоническом возбуждении
19.4. Свободные колебания системы с одной степенью свободы с учетом сопротивления, пропорционального скорости
19.5. Вынужденные колебания системы с одной степенью свободы с учетом сопротивления, пропорционального скорости
19.6. Демпфирующая способность материала
19.7. Критическая скорость вращения вала
19.8. Свободные колебания упругих систем с несколькими степенями свободы
19.9. Продольные и крутильные колебания стержней
19.10. Поперечные колебания призматических стержней
19.11. Закон сохранения энергии при колебаниях
19.12. Некоторые приближенные методы определения собственных частот колебаний упругих систем
19.13. Общий метод расчета колебаний механических систем с учетом рассеяния энергии

Глава 20. Сопротивление материалов действию повторно-переменных напряжений
20.1. Явление усталости материалов
20.2. Методы определения предела выносливости. Диаграммы усталости
20.3. Влияние на предел выносливости конструктивно-технологических факторов
20.4. Расчет на прочность при повторно-переменных нагрузках
20.5. Понятие о малоцикловой усталости материалов

Глава 21. Расчет на ударную нагрузку
21.1. Расчет на удар при осевом действии нагрузки
21.2. Напряжение при скручивающем ударе
21.3. Расчет на удар при изгибе
Г л а в а 22. Основы механики разрушения

22.1. Общие понятия 616
22.2. Хрупкое разрушение 617
22.3. Силовые критерии разрушения 619
22.4. Учет пластической зоны 623
22.5. Методика экспериментального определения вязкости разр.
шения конструкционных материалов 625

Г л а в а 23. Контактные напряжения 627
23.1. Основные понятия и формулы для определения контактных
напряжений и деформаций 627
23.2. Проверка прочности при контактных напряжениях 631

П р и л о ж е н и я .. 644
1. Физико-механические свойства материалов (для ориентиро-
вочных расчетов) 644
2. Коэффициенты концентрации напряжений и чувствительности
к концентрации напряжений 680
3. Функции Крылова S, T, U, V 706
4. Функции Крылова для расчета балок постоянного сечения на
упругом основании 717

Перечень таблиц .. 720
Использованная литература 724
Предметный указатель 726
ПРЕДИСЛОВИЕ КО ВТОРОМУ ИЗДАНИЮ

Изданный в 1975 г. «Справочник по сопротивлению материалов», в котором в отличие от подобных справочников приведены не только окончательные расчетные формулы, таблицы и графики, но и теоретические основы по учебнику Г. С. Писаренко, В. А. Агарева, А. Л. Квитки, В. Г. Попкова, Э. С. Уманского «Сопротивление материалов» (второго и третьего изданий), приобрел популярность как в нашей стране, так и за рубежом. Он издавался в 1979 г. на испанском и французском языках, а в 1985 г. — на португальском, а также вторично издан на испанском и французском языках.

В связи с большим спросом, а также накопившимися за последние годы новыми данными по вопросам сопротивления материалов возникла необходимость в переиздании справочника на русском языке. В предлагаемом издании введена Международная система единиц (СИ), дополнительно внесены в соответствии с пятым изданием указанного учебника такие важные разделы, как малоцикловая усталость и механика разрушения, расширен раздел по механическим колебаниям, дополнены справочные данные, произведены отдельные уточнения, исправлены замеченные ошибки и опечатки, а также составлен предметный указатель.

Авторы
Сопротивление материалов является одной из основных общеобразовательных инженерных дисциплин и играет существенную роль в формировании инженера почти любой специальности. Особенно большое значение сопротивление материалов имеет для механических, машиностроительных и строительных инженерных специальностей.

Введение в учебные программы высших технических учебных заведений новых дисциплин, отражающих современное состояние науки и техники, при ограниченных сроках обучения привело к существенному сокращению количества лекционных часов по курсу сопротивления материалов. Восполнение появившихся в результате этого пробелов в знании студентами вузов сопротивления материалов может быть достигнуто в известной мере за счет самостоятельного изучения ими необходимых разделов этого важного для будущего инженера курса по соответствующим учебникам.

В Советском Союзе многократно издавались учебники по сопротивлению материалов С. П. Тимошенко, Н. М. Беляева, В. И. Федосьева и многие другие. Вместе с тем имеется большая заинтересованность в справочнике по сопротивлению материалов, отражающем достаточной полнотой современное состояние науки о прочности, как со стороны большой армии инженеров — производственников и конструкторов, так и со стороны учащихся и научных работников. К сожалению, такого справочника нет ни в нашей стране, ни за рубежом, а существующие краткие справочники по сопротивлению материалов и строительной механике носят специализированный характер и подают материал по ряду важнейших разделов, базируясь на различных подходах, применяемых в разных курсах сопротивления материалов. Авторы поставили перед собой цель создать справочник по сопротивлению материалов, который обладал бы достаточной полнотой и универсальностью, отражал современное состояние науки о прочности и основывался на едином подходе к подаче справочного материала, увязанного с соответствующим теоретическим курсом. В качестве последнего был принят учебник Г. С. Писаренко, В. А. Агавева, А. Л. Квятки, В. Г. Попкова, Э. С. Уманского «Сопротивление материалов», изд. 3, Киев, «Вища школа», 1973, в котором отражен многолетний опыт.
преподавания сопротивления материалов в Киевском политехническом институте и опыт использования двух предыдущих изданий этого учебника студентами многих высших учебных заведений страны.

Перед справочным материалом в виде окончательных формул, таблиц и графиков в каждой главе кратко излагаются основные теоретические предпосылки. При этом формулируются исходные гипотезы, соответствующие правила, теоремы и даются важнейшие заключения и рекомендации. Для облегчения пользования справочными данными на с. 720 приведен перечень таблиц, содержащихся в книге.

Мы надеемся, что настоящий справочник будет полезен не только инженерам-конструкторам и производственникам всех специальностей, встречающимися в практической деятельности с расчетами на прочность, но будет с успехом использован студентами, аспирантами, преподавателями и научными работниками.
1.1. Общие сведения о сопротивлении материалов.
Изучаемые объекты

Сопротивление материалов — наука об инженерных методах расчета на прочность, жесткость и устойчивость элементов машин и сооружений.

Прочность — способность конструкции, ее частей и деталей выдерживать определенную нагрузку, не разрушаясь.

Жесткость — способность конструкции и ее элементов противостоять внешним нагрузкам в отношении деформаций (изменение формы и размеров). При заданных нагрузках деформации не должны превышать определенных величин, устанавливаемых в соответствии с требованиями к конструкции.

Устойчивость — способность конструкции и ее элементов сохранять определенную начальную форму упругого равновесия.

Для того чтобы конструкции в целом отвечали требованиям прочности, жесткости и устойчивости, необходимо придать их элементам наиболее рациональную форму и определить соответствующие размеры.

Сопротивление материалов решает указанные задачи, основываясь как на теоретических, так и на опытных данных, имеющихся в этой науке одним из важных значений.

В теоретической части сопротивление материалов базируется на теоретической механике и математике, а в экспериментальной — на физике и материаловедении.

Сопротивление материалов является наиболее общей наукой о прочности машин и сооружений. Безд фундаментального знания сопротивления материалов немыслимо создание различного рода машин и механизмов, гражданских и промышленных сооружений, мостов, линий электропередач и антенн, ангаров, кораблей, самолетов и вертолетов, турбин и электрических машин, агрегатов атомной энергетики, ракетной и реактивной техники и др.

Сопротивление материалов не исчерпывает всех вопросов механики деформируемого твердого тела. Этими вопросами занимаются также смежные дисциплины, как строительная механика стержневых систем, теория упругости и теория пластичности. Однако основная роль при решении задач на прочность принадлежит сопротивлению материалов.

При всем разнообразии видов конструктивных элементов, встречающихся в сооружениях и машинах, их можно свести к сравнительно небольшому числу основных форм. Тела, имеющие эти основные формы, являются объектами расчета на прочность, жесткость и устойчивость. Это стержни, пластинки и оболочки, массивные тела.

Стержнем, или брусом, называется тело, у которого один размер (длина) значительно превышает два других (поперечных) размера (рис. 1). В инженерном деле встречаются стержни с прямолинейной (рис. 1, a), и криволинейной (рис. 1, b) осями. Как прямые, так и кривые стержни могут быть постоянного (рис. 1, a) или переменного
(рис. 1, 6) сечения. Примерами прямых стержней являются балки, оси, валы. Примерами кривых стержней могут служить грузоподъемные крюки, звенья цепей и т. п. Стержни со сложным профилем поперечного сечения, у которых толщина стенок значительно меньше габаритных размеров сечения, называются тонкостенными (рис. 1, 6).

Оболочка представляет собой тело, ограниченное двумя криволинейными поверхностями, расположенными на близком расстоянии одна от другой. Геометрическое место точек, равноудаленных от обеих поверхностей оболочки, называется срединной поверхностью. По форме срединной поверхности различают оболочки цилиндрические (рис. 2, а), конические (рис. 2, б), сферические (рис. 2, в) и др. К оболочкам относятся тонкостенные резервуары, котлы, купола зданий, обшивки фюзеляжей, крыльев и других частей летательных аппаратов, корпуса судов и т. п.

![Рис. 1](image1)

![Рис. 2](image2)

Если срединная поверхность представляет собой плоскость, то такая оболочка называется пластиной (рис. 2, 6). Пластины могут быть круглыми, прямоугольными и иметь другие очертания. Толщина пластины, как и оболочек, может быть постоянной или переменной. Пластинами являются плоские днища и крышки резервуаров (рис. 2, 6), перекрытия инженерных сооружений, диски турбомашин и т. п.

Массивным называется тело, у которого все три размера — величины одного порядка. Это — фундаменты сооружений, подпорные стены и т. п.

В сопротивлении материалов, как правило, задачи решаются простыми математическими методами с привлечением ряда упрощающих гипотез и использованием данных эксперимента; решения при этом доводятся до расчетных формул, пригодных для использования в инженерной практике. Основным объектом, рассматриваемым в сопротивлении материалов, является прямой стержень*

12
1.2. Виды деформаций. Понятие о деформированном состоянии материала

Реальные тела могут деформироваться, т. е. изменять свою форму и размеры. Деформации тел происходят вследствие нагружения их внешними силами или изменения температуры. При деформации тела его точки, а также мысленно проведенные линии или сечения перемещаются в плоскости или в пространстве относительно своего исходного положения.

При нагружении твердого тела в нем возникают внутренние силы взаимодействия частиц, оказывающие противодействие внешним силам и стремящиеся вернуть частицы тела в положение, которое они занимали до деформации.

Различают упругие деформации, исчезающие после прекращения действия вызвавших их сил, и пластические, или остаточные, деформации, не исчезающие после снятия нагрузок. В большинстве случаев для величин деформаций элементов конструкций устанавливают определенные ограничения.

В сопротивлении материалов изучаются следующие основные виды деформирования стержней: растяжение, сжатие, сдвиг и срез. Крупные. Изгибы. Рассматриваются также более сложные деформации, получающиеся в результате сочетания нескольких основных видов деформаций.

Растяжение и сжатие возникает, например, в случае, когда к стержню вдоль его оси приложены противоположно направленные силы (рис. 3). При этом происходит постепенное перемещение сечений вдоль оси стержня, который при растяжении удлиняется, а при сжатии укорачивается. Изменение первоначальной длины стержня при растяжении, обозначаемое Δl, называется абсолютным удлинением (при растяжении) или абсолютным укорочением (при сжатии).

Отношение абсолютного удлинения (укорочения) Δl к первоначальной длине l стержня или его участка называется средним относительным удлинением (укорочением) на длине l или средней линейной относительной деформацией стержня или его участка и обозначается обычно буквой $\varepsilon_{ср}$:

$$
\varepsilon_{ср} = \frac{\Delta l}{l}
$$

Истинное линейное относительное удлинение, или относительная линейная деформация в точке, определяется как относительная деформация участка при $l \rightarrow 0$:

$$
\varepsilon = \lim_{l \to 0} \frac{\Delta l}{l}
$$

На растяжение или сжатие работают многие элементы конструкций: стержни ферм, колонны, штoki поршневых машин, стяжные болты и др.

Сдвиг, или срез, возникает, когда внешние силы смещают два параллельных плоских сечения стержня одно относительно другого при неизменном расстоянии между ними (рис. 4). Величина смещения Δs называется абсолютным сдвигом. Отношение абсолютного сдвига
к расстоянию между смещающимися плоскостями (тангенс угла γ) называется относительным сдвигом. Вследствие малости угла γ можно принять

$$\tan \gamma \approx \gamma = \frac{\Delta s}{a}.$$

Относительный сдвиг является угловой деформацией, характеризующей перекос элемента.

На сдвиг, или срез, работают, например, заклепки и болты, скрепляющие элементы, которые внешние силы стремятся сдвинуть друг относительно друга.

Рис. 4

Кручение возникает при действии на стержень внешних сил, образующих момент относительно его оси (рис. 5). Деформация кручения сопровождается поворотом поперечных сечений стержня друг относительно друга вокруг его оси. Угол поворота одного сечения стержня относительно другого, находящегося на расстоянии l, называется углом закручивания на длине l. Опятьшение угла закручивания Φ к длине l называется относительным углом закручивания

$$\theta = \frac{\Phi}{l}.$$

Рис. 5 Рис. 6

На кручение работают валы, шпиндели токарных и сверлильных станков и другие детали.

Изгиб (рис. 6) заключается в искривлении оси прямого стержня или в изменении кривизны кривого стержня. Происходящее при изгибе перемещение какой-либо точки оси стержня выражается вектором, начало которого совмещено с первоначальным положением точки, а конец — с положением той же точки в деформированном стержне. В прямых стержнях перемещение точек, направленные перпендикулярно к начальному положению оси, называются прогибами. Обозначение прогиба буквой ω, а наибольший из них — буквой f. При изгибе также происходит поворот сечений стержня вокруг осей, лежащих в плоскостях сечений. Углы поворота сечений относительно своих начальных положений обозначим буквой Φ.

На изгиб работают балки междуэтажных перекрытий, мостов, оси железнодорожных вагонов, листовые рессоры, валы, зубья шестерен, спицы колес, рычаги и многие другие детали.
Описанные выше простейшие деформации всегда дают представление об изменении его формы и размеров в целом, но ничего не говорят о степени и характере деформированного состояния материала. Исследования показывают, что деформированное состояние тела является неоднородным и изменяется от точки к точке. При этом деформированное состояние в точке тела полностью определяется шестью компонентами деформации: тремя относительными линейными деформациями ε₁, ε₂, ε₃ и тремя относительными угловыми деформациями γ₁₂, γ₁₃, γ₂₃.

1.3. Основные гипотезы

Для построения теории сопротивления материалов принимают ряд гипотез о структуре и свойствах материалов, а также о характере деформаций.

1. Гипотеза о сплошности материала. Предполагается, что материал полностью заполняет занимаемый им объем. Атомистическая теория дискретного строения вещества во внимание не принимается.

2. Гипотеза об однородности и изотропности. Предполагается, что свойства материала одинаковы во всех точках и в каждой точке — во всех направлениях. В некоторых случаях предположение об изотропии материала неприемлемо. Так, антискоропледными являются древесина, свойства которой вдоль и поперек волокон существенно различны, а также армированные материалы или так называемые композиционные материалы.

3. Гипотеза о малости деформаций (гипотеза относительной жесткости материала). Предполагается, что деформации малы по сравнению с размерами деформируемого тела. На этом основании пренебрегают изменениями в расположении внешних сил относительно отдельных частей тела при деформации и уравнения статики составляют для не деформированного тела. В некоторых случаях от этого принципа приходится отступать, что оговаривается особо.

4. Гипотеза о совершенной упругости материала. Все тела предполагаются абсолютно упругими. В действительности реальные тела можно считать упругими только до определенных величин нагрузок, и это необходимо учитывать, применяя формулы сопротивления материалов.

5. Гипотеза о линейной зависимости между деформациями и нагрузками. Предполагается, что для большинства материалов справедлив закон Гука, устанавливающий прямо пропорциональную зависимость между деформациями и нагрузками.

Как следствие гипотез о малости деформаций и о линейной зависимости между деформациями и усилиями при решении большинства задач сопротивления материалов применим принцип суперпозиции (принцип независимости действия и сложения сил). Например, усилия в любом элементе конструкции, вызванные различными факторами (несколькими силами, температурными воздействиями), равны сумме усилий, вызванных каждым из этих факторов, и не зависят от порядка их приложения. Это же справедливо и в отношении деформаций.

6. Гипотеза плоских сечений. Предполагается, что мысленно проведенные плоские сечения, перпендикулярные к оси стержня, в процессе его деформирования остаются плоскими и перпендикулярными к оси.

Этн, а также некоторые другие гипотезы позволяют решать широкий круг задач по расчету на прочность, жесткость и устойчивость. Результаты таких расчетов обычно хорошо согласуются с данными эксперимента.
ГЛАВА 2

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ

Сопротивление стержня различным видам деформаций часто зависит не только от его материала и размеров, но и от очертаний оси, формы поперечных сечений и их расположения относительно направления действующих нагрузок. Рассмотрим основные геометрические характеристики поперечных сечений стержня, отвлекаясь от физических свойств изучаемого объекта. Этими характеристиками являются: площади поперечных сечений, статические моменты, моменты инерции, моменты сопротивления, радиусы инерции.

2.1. Статический момент площади.
Центр тяжести площади

Рассмотрим произвольную фигуру (поперечное сечение стержня), связанную с системой координат xOy (рис. 7), по аналогии с выражением для момента силы относительно какой-либо оси можно составить выражение для момента площади, которое называется статическим моментом. Так, произведение элемента площади dF на расстояние y от оси Ox

$$dS_x = ydF$$

называется статическим моментом площади относительно оси Ox. Аналогично $dS_y = xdF$ — статический момент элемента площади относительно оси Oy. Просуммировав эти произведения по всей площади, получим статические моменты площади соответственно относительно осей x и y:

$$S_x = \int_F y \, dF; \quad S_y = \int_F x \, dF.$$ \hspace{1cm} (2.1)

Размерность статического момента — единица длины в кубе (например, см3). Пусть x_C и y_C — координаты центра тяжести фигуры. Продолжая аналогию с моментами сил, на основании теоремы о momente равнодействующей можно записать следующие выражения:

$$S_x = Fy_C; \quad S_y =Fx_C.$$ \hspace{1cm} (2.2)

где F — площадь фигуры.
Координаты центра тяжести

$$x_C = \frac{S_y}{F}; \quad y_C = \frac{S_x}{F}.$$ \hspace{1cm} (2.3)
Для вычисления статических моментов сложной фигуры ее разбивают на простые части (рис. 8), для каждой из которых известна площадь \(F_i \) и положение центра тяжести \((x_i, y_i) \). Статические моменты всей фигуры относительно осей \(0x \) и \(0y \) соответственно будут

\[
S_x = F_1y_1 + F_2y_2 + \cdots + F_ny_n = \sum_{i=1}^{n} F_iy_i; \\
S_y = F_1x_1 + F_2x_2 + \cdots + F_nx_n = \sum_{i=1}^{n} F_ix_i.
\] (2.4)

Из формул (2.3) и (2.4) определяем координаты центра тяжести сложной фигуры:

\[
x_C = \frac{S_y}{F} = \frac{\sum_{i=1}^{n} F_ix_i}{\sum_{i=1}^{n} F_i}; \\
y_C = \frac{S_x}{F} = \frac{\sum_{i=1}^{n} F_iy_i}{\sum_{i=1}^{n} F_i}.
\] (2.5)

Рис. 8

Рис. 9

Рис. 10

2.2. Моменты инерции плоских фигур

Осьевым, или экваториальным, моментом инерции площади фигуры называется интеграл произведений элементарных площадок на квадраты их расстояний от рассматриваемой оси. Так, моменты инерции произвольной фигуры (рис. 9) относительно осей \(x \) и \(y \) соответственно равны

\[
J_x = \int \int y^2 \, dF; \quad J_y = \int \int x^2 \, dF.
\] (2.6)

Пользуясь этими формулами, вычислим моменты инерции для простейших фигур.

Прямоугольник (рис. 10). Учитывая, что элементарная площадка \(dF = bdy \), находим

\[
J_x = \int_{-h/2}^{h/2} y^2 b \, dy = \frac{bh^3}{12}.
\]

Очевидно,
Трeугольник (рис. 11). Учитывая, что
\[b(y) = \frac{b}{h} (h - y), \quad dF = \frac{b}{h} (h - y) dy, \]
момент инерции относительно оси \(x \) выразим как
\[J_x = \int y^2 dF = \frac{b}{h} \int_0^h y^2 (h - y) dy = \frac{bh^3}{12}. \]

Круговой сектор (рис. 12). Учитывая, что \(dF = \rho d\varphi d\varphi \) и \(y = \rho \sin \varphi \), определяем момент инерции относительно оси \(x \):
\[J_x = \int \rho^2 \sin^2 \varphi d\varphi = \int_0^\beta \int_0^r \rho^2 \sin^2 \varphi d\varphi d\rho = \frac{r^4}{8} \left[(\beta - \alpha) - \frac{\sin 2\beta - \sin 2\alpha}{2} \right]. \]

Рис. 11 Рис. 12 Рис. 13

Полярный момент инерции площади фигуры относительно данной точки (полюса \(0 \)) называется интеграл произведений элементарных площадок на квадраты их расстояний \(\rho \) от полюса (рис. 9):
\[J_\rho = \int_0^r \rho^2 \, dF. \] (2.7)

Если через полюс проведена система взаимно перпендикулярных осей \(x, y \), то \(\rho^2 = x^2 + y^2 \). Из формул (2.6) и (2.7) получим
\[J_\rho = J_x + J_y. \] (2.8)

Круг (рис. 13). Учитывая, что \(dF = 2\pi \rho d\varphi \), полярный момент инерции будет
\[J_\rho = \int_0^r \rho^3 \, dF = 2\pi \int_0^r \rho^3 \, d\rho = \frac{\pi r^4}{2} \]
или
\[J_\rho = \frac{\pi d^4}{32}. \]

Из формулы (2.8) видно, что для круга
\[J_x = J_y = \frac{J_\rho}{2} = \frac{\pi d^4}{64}. \]
Отметим, что величины осевых и полярных моментов инерции всегда положительно.

Центробежным моментом инерции называется интеграл произведений элементарных площадок на их расстояния от координатных осей х, у:

\[J_{xy} = \int xy \, dF. \]

В зависимости от положения осей центробежный момент инерции может быть положительным или отрицательным, а также равным нулю. Оси, относительно которых центробежный момент инерции равен нулю, называются главными осями инерции. Две взаимно перпендикулярные оси, из которых хотя бы одна является осью симметрии фигуры, будут ее главными осями. Это следует из того, что в этом случае каждой положительной величине \(xy \, dF \) соответствует такая же отрицательная величина по другую сторону оси симметрии (рис. 14) и их сумма по всей площади фигуры равна нулю. Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями. Размерность моментов инерции — единица длины в четвертой степени (например, см\(^4\)).

2.3. Моменты инерции сложных сечений

При вычислении моментов инерции сложных сечений последние обычно разбивают на отдельные простые части, моменты инерции которых известны. Из основного свойства интеграла суммы следует, что момент инерции сложной фигуры равен сумме моментов инерции составных ее частей. Определим момент инерции сложной фигуры (рис. 15) относительно оси х, разбив ее на простые части I, II, III, имеющие соответственно площади \(F_1, F_{II}, F_{III} \):

\[J_x = \int_{F_1} y^2 \, dF + \int_{F_{II}} y^2 \, dF + \int_{F_{III}} y^2 \, dF, \]

или -

\[J_x = J_{I}^x + J_{II}^x + J_{III}^x. \]

(2.10)

Заметим, что в случае, когда в сечении имеется отверстие, последнее удобно считать частью фигуры с отрицательной площадью. Так, момент инерции относительно оси х сечения, показанного на рис. 16, будет

\[J_x = J_{I}^x - J_{II}^x = \frac{bh^3}{12} - \frac{\pi r^4}{4}. \]
2.4. Моменты инерции относительно параллельных осей

Пусть известны моменты инерции фигуры относительно центральных осей \(x, y \):

\[
J_x = \int_F y^2 \, dF; \quad J_y = \int_F x^2 \, dF; \quad J_{xy} = \int_F xy \, dF. \tag{2.11}
\]

Требуется определить моменты инерции относительно осей \(x_1, y_1 \), параллельных центральным (рис. 17):

\[
J_{x_1} = \int_F y_1^2 \, dF; \quad Z_{y_1} = \int_F x_1^2 \, dF; \quad J_{x_1y_1} = \int_F x_1y_1 \, dF. \tag{2.12}
\]

Координаты любой точки в новой системе \(x_0y_0 \) можно выразить через координаты в прежней системе \(x0y \) так:

\[
x_1 = x + a; \quad y_1 = y + b. \tag{2.13}
\]

Так как статические моменты площади относительно центральных осей равны нулю, формулы (2.12) с учетом (2.13) окончательно могут быть представлены в виде

\[
J_{x_1} = J_x + a^2 F; \quad J_{y_1} = J_y + b^2 F; \quad J_{x_1y_1} = J_{xy} + ab F. \tag{2.14}
\]

Следовательно: 1) момент инерции относительно любой оси равен моменту инерции относительно центральной оси, плюс произведение площади фигуры на квадрат расстояния между осами; 2) центробежный момент инерции относительно любой системы прямоугольных осей равен центробежному моменту инерции относительно системы центральных, параллельных данным, плюс произведение площади фигуры на координаты ее центра тяжести в новых осях. Необходимо помнить, что координаты \(a, b \), входящие в формулу (2.15), следует подставлять с учетом их знака.

2.5. Зависимость между моментами инерции при повороте координатных осей

Пусть известны моменты инерции произвольной фигуры относительно координатных осей \(x, y \) (рис. 18):

\[
J_x = \int_F y^2 \, dF; \quad J_y = \int_F x^2 \, dF; \quad J_{xy} = \int_F xy \, dF. \tag{2.16}
\]

Требуется определить моменты инерции относительно осей \(x_1, y_1 \), повернутых относительно осей \(x \) и \(y \) на угол \(\alpha \) против часовой стрелки, считая последний положительным:

\[
J_{x_1} = \int_F y_1^2 \, dF; \quad J_{y_1} = \int_F x_1^2 \, dF; \quad J_{x_1y_1} = \int_F x_1y_1 \, dF. \tag{2.17}
\]

Координаты произвольной элементарной площадки в новой системе
\(x_0 y_1 \) могут быть представлены через координаты прежней системы \(x_0 y \) следующим образом:

\[
\begin{align*}
x_1 &= OC = 0E + AD = x \cos \alpha + y \sin \alpha, \\
y_1 &= BC = BD - EA = y \cos \alpha - x \sin \alpha.
\end{align*}
\] (2.18)

Окончательно находим

\[
\begin{align*}
J_{x_1} &= J_x \cos^2 \alpha + J_y \sin \alpha - J_{xy} \sin 2\alpha; \\
J_{y_1} &= J_y \cos^2 \alpha + J_x \sin \alpha + J_{xy} \sin 2\alpha, \\
J_{x_1 y_1} &= J_{xy} \cos 2\alpha - \frac{1}{2} (J_y - J_x) \sin 2\alpha.
\end{align*}
\] (2.19)

(2.20)

Отметим, что формулы (2.19) и (2.20), полученные при повороте любой системы прямоугольных осей, естественно, справедливы для центральных осей. Складывая почленно выражения (2.19), находим

\[J_{x_1} + J_{y_1} = J_x + J_y = J_p. \]

Рис. 18

Рис. 19

Следовательно, при повороте прямоугольных осей сумма осевых моментов инерции не изменяется и равна полярному моменту инерции относительно начала координат.

При повороте системы осей на угол \(\alpha = 90^\circ \) имеем

\[J_{x_1} = J_y; \quad J_{y_1} = J_x; \quad J_{x_1 y_1} = -J_{xy}. \]

2.6. Определение направления главных осей инерции.
Главные моменты инерции

Наибольший практический интерес представляют главные центральные оси, относительно которых центробежный момент инерции равен нулю. Обозначим главные центральные оси буквами \(u, v \). Очевидно, \(J_{uv} = 0 \).

Для определения положения главных центральных осей произвольной несимметричной фигуры необходимо центральные оси \(x, y \) повернуть на такой угол \(\alpha_0 \) (рис. 19), при котором центробежный момент инерции относительно нового положения осей станет равным нулю:

\[J_{x_1 y_1} = J_{uv} = 0. \]

Из формул (2.20) получаем

\[J_{x_1 y_1} = J_{xy} \cos 2\alpha_0 - \frac{J_y - J_x}{2} \sin 2\alpha_0 = 0, \]
откуда

\[\tan 2\alpha_0 = \frac{2J_{xy}}{J_y - J_x}. \quad (2.21) \]

Получаемые из (2.21) два значения угла \(\alpha_0 \) отличаются на 90° и определяют положение главных осей. Как легко видеть, меньший из этих углов по абсолютной величине не превышает \(\pi/4 \). Обычно пользуются меньшим углом. Проведенную под этим углом (положительным или отрицательным) главную ось обычно обозначают буквой \(\alpha \). Напомним, что отрицательный угол \(\alpha_0 \) откладывается от оси \(x \) по ходу часовой стрелки.

Рис. 20

На рис. 20 приведены некоторые примеры обозначений главных осей в соответствии с указанным правилом. Начальные оси обозначены буквами \(x \) и \(y \). Значения главных моментов инерции можно получить из общих формул (2.19), приняв \(\alpha = \alpha_0 \):

\[
\begin{align*}
J_u &= J_x \cos^2 \alpha_0 + J_y \sin^2 \alpha_0 - J_{xy} \sin 2\alpha_0; \\
J_v &= J_y \cos^2 \alpha_0 + J_x \sin^2 \alpha_0 + J_{xy} \sin 2\alpha_0. \\
\end{align*}
\]

(2.22)

Сложим и вычитем последние выражения. С учетом (2.21) будем иметь

\[J_u + J_v = J_x + J_y; \]
\[J_u - J_v = (J_x - J_y) \cos 2\alpha_0 - 2J_{xy} \sin 2\alpha_0 = (J_x - J_y) \frac{1}{\cos 2\alpha_0}. \]

Решив совместно последние уравнения относительно \(J_u \) и \(J_v \), получим

\[
\begin{align*}
J_u &= \frac{1}{2} \left((J_x + J_y) + (J_x - J_y) \frac{1}{\cos 2\alpha_0} \right); \\
J_v &= \frac{1}{2} \left((J_x + J_y) - (J_x - J_y) \frac{1}{\cos 2\alpha_0} \right). \\
\end{align*}
\]

(2.23)

Очевидно, \(J_u > J_v \) при \(J_x > J_y \).

Учитывая, что в соответствии с (2.21)
\[
\frac{1}{\cos 2\alpha_0} = \pm \sqrt{1 + \tan^2 2\alpha_0} = \pm \sqrt{1 + \frac{4J_{xy}^2}{(J_x - J_y)^2}},
\]

22
выражения (2.23) для главных моментов можно записать в виде

\[J_u = \frac{1}{2} \left\{ (J_x + J_y) \pm \sqrt{(J_x - J_y)^2 + 4J_{xy}^2} \right\} \]

(2.24)

\[J_v = \frac{1}{2} \left\{ (J_x + J_y) \mp \sqrt{(J_x - J_y)^2 + 4J_{xy}^2} \right\} \]

причем верхние знаки следует брать при \(J_x > J_y \) и нижние — при \(J_x < J_y \).

Таким образом, формулы (2.21), (2.23) и (2.24) позволяют определить положение главных осей и величину главных центральных моментов инерции.

Если теперь вместо произвольной начальной системы центральных осей \(x0y \) принять систему главных осей, то формулы перехода к повернутым осям (2.19) и (2.20) упростятся:

\[J_{x_1} = J_u \cos^2 \alpha + J_v \sin^2 \alpha; \]

\[J_{y_1} = J_v \cos^2 \alpha + J_u \sin^2 \alpha; \]

\[J_{xy_1} = \frac{1}{2} (J_u - J_v) \sin 2\alpha. \]

(2.25)

(2.26)

Отметим, что главные моменты инерции обладают свойством экстремальности. В этом легко убедиться, продифференцировав выражения (2.19) по переменной \(\alpha \).

Плоскости, проведенные через ось сгружения и главные оси инерции его поперечного сечения, называются главными плоскостями инерции.

2.7. Графическое представление моментов инерции.
Понятие о радиусе и эллипсе инерции

Вычисление моментов инерции по формулам (2.23) — (2.26) можно заменить их графическим определением: При этом принято различать две задачи: прямую и обратную.

При решении прямой задачи определяются моменты инерции относительно произвольной центральной системы осей \(x, y \) по известным главным моментам инерции \(J_u \) и \(J_v \). Обратная задача состоит в отыскании главных моментов инерции по известным моментам инерции \(J_{x_1}, J_{y_1} \) и \(J_{xy_1} \) относительно произвольной центральной системы осей \(x, y \).

П р я м а я з а д а ч а. Определить моменты инерции \(J_{x_1}, J_{y_1}, J_{xy_1} \) относительно осей \(x \) и \(y \) (рис. 21, а) по \(J_u \) и \(J_v \) относительно главных осей, направление которых известно. Для определенности положим \(J_u > J_v \).

Выберем прямоугольную систему координат в некоторой геометрической плоскости (рис. 21, б). По оси абсцисс будем откладывать осевые моменты инерции \(J_{oc} \) (\(J_u, J_v, J_{x_1}, J_{y_1} \) и т. д.), а по оси ординат — центробежные \(J_{ob} \) (\(J_{xy_1} \) и т. п.).

В соответствии масштабу откладываем вдоль оси абсцисс отрезки \(OA \) и \(OB \), равные главным моментам инерции. Отрезок \(AB \) делим пополам, так что \(BC = AC = \frac{1}{2} (J_u - J_v) \). Из точки \(C \) описываем радиусом \(CA \) окружность, называемую кругом инерции. Тогда для определения момента инерции относительно оси \(u \), проведенной под углом \(\alpha \) к главной оси \(u \), из центра круга проводим под углом \(2\alpha \) луч \(CD_x \). Положительные углы откладываем против часовой стрелки. При этом оказывается, что ордината точки \(D_x \) круга равна центробежному моменту инерции \(J_{xy_1} \).
а абсцисса — осевому моменту инерции J_x относительно оси x. Чтобы получить значение момента инерции J_y относительно оси y, перпендикулярной к оси x и, следовательно, проведенной под положительным углом $\beta = \alpha + \pi/2$ к главной оси u, проводим из центра круга луч CD_y под углом $2\beta = 2(\alpha + \pi/2)$. Легко видеть, что он является продолжением луча CD_x. Абсцисса точки D_y равна моменту инерции J_y, ордината K_yD_y — центробежному моменту инерции с обратным знаком ($-J_{xy}$), что соответствует центробежному моменту инерции относительно осей, повернутых на 90°. Отметим, что двум взаимно перпендикулярным осям соответствуют две точки круга (D_x и D_y), лежащие на одном диаметре.

Рис. 21

Рис. 22

Проведем из точки D_x ось x, параллельную соответствующей оси на рис. 21, a. Точка M ее пересечения с кругом называется полюсом круга инерции (главная точка или фокус круга инерции). Легко показать, что линия, соединяющая полюс с любой точкой круга, дает направление оси, представленной на диаграмме данной точкой. В частности, линия MA дает направление главной оси u. Линия MB параллельна главной оси v.

Обратная задача. Известны моменты инерции J_x, J_y, J_{xy} площади сечения бруса относительно системы центральных осей x, y (рис. 22, a). Определить положение главных осей инерции и величину главных моментов инерции. Для определенности построения примем $J_x > J_y$ и $J_{xy} > 0$.

24
Из геометрической плоскости (рис. 22, б) строим точки D_x и D_y, соответствующие моментам инерции относительно осей x и y. Абсциссы этих точек являются осевыми моментами инерции: $0K_x = J_x$; $0K_y = J_y$; ординаты — центробежные моменты инерции J_{xy}, причем $K_xD_x = J_{xy}$; $K_yD_y = -J_{xy}$. Так как обе точки принадлежат одному диаметру, то соединив их, получим центр круга инерции C, из которого описываем окружность радиусом

$$CD_x = CD_y = \sqrt{\left(\frac{J_x - J_y}{2}\right)^2 + J_{xy}^2},$$

пересекающую ось абсцисс в точках A и B. Очевидно, что абсциссы этих точек (OA и OB) являются искомыми главными моментами инерции J_x и J_y.

![Diagram](image)

Рис. 23

Для определения направления главных осей построим фокус круга инерции. С этой целью из точек D_x и D_y проведем линии, соответственно параллельно указанным осьям, до пересечения с кругом в точке M. Соединив затем фокус с точками A и B круга, получим направление главных осей l и v (рис. 22, б). Графическое решение обратной задачи соответственно для четырех случаев, изображенных на рис. 20, показано на рис. 23, а, б, в, г.

Момент инерции фигуры относительно какой-либо оси можно представить в виде произведения площади фигуры на квадрат некоторой величины, называемой радиусом инерции:

$$J_x = \int_B y^2 \, dF = F_i^2,$$

(2.27)

где i_x — радиус инерции относительно оси x.

Из формулы (2.27) следует, что

$$i_x = \sqrt{\frac{J_x}{F}}.$$

(2.28)
Аналогично радиус инерции относительно оси y

$$i_y = \sqrt{\frac{J_y}{F}}.$$ \hspace{1cm} (2.29)

Главным центральным осям инерции соответствуют главные радиусы инерции

$$i_u = \sqrt{\frac{J_u}{F}}, \quad i_v = \sqrt{\frac{J_v}{F}}.$$ \hspace{1cm} (2.30)

Построим на главных центральных осях инерции плоской фигуры эллипс с полюсами, равными главным радиусам инерции, откладывая при этом вдоль оси u отрезки, равные i_u, а вдоль оси v — отрезки, равные i_v (рис. 24). Такой эллипс, называемый эллипсом инерции, обладает тем замечательным свойством, что радиус инерции относительно любой центральной оси x определяется как перпендикуляр OA, опущенный из центра эллипса O на касательную к нему, параллельную к оси x. Для получения точки касания достаточно провести параллельно данной оси x любую хорду. Точка пересечения эллипса с линией, соединяющей центр O и середину хорды, является точкой касания. Измерив отрезок $OA = l_x$, найдем момент инерции по формуле

$$J_x = F l_x^2.$$

2.8. Моменты сопротивления

Осявым моментом сопротивления называется отношение момента инерции относительно данной оси к расстоянию до наиболее удаленной точки поперечного сечения:

$$W_x = \frac{J_x}{y_{max}}.$$ \hspace{1cm} (2.31)

Размерность моментов сопротивления — единица длины в кубе (мм3, см3, м3).

Практическое значение имеют моменты сопротивления относительно главных центральных осей, которые обычно называются просто моментами сопротивления.

1. Для прямоугольника (рис. 10)

$$W_x = \frac{J_x}{h/2} = \frac{bh^3}{6}; \hspace{1cm} (2.32)$$

$$W_y = \frac{J_y}{b/2} = \frac{hb^3}{6}.$$ \hspace{1cm} (2.33)

2. Для круга (рис. 13)

$$W_x = W_y = W = \frac{J_x}{r} = \frac{\pi r^4}{4} = \frac{\pi d^3}{32}.$$ \hspace{1cm} (2.34)

26
3. Для трубы сечения с внутренним \(d \) и наружным \(D \) диаметрами

\[
W_x = W_y = W = \frac{J_x}{D/2} = \frac{\pi (D^4 - d^4)}{32D} = \frac{\pi D^4}{32} (1 - \alpha^4),
\]

где

\[
\alpha = \frac{d}{D}.
\]

Полярным моментом сопротивления называется отношение полярного момента инерции к расстоянию от полюса до наиболее удаленной точки сечения:

\[
W_p = \frac{J_p}{\rho_{\text{пак}}}.
\]

В качестве полюса принимается центр тяжести поперечного сечения стержня.

1. Для круга (рис. 13)

\[
W_p = \frac{J_p}{r} = \frac{\pi r^3}{2} = \frac{\pi d^3}{16}.
\]

2. Для трубчатого сечения

\[
W_p = \frac{J_p}{D/2} = \frac{\pi D^3}{16} (1 - \alpha^4).
\]

2.9. Порядок расчета

При анализе геометрических характеристик плоских фигур любой сложности важнейшей задачей является определение положения главных осей и величин главных моментов инерции. Можно рекомендовать следующий порядок определения положения главных осей и величин главных центральных моментов инерции сложного профиля, состоящего из простых частей, характеристики которых легко определить.

1. Проводим произвольную прямоугольную систему осей. Разбиваем фигуру на простые части и определяем по формулам (2.5) положение ее центра тяжести.

2. Проводим начальную систему центральных осей \(x, y \) таким образом, чтобы наиболее просто можно было вычислить моменты инерции частей фигуры относительно этих осей. Для этого определяем моменты инерции частей относительно своих центральных осей, проведенных параллельно осям \(x \) и \(y \), используя при этом формулы перехода к параллельным осям (2.14) и (2.15). Таким образом, получаем значения \(J_x, J_y \) и \(J_{xy} \).

3. Определяем по формуле (2.21) угол наклона главных центральных осей, причем ось, проведенную под меньшим углом (положительным или отрицательным), обозначаем буквой \(u \), а перпендикулярную к ней — буквой \(v \).

4. По формулам (2.24) определяем значения главных центральных моментов инерции \(J_u \) и \(J_v \).

Пример. Определить положение главных центральных осей и вычислить главные моменты инерции для поперечного сечения (рис. 25, а), которое состоит из неравнобокого уголка № 14/9 (ГОСТ 8510—86) и швеллера № 24 (ГОСТ 8240—72).
Решение: Через центры тяжести C_1 и C_2 уголка и швеллера проводим центральные оси x_1, y_1 и x_2, y_2, параллельные их сторонам. Поскольку x_2 — ось симметрии швеллера, она и ось y_2 являются его главными центральными осями. Главная центральная ось y_0 уголка образует с его центральной осью x_1 угол α.

Для уголка $F_1 = 22,2$ см2; $J_{x_1} = 146$ см4; $J_{y_1} = 444$ см4; $J_{y_0} = J_{\min} = 85,5$ см4; $\tan \alpha = 0,409$; $\alpha = 22°15'$; координаты центра тяжести $x_C = 4,58$ см, $y_C = 2,12$ см.

Для швеллера $F_2 = 30,6$ см2; $J_{x_2} = 2900$ см4; $J_{y_2} = 208$ см4; $J_{x_2y_2} = 0$; координаты центра тяжести $x_C = 2,42$ см; $y_C = 12$ см.

Найдем главный момент инерции J_{x_0} и центробежный момент инерции $J_{x_1y_1}$ уголка:

$$J_{x_0} = J_{\max} = 444 - 146 - 85,5 = 504,5 \text{ см}^4;$$

$$J_{x_1y_1} = \frac{J_{x_0} - J_{y_0}}{2} \sin 2 \left(90° - \alpha\right) = \frac{J_{x_0} - J_{y_0}}{2} \sin 2\alpha =$$

$$= \frac{504,5 - 85,5}{2} \cdot 0,701 = 146,7 \text{ см}^4.$$

Расстояния между центральными осями уголка и швеллера равны:

- между осями x_1 и x_2: 12,00 + 2,12 = 14,12 см;
- между осями y_1 и y_2: 14,00 — 2,42 — 4,58 = 7,00 см.

Определим координаты центра тяжести C всей фигуры в системе координат x_2, y_2:

$$x_C = \frac{22,2 \cdot 7,00}{22,2 + 30,6} = 2,94 \text{ см};$$

$$y_C = \frac{22,2 \cdot 14,12}{22,2 + 30,6} = 5,94 \text{ см}.$$

Центр тяжести C должен лежать на прямой C_1C_2, что необходимо проверить на рисунке. Через центр тяжести C проводим центральные
осях x_C и y_C, параллельные проведенным ранее центральным осям уголка и швеллера. В системе центральных осей x_C, y_C координаты центра тяжести уголка и швеллера равняются:

$$
x_{C_1} = 7,00 - 2,94 = 4,06 \text{ см}; \quad y_{C_1} = 14,12 - 5,94 = 8,18 \text{ см};
$$
$$
x_{C_2} = -2,94 \text{ см}; \quad y_{C_2} = -5,94 \text{ см}.
$$

Вычислим осевые и центробежный моменты инерции всего сечения в системе произвольных центральных осей x_C, y_C:

$$
J_{x_C} = 146,0 + 22,2 \cdot 8,18^2 + 2900 + 30,6 \cdot 5,94^2 = 5607,6 \text{ см}^4;
$$
$$
J_{y_C} = 444,0 + 22,2 \cdot 4,06^2 + 208,0 + 30,6 \cdot 2,94^2 = 1282,4 \text{ см}^4;
$$
$$
J_{x_C y_C} = 146,7 + 22,2 \cdot 4,06 \cdot 8,18 + 30,6 \cdot (-2,94) \cdot (-5,94) = 1417,3 \text{ см}^4.
$$

По формуле (2.21) находим угол α_0 наклона главных центральных осей x и y относительно произвольных центральных осей x_C и y_C:

$$
tg 2\alpha_0 = \frac{J_{y_C} - J_{x_C}}{2J_{x_C y_C}} = \frac{2 \cdot 1417,3}{1282,4 - 5607,6} = -0,66;
$$
$$
2\alpha_0 = -33^\circ 20'; \quad \alpha_0 = -16^\circ 40'.
$$

Поскольку угол α_0 отрицательный, главная центральная ось и откладывается относительно произвольной центральной оси x_C по часовой стрелке, а поскольку $J_{x_C} > J_{y_C}$, ось x является осью, относительно которой момент инерции будет максимальным.

Главные моменты инерции определям по формуле (2.24):

$$
J_u = \frac{5607,6 + 1282,4}{2} \pm \sqrt{\left(\frac{5607,6 - 1282,4}{2}\right)^2 + 1417,3^2} = 3445,0 \pm 2585,6 \text{ см}^4;
$$
$$
J_u = J_{max} = 6030,6 \text{ см}^4 = 6030,6 \cdot 10^{-3} \text{ м}^4;
$$
$$
J_v = J_{min} = 859,4 \text{ см}^4 = 859,4 \cdot 10^{-3} \text{ м}^4.
$$

Проверка. Должны удовлетворяться условия

$$
J_{x_C} + J_{y_C} = J_u + J_v \quad \text{и} \quad J_{uv} = 0.
$$

В данном случае

$$
J_{x_C} + J_{y_C} = 5607,6 + 1282,4 = 6890,0 = J_u + J_v = 6030,6 + 859,4 = 6890,0 \text{ см}^4;
$$
$$
J_{uv} = \frac{J_{x_C} - J_{y_C}}{2} \sin 2\alpha_0 + J_{x_C y_C} \cos 2\alpha_0 =
$$
$$
= \frac{5607,6 - 1282,4}{2} (-0,55) + 1417,3 \cdot 0,836 =
$$
$$
= -1189,4 + 1184,9 = -4,5 \text{ см}^4.
$$

Относительная ошибка составляет $\frac{4,5}{1184,9} \cdot 100 \% = 0,4 \%$, что допустимо.

На рис. 25, б показано построение круга инерции для графического решения этой же задачи.

Геометрические характеристики различных плоских сечений, а также сечений прокатных профилей приведены в табл. 1—6.
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Квадрат</td>
<td>$F = h^2$</td>
<td>$x_1 = y_1 = \frac{h}{2}$</td>
</tr>
<tr>
<td></td>
<td>[Diag: Quadrilateral]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Оси $x - x$ и $y - y$ — главные центральные</td>
<td></td>
</tr>
<tr>
<td>Квадрат полый</td>
<td>$F = H^2 - h^2$</td>
<td>$x_1 = y_1 = \frac{H}{2}$</td>
</tr>
<tr>
<td></td>
<td>[Diag: Hollow Quadrilateral]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Оси $x - x$ и $y - y$ — главные центральные</td>
<td></td>
</tr>
<tr>
<td>Тонкостенный квадрат полый</td>
<td>$F = 4H\delta$</td>
<td>$x_1 = y_1 = \frac{H}{2}$</td>
</tr>
<tr>
<td></td>
<td>$\delta < \frac{H}{15}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Оси $x - x$ и $y - y$ — главные центральные</td>
<td></td>
</tr>
</tbody>
</table>
| Моменты инерции:
осевые J_x, J_y;
центральный J_{xy};
полярный J_p и при свободном кручении J_k | Моменты сопротивления:
осевые W_x, W_y;
полярный W_p и при свободном кручении W_k | Радиусы инерции |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_x = J_y = \frac{h^4}{12} = \frac{h^2F}{12}$</td>
<td>$W_x = W_y = \frac{h^3}{6}$</td>
<td>$i_x = i_y = \frac{h}{\sqrt{12}}$</td>
</tr>
<tr>
<td>$J_{xy} = \frac{h^4}{3} = \frac{h^2F}{3}$</td>
<td></td>
<td>$= 0,289h$</td>
</tr>
<tr>
<td>$J_k = 0,1406h^4$</td>
<td>$W_k = 0,208h^3$</td>
<td></td>
</tr>
<tr>
<td>$J_x = J_y = \frac{H^4 - h^4}{12} = \frac{H^4 + h^4}{12} F$</td>
<td>$W_x = W_y = \frac{H^4 - h^4}{6H}$</td>
<td>$i_x = i_y = \frac{\sqrt{H^2 + h^8}}{12}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= 0,289 \sqrt{H^2 + h^8}$</td>
</tr>
<tr>
<td>$J_x = J_y = \frac{2}{3} H^38 = \frac{FH^2}{6}$</td>
<td>$W_x = W_y = \frac{4}{3} H^38$</td>
<td>$i_x = i_y = \frac{H}{\sqrt{6}} \approx$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\approx 0,408H$</td>
</tr>
</tbody>
</table>

Эллипс инерции — круг

Эллипс инерции — круг

Эллипс инерции — круг

31
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Квадрат полый</td>
<td>$F = a^2 - b^2$</td>
<td>$x_1 = y_1 = \frac{H}{2} = \frac{V^2}{2} a = 0,71a$</td>
</tr>
<tr>
<td>Квадрат поставлен на ребро</td>
<td>$F = a^2$</td>
<td>$x_1 = y_1 = \frac{h}{2} = \frac{\sqrt{2}}{2} a = 0,71a$</td>
</tr>
<tr>
<td>Оси $x-x$ и $y-y$ — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Квадрат полый поставлен на ребро</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Оси $x-x$ и $y-y$ — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Моменты инерции</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>осевые J_x, J_y; центробежный J_{xy}, полярный J_p и при свободном крученни J_K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Моменты сопротивления</th>
</tr>
</thead>
<tbody>
<tr>
<td>осевые W_x, W_y; полярный W_p и при свободном крученни W_K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Радиусы инерции</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i_x = \sqrt{\frac{J_x}{F}}$</td>
</tr>
<tr>
<td>$i_y = \sqrt{\frac{J_y}{F}}$</td>
</tr>
</tbody>
</table>

| $J_x = J_y = \frac{h^4 - a^4}{12} = \frac{h^2 + a^2}{12} F$ | $W_x = W_y = \frac{h^4 - a^4}{6h} = \frac{h^2 + a^2}{12} F$ |

| $i_x = i_y = \sqrt{\frac{h^2 + a^2}{12}} = 0,289 \sqrt{h^2 + a^2}$ |

| Эллипс инерции — круг |

| $J_x = J_y = \frac{a^4}{12} = \frac{a^2 F}{12} = \frac{h^4}{48}$ |

| $W_x = W_y = \frac{\sqrt{2}}{12} a^3 = \frac{h^3}{24} = 0,118 a^3 = 0,042 h^3$ |

| При срезе верхнего и нижнего углов на $b = \frac{1}{18} h$ |

| W_x достигает максимума $W_{xcp} = 0,124 a^3 = 0,044 h^3$ |

| $J_x = J_y = \frac{a^4 - b^4}{12} = \frac{H^4 - h^4}{48} = \frac{a^2 + b^2}{12} F$ |

| $W_x = W_0 = \frac{\sqrt{2}}{12} \frac{a^4 - b^4}{a} = 0,118 \frac{a^4 - b^4}{a} = \frac{H^4 - h^4}{24H} = 0,042 \frac{H^4 - h^4}{H}$ |

| $i_x = i_y = \sqrt{\frac{a^2 + b^2}{12}} = 0,289 \sqrt{a^2 + b^2}$ |

| Эллипс инерции — круг |

7.458
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прямоугольник</td>
<td>$F = bh$</td>
<td>$x_1 = \frac{b}{2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y_1 = \frac{h}{2}$</td>
</tr>
</tbody>
</table>

Оси x — x и y — y — главные центральные

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>1,5</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ</td>
<td>0,208</td>
<td>0,346</td>
<td>0,493</td>
<td>0,801</td>
<td>1,150</td>
<td>1,789</td>
<td>2,456</td>
<td>3,123</td>
</tr>
<tr>
<td>η</td>
<td>0,1404</td>
<td>0,2936</td>
<td>0,4572</td>
<td>0,7899</td>
<td>1,1232</td>
<td>1,789</td>
<td>2,456</td>
<td>3,123</td>
</tr>
<tr>
<td>ζ</td>
<td>1,0</td>
<td>0,8588</td>
<td>0,7952</td>
<td>0,7533</td>
<td>0,7447</td>
<td>0,7426</td>
<td>0,7425</td>
<td>0,7425</td>
</tr>
</tbody>
</table>
Моменты инерции
осевых: J_x, J_y;
поперечный J_z;
полярный J_p и пр.
свободном кручении J_k

Моменты сопротивления:
осевые W_x, W_y; полярный
W_p и при свободном
кручении W_k

Радиусы инерции

$$i_x = \sqrt{\frac{J_x}{F}}$$
$$i_y = \sqrt{\frac{J_y}{F}}$$

$$J_x = \frac{bh^3}{12} = \frac{Fh^2}{12}$$
$$J_y = \frac{hb^3}{12} = \frac{fb^2}{12}$$
$$J_{xx} = \frac{bh^3}{3} = \frac{Fh^2}{3}$$
$$J_{yy} = \frac{kb^3}{3} = \frac{Fb^2}{3}$$
$$J_{zz} = \frac{b^2h^2}{4}$$
$$J_x = J_z = \frac{b^3h^3}{6d^2} = \frac{b^3h^3}{6(b^2+h^2)} = \frac{d^4\sin^3\alpha}{48} = \frac{Fd^2\sin^2\alpha}{24}$$
$$J_p = \frac{bh}{12}(b^2+h^2)$$

$J_k = \eta b^4$

$\frac{h}{b} = n > 1$

$W_x = \frac{hh^2}{6} = \frac{Fh}{6}$

$W_y = \frac{hb^2}{6} = \frac{fb}{6}$

$i_x = 0,289h$

$i_y = 0,289b$

Посредине длинных сторон максимальное касательное напряжение
$\tau_{max} = M_k/W_k$; посередине коротких — касательное напряжение $\tau = \frac{1}{2}\tau_{max}$; в углах $\tau = 0$

$\frac{h}{b} = n > 4$

$W_k = \frac{1}{3}(n-0,63)b^3 = J_k/b$

В точках длинных сторон, за исключением концов, максимальное касательное напряжение τ_{max}; посередине коротких сторон — касательное напряжение $\tau = 0,7425\tau_{max}$
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения (F)</th>
<th>Координаты краиних точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прямоугольник полый</td>
<td>(F = BH - bh)</td>
<td>(x_1 = \frac{B}{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y_1 = \frac{H}{2})</td>
</tr>
<tr>
<td>Оси (x - x) и (y - y) — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Тонкостенный прямоугольник полый</td>
<td>(F = 2\delta (B + H)) (\delta < \frac{H}{15})</td>
<td>(x_1 = \frac{B}{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y_1 = \frac{H}{2})</td>
</tr>
<tr>
<td>Оси (x - x) и (y - y) — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Прямоугольник с вырезом</td>
<td>(F = b (H - h))</td>
<td>(x_1 = \frac{b}{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y_2 = \frac{H}{2})</td>
</tr>
<tr>
<td>Оси (x - x) и (y - y) — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Моменты инерции осевые J_x, J_y; центробежный J_{xh}; полярный J_p и при свободном кручении J_k</td>
<td>Моменты сопротивления: осевые W_x, W_y; полярный W_p и при свободном кручении W_k</td>
<td>Радиус инерции $t_x = \sqrt{\frac{J_x}{F}}$; $t_y = \sqrt{\frac{J_y}{F}}$</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$J_x = \frac{BH^3 - bh^3}{12}$; $J_y = \frac{HB^3 - hb^3}{12}$</td>
<td>$W_x = \frac{BH^3 - bH^3}{6H}$; $W_y = \frac{HB^3 - hH^3}{6B}$</td>
<td>$t_x = \sqrt{\frac{BH^3 - bh^3}{12(BH - bh)}}$; $t_y = \sqrt{\frac{HB^3 - hb^3}{12(BH - bh)}}$</td>
</tr>
<tr>
<td>$J_x = \frac{\delta H^3}{6} \left(3 \frac{B}{H} + 1\right)$; $J_y = \frac{\delta B^3}{6} \left(3 \frac{H}{B} + 1\right)$</td>
<td>$W_x = \frac{\delta H^3}{3} \left(3 \frac{B}{H} + 1\right)$; $W_y = \frac{\delta B^2}{3} \left(3 \frac{H}{B} + 1\right)$</td>
<td>$i_x = 0,289H \times \sqrt{\frac{3B + H}{B + H}}$; $i_y = 0,289B \times \sqrt{\frac{3H + B}{H + B}}$</td>
</tr>
<tr>
<td>$J_x = \frac{b}{12} (H^3 - h^3)$; $J_y = \frac{b^3}{12} (H - h)$</td>
<td>$W_x = \frac{b}{6H} (H^3 - h^3)$; $W_y = \frac{b^2}{6} (H - h)$</td>
<td>$i_x = \sqrt{\frac{H^2 + Hh + h^2}{12}} = 0,289 \times \sqrt{\frac{H^2 + Hh + h^2}{H + H + h^2}}$; $i_y = 0,289b$</td>
</tr>
<tr>
<td>Форма сечения</td>
<td>Площадь сечения F</td>
<td>Координаты крайних точек сечения</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Прямоугольник с круглым отверстием</td>
<td>$F = bh - \frac{\pi d^2}{4} = bh \left(1 - 0.785 \frac{d^3}{bh}\right)$</td>
<td>$x_1 = \frac{b}{2}$, $y_1 = \frac{h}{2}$</td>
</tr>
<tr>
<td></td>
<td>y</td>
<td>x_1, x_2, y_1, y_2</td>
</tr>
<tr>
<td>Оси x и y — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Прямоугольник с двумя отверстиями</td>
<td>$F = bh - \frac{\pi d^2}{2} = bh \left(1 - 1.57 \frac{d^3}{bh}\right)$</td>
<td>$x_1 = \frac{b}{2}$, $y_1 = \frac{h}{2}$</td>
</tr>
<tr>
<td></td>
<td>y</td>
<td>x_1, x_2, y_1, y_2</td>
</tr>
<tr>
<td>Оси x и y — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Прямоугольник с полукруглыми вырезами</td>
<td>$F = bh - \pi r^2$</td>
<td>$x_1 = \frac{b}{2}$, $y_1 = \frac{h}{2}$</td>
</tr>
<tr>
<td></td>
<td>y</td>
<td>x_1, x_2, y_1, y_2</td>
</tr>
<tr>
<td>Оси x и y — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Моменты инерции:</td>
<td>Моменты сопротивления:</td>
<td>Радиусы инерции</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>осевые J_x, J_y; центробежный J_{xy}; поларный J_p и при свободном кручении J_K</td>
<td>осевые W_x, W_y; полярный W_p и при свободном кручении W_K</td>
<td>$l_x = \sqrt{\frac{J_x}{F}}$</td>
</tr>
<tr>
<td>$J_x = \frac{1}{4} \left(\frac{bh^3}{3} - \frac{\pi d^4}{16} \right) = \frac{bh^3}{12} \left(1 - 0,59 \frac{d^4}{bh^3} \right)$</td>
<td>$W_x = \frac{1}{2b} \left(\frac{bh^3}{3} - \frac{\pi d^4}{16} \right) = \frac{bh^3}{6} \left(1 - 0,59 \frac{d^4}{bh^3} \right)$</td>
<td>$i_x = 0,289 b \times$</td>
</tr>
<tr>
<td>$J_y = \frac{1}{4} \left(\frac{hb^3}{3} - \frac{\pi d^4}{16} \right) = \frac{hb^3}{12} \left(1 - 0,59 \frac{d^4}{hb^3} \right)$</td>
<td>$W_y = \frac{1}{2b} \left(\frac{hb^3}{3} - \frac{\pi d^4}{16} \right) = \frac{hb^3}{6} \left(1 - 0,59 \frac{d^4}{hb^3} \right)$</td>
<td>$i_y = 0,289 b \times$</td>
</tr>
<tr>
<td>$J_z = \frac{bh^3}{12} \left[1 - 1,18 \frac{d^4}{bh^3} \left(1 + 16 \frac{a^8}{d^8} \right) \right]$</td>
<td>$W_z = \frac{bh^3}{6} \left[1 - 1,18 \frac{d^4}{bh^3} \left(1 + 16 \frac{a^8}{d^8} \right) \right]$</td>
<td>$i_z = 0,289 b \times$</td>
</tr>
<tr>
<td>$J_p = \frac{bh^3}{12} \left(1 - 1,18 \frac{d^4}{hb^3} \right)$</td>
<td>$W_p = \frac{hb^3}{6} \left(1 - 1,18 \frac{d^4}{hb^3} \right)$</td>
<td>$i_p = 0,289 b \times$</td>
</tr>
<tr>
<td>$J_K = \frac{bh^3}{12} - \frac{\pi r^4}{4}$</td>
<td>$W_K = \frac{bh^3}{6} - \frac{\pi r^4}{2h}$</td>
<td>$i_K = \sqrt{\frac{J_K}{F}}$</td>
</tr>
<tr>
<td>$J_{xy} = \frac{hb^3}{12} - 2 \left[0,11r^4 + \frac{\pi r^2}{2} \left(\frac{b}{2} - 4r \frac{a^8}{3\pi} \right) \right]$</td>
<td>$W_{xy} = \frac{hb^3}{6} - 2 \left[0,11r^4 + \frac{\pi r^2}{2} \left(\frac{b}{2} - 4r \frac{a^8}{3\pi} \right) \right]$</td>
<td>$i_{xy} = \sqrt{\frac{J_{xy}}{F}}$</td>
</tr>
<tr>
<td>$i_y = 0,289 b \times$</td>
<td>$i_p = 0,289 b \times$</td>
<td>$i_K = 0,289 b \times$</td>
</tr>
<tr>
<td>Форма сечения</td>
<td>Площадь сечения F</td>
<td>Координаты крайних точек сечения</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------</td>
<td>----------------------------------</td>
</tr>
</tbody>
</table>
| Прямоугольник повернутый | $F = bh$ | $x_1 = \frac{1}{2} (b \cos \alpha - \frac{h}{2} \sin \alpha)$
 | | $y_1 = \frac{1}{2} (h \cos \alpha + b \sin \alpha)$ |
| Трапеция прямоугольная полоса | $F = lt$ | $y_0 = \frac{a + b}{2}$
 | | $y_1 = \frac{h}{2}$ |
| Симметричный двутавр из прямоугольников | $F = ah + b (H - h)$ | $x_1 = \frac{b}{2}$
 | | $y_1 = \frac{H}{2}$ |

Оси $x - x$ и $y - y$ — главные центральные
Моменты инерции: осевые J_x, J_y; центробежный J_{xy}; полярный J_p и при свободном крученнии J_k

<table>
<thead>
<tr>
<th>Моменты сопротивления осевые W_x, W_y; полярный W_p и при свободном крученнии W_k</th>
<th>Радиусы инерции</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_x = \frac{bh}{12} (h^2 \cos^2 \alpha + b^2 \sin^2 \alpha)$</td>
<td>$i_x = \sqrt{\frac{J_x}{F}}$</td>
</tr>
<tr>
<td>$J_y = \frac{bh}{12} (h^2 \sin^2 \alpha + b^2 \cos^2 \alpha)$</td>
<td>$i_y = \sqrt{\frac{J_y}{F}}$</td>
</tr>
<tr>
<td>$J_{xy} = \frac{bh}{24} (b^2 - h^2) \sin 2\alpha$</td>
<td>$i_x = \sqrt{\frac{h^2 \cos^2 \alpha + b^2 \sin^2 \alpha}{12}}$</td>
</tr>
<tr>
<td>$W_x = \frac{bh}{6} \times \frac{h^2 \cos^2 \alpha + b^2 \sin^2 \alpha}{h \cos \alpha + b \sin \alpha}$</td>
<td>$= 0,289 \times \sqrt{h^2 \cos^2 \alpha + b^2 \sin^2 \alpha}$</td>
</tr>
<tr>
<td>$W_y = \frac{bh}{6} \times \frac{h^2 \sin^2 \alpha + b^2 \cos^2 \alpha}{b \cos \alpha + h \sin \alpha}$</td>
<td>$i_y = 0,289 \times \sqrt{h^2 \sin^2 \alpha + b^2 \cos^2 \alpha}$</td>
</tr>
<tr>
<td>$J_x = \frac{lt h^2}{12} = \frac{F h^2}{12}$</td>
<td>$W_x = \frac{lt h}{6}$</td>
</tr>
<tr>
<td>$J_{xs} = \frac{lt}{3} (a^2 + ab + b^2)$</td>
<td>$W_{xs} = \frac{lt}{3b} (a^2 + ab + b^2)$</td>
</tr>
<tr>
<td>$J_y = \frac{a h^3}{12} + \frac{b}{12} (H^3 - h^3)$</td>
<td>$i_x = 0,289 h$</td>
</tr>
<tr>
<td>$J_y = \frac{a^3 h}{12} + \frac{b^3}{12} (H - h)$</td>
<td>$W_x = \frac{ah^3}{6H} + \frac{b}{6H} (H^3 - h^3)$</td>
</tr>
<tr>
<td>$W_y = \frac{a^3 h}{6b} + \frac{b^2}{6} (H - h)$</td>
<td>$i_y = \sqrt{\frac{a^3 h + b^3 (H - h)}{12 \left[ah + b (H - h) \right]}}$</td>
</tr>
</tbody>
</table>

<p>| 41 |</p>
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Брусья</td>
<td>$F = aH + 2b(c + c_1)$</td>
<td>$x_1 = \frac{B}{2}$</td>
</tr>
<tr>
<td></td>
<td>$b = \frac{1}{2}(B - a)$</td>
<td>$y_1 = \frac{H}{2}$</td>
</tr>
<tr>
<td>Оси $x - x$ и $y - y$ — главные центральные</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Симметричное сечение из прямоугольников</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F = BH - bh$</td>
</tr>
<tr>
<td>Ось $x - x$ — главная центральная</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Симметричное сечение из прямоугольников</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F = BH + bh$</td>
</tr>
<tr>
<td>Ось $x - x$ — главная центральная</td>
</tr>
<tr>
<td>Моменты инерции осевого J_x, J_y, центробежного J_{xy}, поперечного J_p и при свободном кручении J_k</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>$J_x = \frac{1}{12} \left[BH^3 - \frac{1}{4\alpha} (h^4 - h_1^4) \right]$</td>
</tr>
<tr>
<td>$J_y = \frac{1}{12} \left[B^3 (H - h) + h_1 a^3 + \frac{\alpha}{4} (B^4 - a^4) \right]$</td>
</tr>
<tr>
<td>$i_\alpha = \frac{h - h_1}{2b}$ для стандартных двутавров $\alpha \approx 1/6$</td>
</tr>
<tr>
<td>$J_x = \frac{BH^3 - bh^3}{12}$</td>
</tr>
<tr>
<td>$J_x = \frac{BH^3 + bh^3}{12}$</td>
</tr>
<tr>
<td>Форма сечения</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Крестовина</td>
</tr>
<tr>
<td>Оси x и y— главные центральные</td>
</tr>
<tr>
<td>Крестовина тонкостенная</td>
</tr>
<tr>
<td>Оси x и y— главные центральные</td>
</tr>
<tr>
<td>Несимметричный двутавр из прямоугольников</td>
</tr>
</tbody>
</table>
Моменты инерции осевых J_x, J_y; косого J_{xy}; полярных J_r при свободном кручении J_k | Моменты сопротивления: осевые W_x, W_y; полярный W_p при свободном кручении W_k | Радиусы инерции

<table>
<thead>
<tr>
<th>J_x</th>
<th>W_x</th>
<th>i_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>$bH^3 + (B - b) h^3$</td>
<td>$bH^3 + (B - b) h^3$</td>
<td>$\sqrt{\frac{J_x}{F}}$</td>
</tr>
<tr>
<td>J_y</td>
<td>W_y</td>
<td>i_y</td>
</tr>
<tr>
<td>$hB^3 + (H - h) b^3$</td>
<td>$hB^3 + (H - h) b^3$</td>
<td>$\sqrt{\frac{J_y}{F}}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J_x</th>
<th>W_x</th>
<th>i_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{12} [h^3 \delta + \delta^3 (b - \delta)]$</td>
<td>$h^3 \delta + \delta^3 (b - \delta)$</td>
<td>$\sqrt{\frac{J_x}{F}}$</td>
</tr>
<tr>
<td>J_y</td>
<td>W_y</td>
<td>i_y</td>
</tr>
<tr>
<td>$\frac{1}{12} [b^3 \delta + \delta^3 (h - \delta)]$</td>
<td>$b^3 \delta + \delta^3 (h - \delta)$</td>
<td>$\sqrt{\frac{J_y}{F}}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J_x</th>
<th>W_{xb}</th>
<th>i_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{3} (By_1^3 - B_1 h^3) + by_1^3 - b_1 h_1^3$</td>
<td>$\frac{J_x}{y_1}$ (для верхних волокон)</td>
<td>$\sqrt{\frac{J_x}{F}}$</td>
</tr>
<tr>
<td>J_y</td>
<td>W_{yb}</td>
<td>i_y</td>
</tr>
<tr>
<td>$\frac{1}{12} [B^3 c + b^3 c_1 + a^3 (h + h_1)]$</td>
<td>$\frac{1}{6B} [B^3 c + b^3 c_1 + a^3 (h + h_1)]$</td>
<td>$\sqrt{\frac{J_y}{F}}$</td>
</tr>
</tbody>
</table>

45
Симметричный тавр из прямоугольников

Формы сечения	Площадь сечения F	Координаты крайних точек сечения

$F = (B - b) c + bh$

$x_1 = \frac{B}{2}$

$y_1 = \frac{1}{2} \times \frac{(B - b) c^2 + bh^2}{(B - b) c + bh}$

$y_1 = h - y_1$

Оси $x - x$ и $y - y$ — главные центральные

Несимметричное сечение из прямоугольников

$F = aH + bc$

$y_1 = \frac{aH^2 + bc^2}{2(aH + bc)}$

$y_1' = H - y_1 = \frac{aH^2 + bc(2H - c)}{2(aH + bc)}$

Ось $x - x$ — центральная
Моменты инерции:
осевые J_x, J_y;
центробежный J_{xy};
полярный J_p и при свободном кручении J_k

<table>
<thead>
<tr>
<th>$J_x = J_{x1} - y_1'^2 F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_{x1} = \frac{1}{3} [(B - b) c^3 + bh^3]$</td>
</tr>
<tr>
<td>$J_y = \frac{1}{12} [B^3 c + b^3 (h - c)]$</td>
</tr>
</tbody>
</table>

Кроме того,

| $J_x = \beta \frac{Bh^3}{12}$ |

где β находится из графика

![Diagram](image)

<table>
<thead>
<tr>
<th>$W_{xv} = \frac{J_x}{y_1'} = \frac{J_{x1}}{y_1'} - y_1' F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(для верхних волокон)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$W_{xn} = \frac{J_x}{y_1} = \frac{J_{x1}}{h - y_1'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(для нижних волокон)</td>
</tr>
</tbody>
</table>

| $W_y = \frac{1}{6B} [B^3 c + b^3 (h - c)]$ |

<table>
<thead>
<tr>
<th>$i_x = \sqrt{\frac{J_x}{F}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i_y = \sqrt{\frac{J_y}{F}}$</td>
</tr>
</tbody>
</table>

Моменты сопротивления:
осевые W_x, W_y;
полярный W_p и при свободном кручении W_k

<table>
<thead>
<tr>
<th>$W_{xh} = \frac{J_x}{y_1} (для нижних волокон)$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>$W_{xb} = \frac{J_x}{y_1'} = \frac{J_{x1}}{H - y_1'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(для верхних волокон)</td>
</tr>
</tbody>
</table>

$W_{xb} > W_{xh}$

Radiousы инерции

β

47
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Корытое сечение</td>
<td>$F = Bh + 2b(H-h)$</td>
<td>$x_1 = \frac{B}{2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y_1 = \frac{Bh^2 + 2b(H^2 - h^2)}{2[Bh + 2b(H-h)]}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y_1 = H - y_1$</td>
</tr>
<tr>
<td>Оси $x-x$ и $y-y$ — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Устой с обратными стенками</td>
<td>$F = BH - \frac{a + b}{2}h$</td>
<td>$x_1 = \frac{B}{2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y_1 = \frac{3BH^2 - h^2(b + 2a)}{6BH - 2h(1 + b)}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y_1' = H - y_1$</td>
</tr>
<tr>
<td>Оси $x-x$ и $y-y$ — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Равнобокий уголок</td>
<td>$F = t(2h - t)$</td>
<td>$x_1 = y_1 = \frac{h^2 + t(h - t)}{2(2h - t)}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x_1' = y_1' = h - x_1 = h - y_1$</td>
</tr>
<tr>
<td>Оси x_2-x_2 и y_2-y_2 — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Моменты инерции:</td>
<td>Моменты сопротивления:</td>
<td>Радиусы инерции</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>осевые J_x, J_y; центробежный J_{xy}; полярный J_p и при свободном кручении J_K</td>
<td>осевые W_x, W_y; полярный W_p и при свободном кручении W_K</td>
<td>$i_x = \sqrt{\frac{J_x}{F}}$</td>
</tr>
<tr>
<td>$l_x = \frac{Bh^3 + 2b \left(H - h \right)^3}{12}$ + $Bh \left(y_1 - \frac{h}{2} \right)^2$ + $2b \left(H - h \right) \left(\frac{H - h}{2} \right)^2$ + $h - y_1$</td>
<td>$W_x = \frac{J_x}{y_1}$ (для нижних волокон)</td>
<td>$i_y = \sqrt{\frac{J_y}{F}}$</td>
</tr>
<tr>
<td>$l_y = \frac{B^3H^3 - (H - h)(H - 2b)^3}{12}$</td>
<td>$W_y = -h \left(B - 2b \right)^3$ (для верхних волокон)</td>
<td></td>
</tr>
<tr>
<td>$J_x = J_{xx} - Fy_1$</td>
<td>$W_x = \frac{J_x}{y_1}$ (для нижних волокон)</td>
<td></td>
</tr>
<tr>
<td>$J_{xx} = \frac{BH^3}{3} - \frac{h^3}{12} \left(b + 3a \right)$</td>
<td>$W_x = \frac{J_x}{y_1}$ (для верхних волокон)</td>
<td></td>
</tr>
<tr>
<td>$J_y = \frac{HB^3}{12} - \frac{h \left(b^4 - a^4 \right)}{48 \left(b - a \right)}$</td>
<td>$W_y = \frac{HB^3}{6} - \frac{h \left(b^4 - a^4 \right)}{24B \left(b - a \right)}$</td>
<td></td>
</tr>
<tr>
<td>$l_x = l_y = \frac{1}{3} \left(t \left(h - y_1 \right)^3 \right.$</td>
<td>$W_x = W_t = \frac{J_x}{y_1}$ (для левых и нижних волокон)</td>
<td></td>
</tr>
<tr>
<td>$+ h_1^3 \left(h - t \right) \left(y_1 - t \right)^3)</td>
<td>W_x = W_t = \frac{J_x}{y_1}$ (для правых и верхних волокон)</td>
<td>$i_{\min} = i_{y_1} = \sqrt{\frac{J_{y_1}}{F}}$</td>
</tr>
<tr>
<td>$J_x = \frac{t \left(2h - 3y_1 \right) \left(h^2 + t^2 \right)}{6}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$J_y = \frac{7h^4 - 5 (h - t)^4}{12}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$- 2h^2y_1 \left(h + y_1 \right) + 2 (h - t) (h - y_1) \times \left(y_1 + t \right) - 4hy_1 \left(h - t \right)^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Форма сечения</td>
<td>Площадь сечения F</td>
<td>Координаты крайних точек сечения</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Равнобокий уголок</td>
<td>$F = t (2h - t)$</td>
<td>$y_1 = \frac{h + t - 2c}{\sqrt{2}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y'_1 = \frac{h^2 + ht - t^2}{(2h - t) \sqrt{2}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$c = y'_1 \frac{\sqrt{2}}{2}$</td>
</tr>
</tbody>
</table>

Оси $x-x$ и $y-y$ — главные центральные

<table>
<thead>
<tr>
<th>Неравнобокий уголок</th>
<th>$F = t (b + h_3) = t (h + b_3)$</th>
<th>$x_1 = \frac{b^3 + h_3 t}{2 (b + h_3)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$x'_1 = b - x_1 = \frac{b^3 + h_3 (2b - t)}{2 (b + h_3)}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y_1 = \frac{h^3 + b_3 t}{2 (h + b_3)}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y'_1 = h - y_1 = \frac{h^3 + b_3 (2h - t)}{2 (h + b_3)}$</td>
</tr>
</tbody>
</table>

З-образное сечение

<table>
<thead>
<tr>
<th>$F = h t_1 + 2t (b - t_1)$</th>
<th>$x_1 = b - \frac{t_1}{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$y_1 = \frac{h}{2}$</td>
</tr>
<tr>
<td>Моменты инерции:</td>
<td>Моменты сопротивления:</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>осевые J_x, J_y;</td>
<td>осевые W_x, W_y; поларный W_o и при свободном кручении W_k</td>
</tr>
<tr>
<td>центробежный J_{xy};</td>
<td></td>
</tr>
<tr>
<td>поларный J_{p} и при вибромном кручении J_k</td>
<td></td>
</tr>
</tbody>
</table>

\[
J_x = \frac{1}{3} \left[2c^4 - 2(c - t)^4 + t \left(h - 2c + \frac{t}{2} \right)^3 \right] \\
J_y = \frac{h^4 - (h - t)^4}{12}
\]

\[
W_{xb} = \frac{J_x}{y_1^2} \text{ (для верхних волокон)} \\
W_{xn} = \frac{J_x}{y_1} \text{ (для нижних волокон)}
\]

\[
l_x = \frac{1}{3} \left[l \left(h - y_1 \right)^3 + b y_1 - h_1 \left(y_1 - t \right)^2 \right] \\
l_y = \frac{1}{3} \left[l \left(b - x_1 \right)^3 + h x_1^3 - h_1 \left(x_1 - t \right)^3 \right] \\
l_{xy} = -\frac{b b_1 h_1 l}{4 \left(b + h_1 \right)} = -\frac{b b_1 h_1 l}{4 \left(h + b_1 \right)}
\]

\[
W_{xb} = \frac{J_x}{y_1^2} \text{ (для верхних волокон)} \\
W_{yn} = \frac{J_y}{x_1} \text{ (для правых волокон)} \\
W_{yl} = \frac{J_y}{x_1} \text{ (для левых волокон)}
\]

\[
J_x = \frac{h l^3 - (b - t_1) (h - 2t)^3}{12} \\
J_y = \frac{h l_1^3 + 6 t h^2 (b - t_1) + 2 t (b - t_1)^3}{12} \\
J_{x_1} = \frac{J_x \cos^2 \alpha - J_y \sin^2 \alpha}{\cos 2\alpha} \\
J_{y_1} = \frac{J_y \cos^2 \alpha - J_x \sin^2 \alpha}{\cos 2\alpha} \\
l_{xy} = \frac{t \left(b - t_1 \right) (h - t)}{J_x - J_y}
\]

\[
W_x = \frac{b h^3 - (b - t_1) (h - 2t)^3}{6h} \\
W_y = \frac{h l_1^3 + 6 t h^2 (b - t_1) + 2 t (b - t_1)^3}{6 \left(2b - t_1 \right)}
\]

\[
i_x = \sqrt{\frac{J_x}{F}} \quad i_y = \sqrt{\frac{J_y}{F}}
\]
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Треугольник</td>
<td>$F = \frac{1}{2} bh$</td>
<td>$y_1 = \frac{1}{3} h$; $y_i = \frac{2}{3} h$; $d = \frac{1}{3} (x' - x)$</td>
</tr>
</tbody>
</table>
Моменты инерции:
осевые J_x, J_y;
центробежный J_{xy};
полярный J_p и при свободном крушении J_K

$J_x = \frac{bh^3}{36} = \frac{Fh^2}{18}$
$J_{xy} = \frac{bh^3}{12} = \frac{Fh^2}{6}$
$J_p = \frac{bh^3}{4} = \frac{Fh^2}{2}$
$J_y = \frac{bh (b^2 - x_1^2 x_1)}{36} = \frac{F(b^2 - x_1^2 x_1)}{15}$
$J_{xy} = \frac{h (x_1^2 + x_1^3 + x_1)}{12}$
$J_p = \frac{bh}{36} (h^2 + x_1^2 + x_1^3 + x_1^2 x_1 + x_1^2 x_1 + x_1^2 x_1)$
$J_{xy} = \frac{h}{12} (3bh^2 + x_1^3 + x_1^2)$

Моменты сопротивления осевые W_{x}, W_{y}; полярный W_p и при свободном крушении W_K

$W_{x} = \frac{bh^2}{12}$ (для нижних волокон)
$W_{y} = \frac{bh^2}{24}$ (для верхних волокон)
$W_p = \frac{bh}{36x_1}$ (для правых волокон)
$W_{xy} = \frac{bh (b^2 - x_1^2 x_1)}{36x_1}$ (для левых волокон)

Радиусы инерции

$i_x = \sqrt{\frac{J_x}{F}}$
$i_y = \sqrt{\frac{J_y}{F}}$

Для равностороннего треугольника со стороной b и высотой h

$J_{xy} = \frac{hb^3}{48} = \frac{Fb^2}{24}$
$W_{xy} = \frac{hb^2}{12}$
$W_{p} = \frac{0,05b^3}{12} = \frac{h^3}{7,5 \sqrt{3}}$
$W_{p} = \frac{2J_{xy}}{h}$
$W_{p} = \frac{h^3}{12,99} = \frac{b}{h}$

Максимальное касательное напряжение τ_{max} посередине стороны

Для равнобедренного треугольника с основанием b, высотой h и углом при вершине $\alpha < 15^\circ$

$J_{xy} = \frac{1}{12} hb^3 - 0,105b^4$
$W_{xy} = \frac{1}{12} hb^2 - 0,105b^3$

$J_{xy} = \frac{b}{h}$

В точках длины строн вблизи основания τ_{max}
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прямоугольный треугольник</td>
<td>$F = \frac{1}{2} bh$</td>
<td>$x_1 = \frac{2}{3} b$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y_1 = \frac{1}{3} h$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x_1' = \frac{1}{3} b$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y_1' = \frac{2}{3} h$</td>
</tr>
</tbody>
</table>
Продолжение табл. 1

<table>
<thead>
<tr>
<th>Моменты инерции</th>
</tr>
</thead>
<tbody>
<tr>
<td>осевые (J_x), (J_y); центробежные (J_{xy}); полярный (J_p) и при свободном кручении (J_K)</td>
</tr>
<tr>
<td>(J_x = \frac{bh^4}{36} = \frac{Fh^2}{18})</td>
</tr>
<tr>
<td>(J_{xx} = \frac{bh^3}{12} = \frac{Fh^2}{6})</td>
</tr>
<tr>
<td>(J_{xy} = \frac{bh^3}{4} = \frac{Fh^2}{2})</td>
</tr>
<tr>
<td>(J_y = \frac{b^3h}{36} = \frac{Fb^2}{18})</td>
</tr>
<tr>
<td>(J_{yy} = \frac{b^3h}{12} = \frac{Fb^2}{6})</td>
</tr>
<tr>
<td>(J_{xy} = -\frac{b^2h^2}{72})</td>
</tr>
<tr>
<td>(J_{xx} = \frac{b^2h^2}{24})</td>
</tr>
<tr>
<td>(J_{yy} = -\frac{b^2h^2}{8})</td>
</tr>
<tr>
<td>(J_p = \frac{bh}{36} (h^2 + b^2) = \frac{bhc^2}{36})</td>
</tr>
<tr>
<td>(c^2 = h^2 + b^2)</td>
</tr>
<tr>
<td>(J_{pa} = \frac{bh}{12} (h^2 + b^2) = \frac{bhc^2}{12})</td>
</tr>
<tr>
<td>(J_{pb} = \frac{bh}{12} (3h^2 + b^2))</td>
</tr>
<tr>
<td>(J_{pc} = \frac{bh}{12} (h^2 + 3b^2))</td>
</tr>
<tr>
<td>(J_{pd} = \frac{bh}{12} (h^2 + b^2))</td>
</tr>
<tr>
<td>(J_{pe} = \frac{bh}{12} (3h^2 + b^2))</td>
</tr>
</tbody>
</table>

| Моменты сопротивления | осевые \(W_x \), \(W_y \); полярный \(W_o \) и при свободном кручении \(W_K \) |
|-----------------------|
| \(W_{xh} = \frac{bh^2}{12} \) \(\text{(для нижних волокон)} \) |
| \(W_{xb} = \frac{bh^2}{24} \) \(\text{(для верхних волокон)} \) |
| \(W_{yl} = \frac{b^2h}{12} \) \(\text{(для левых волокон)} \) |
| \(W_{yf} = \frac{b^2h}{24} \) \(\text{(для правых волокон)} \) |

<table>
<thead>
<tr>
<th>Радиусы инерции</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i_x = \sqrt{\frac{J_x}{F}})</td>
</tr>
<tr>
<td>(i_y = \sqrt{\frac{J_y}{F}})</td>
</tr>
<tr>
<td>(i_x = \frac{h}{3 \sqrt{2}} = 0,2357h)</td>
</tr>
<tr>
<td>(i_y = \frac{b}{3 \sqrt{2}} = 0,2357b)</td>
</tr>
<tr>
<td>Форма сечения</td>
</tr>
<tr>
<td>---------------</td>
</tr>
</tbody>
</table>
| Трапеция | $F = \frac{1}{2} (b_1 + b) h$ | $y_1 = \frac{b + 2b_1}{3 (b + b_1)} h$
| | | $y'_1 = \frac{2b + b_1}{3 (b + b_1)} h$ |
| | | Для равнобедренной основа |
| | | $y'_1 = \frac{3b_1 + 2b_0}{3 (2b_1 + b_0)}$ |
| | | $x_1 = \frac{b}{2}$ |
| | | Для трапеции в виде высотой |
Моменты инерции:
осевые J_x, J_y;
центробежный J_{xy};
полярный J_p и при свободном кручении J_K

<table>
<thead>
<tr>
<th>Моменты сопротивления:</th>
<th>Радиусы инерции</th>
</tr>
</thead>
<tbody>
<tr>
<td>осевые W_x, W_y; полярный W_p и при свободном кручении W_K</td>
<td>$i_x = \sqrt{\frac{J_x}{F}}$</td>
</tr>
<tr>
<td>$i_y = \sqrt{\frac{J_y}{F}}$</td>
<td></td>
</tr>
</tbody>
</table>

$$
J_x = \frac{h^3 (b^2 + 4bb_1 + b_0^2)}{36 (b + b_1)} = \frac{Fh^2 (b^2 + 4bb_1 + b_0^2)}{18 (b + b_1)^3} \\
J_{xy} = \frac{h^3 (b + 3b_1)}{12} = \frac{Fh^2 (b + 3b_1)}{6 (b + b_1)} \\
J_y = \frac{h^3 (3b + b_1)}{12} = \frac{Fh^2 (3b + b_1)}{6 (b + b_1)}
$$

Трапеция с верхним b_1 и нижним $b_1 + b_0 = b$

$$
W_{xh} = \frac{h^2 (b^2 + 4bb_1 + b_0^2)}{12 (b + 2b_1)} \\
(для нижних волокон) \\
W_{xb} = \frac{h^2 (b^2 + 4bb_1 + b_0^2)}{12 (2b + b_1)} \\
(для верхних волокон)
$$

$$
i_x = \frac{h}{6 (b + b_1)} \times \sqrt{2 (b^2 + 4bb_1 + b_0^2)}
$$

$$
W_{xb} = \frac{h^2 (b^2 + 4bb_1 + b_0^2)}{12 (3b + 2b_0)} \\
W_y = \frac{h}{24} \cdot \frac{b^4 - b_1^4}{b^2 - bb_1}
$$

Клин с большим b, меньшим b_1 основаниями и $h > 4b$

$$
J_k = \frac{h (b^4 - b_1^4)}{12 (b - b_1)} - 0,105 (b^4 + b_1^4) \\
W_k = \frac{h (b^4 - b_1^4)}{12b (b - b_1)} - 0,105 \frac{b^4 + b_1^4}{b}
$$

Максимальные касательные напряжения в точках длинных сторон ближе к широкому основанию

$$
\tau_{\text{max}} = \frac{M_k}{W_k}
$$
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Полый ромб</td>
<td>$F = \frac{1}{2} (ab - a_1b_1)$</td>
<td>$x_1 = \frac{a}{2}$, $y_1 = \frac{b}{2}$</td>
</tr>
<tr>
<td>Оси $x-x$ и $y-y$ — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Круг</td>
<td>$F = \frac{\pi d^2}{4} = \pi r^2 \approx 0,785 d^2$</td>
<td>$x_1 = y_1 = \frac{d}{2} = r$</td>
</tr>
<tr>
<td>Любая центральная ось — главная</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кольцо</td>
<td>$F = \frac{\pi (D^2 - d^2)}{4} = \frac{\pi D^2}{4} (1 - \alpha^2) \approx 0,785D^2 (1 - \alpha^2)$</td>
<td>$x_1 = y_1 = \frac{D}{2}$</td>
</tr>
<tr>
<td>Любая центральная ось — главная</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

58
<table>
<thead>
<tr>
<th>Моменты инерции:</th>
<th>Моменты сопротивления:</th>
<th>Радиус инерции:</th>
</tr>
</thead>
<tbody>
<tr>
<td>осевые J_x^c, J_y^c;</td>
<td>осевые W_x, W_y; полый W_p и при свободном кручении W_K</td>
<td>$i_x = \sqrt{\frac{J_x}{F}}$</td>
</tr>
<tr>
<td>центральный J_x^c, J_y^c;</td>
<td></td>
<td>$i_x = \sqrt{\frac{J_y}{F}}$</td>
</tr>
<tr>
<td>полый J_p и при свободном кручении J_K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$
\begin{align*}
J_x &= \frac{ab^3 - a_1b_1^3}{48} \\
J_y &= \frac{a^3b - a_1^3b_1}{48} \\
W_x &= \frac{ab^3 - a_1b_1^3}{24b} \\
W_y &= \frac{a^3b - a_1^3b_1}{24a} \\
i_x &= \sqrt{\frac{ab^3 - a_1b_1^3}{24(ab-a_1b_1)}} \\
i_y &= \sqrt{\frac{a^3b - a_1^3b_1}{24(ab-a_1b_1)}}
\end{align*}
$$

$$
\begin{align*}
J_x = J_y = \frac{\pi d^4}{64} = \frac{\pi r^4}{4} = \\
= \frac{F d^2}{16} = \frac{F r^2}{4} \approx 0,05 d^4 \approx \\
\approx 0,785 r^4 \\
J_p = J_K = 2J_x = 2J_y = \\
= \frac{\pi d^4}{32} = \frac{\pi r^4}{2} \approx 0,1 d^4 \approx \\
\approx 1,57 r^4 \\
W_x = W_y = \frac{\pi d^3}{32} = \frac{\pi r^3}{4} = \\
\approx 0,1 d^3 \approx 0,785 r^3 \\
W_p = W_K = \frac{\pi d^3}{16} = \frac{\pi r^3}{2} \approx \\
\approx 0,2 d^3 \approx 1,57 r^3 \\
i_x = i_y = \frac{d}{4} = \frac{r}{2}
\end{align*}
$$

Эллипс инерции — круг

$$
\begin{align*}
J_x = J_y = \frac{\pi (D^4 - d^4)}{64} = \\
= \frac{\pi D^3}{64} (1 - \alpha^4) = \\
= \frac{F (D^2 + d^2)}{16} = \\
= \frac{FD^2}{16} (1 + \alpha^2) \approx \\
\approx 0,05 D^4 (1 - \alpha^4) \\
J_p = J_K = \frac{\pi (D^4 - d^4)}{32} = \\
= \frac{\pi D^3}{32} (1 - \alpha^4) \approx \\
\approx 0,1 D^3 (1 - \alpha^4) \\
W_x = W_y = \frac{\pi (D^4 - d^4)}{32D} = \\
= \frac{\pi D^3}{32} (1 - \alpha^4) \approx \\
\approx 0,1 D^3 (1 - \alpha^4) \\
W_p = W_K = \frac{\pi (D^4 - d^4)}{16D} = \\
= \frac{\pi D^3}{16} (1 - \alpha^4) \approx \\
\approx 0,2 D^3 (1 - \alpha^4) \\
i_x = i_y = \frac{1}{4} \times \\
\times \sqrt{D^2 + d^2} = \\
= \frac{D}{4} \sqrt{1 + \sigma^2}
\end{align*}
$$

Эллипс инерции — круг

59
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Круг с неконцентрическим отверстием</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F = \frac{\pi D^2}{4} (1 - \alpha^2)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\alpha = \frac{d}{D}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_1 = \frac{D}{2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y_0 = \beta D \frac{\alpha^2}{1 - \alpha^2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y_1 = \frac{D}{2} \frac{1 - \alpha^2 (1 - 2\beta)}{1 - \alpha^2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y_1 = \frac{D}{2} \frac{1 - \alpha^2 (1 + 2\beta)}{1 - \alpha^2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta = \frac{a}{D}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Оси $x - x$ и $y - y$ — главные центральные</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Круг с круговым вырезом |
| — |
| — |
| Оси $x - x$ и $y - y$ — главные |

Тонкостенное кольцо $\delta < 0,1d$ |
| $F = \pi d \delta$ |
| $x_1 = y_1 = \frac{d}{2} = r$ |
| Любая центральная ось — главная |
Моменты инерции осевые J_x, J_y, центробежный J_{xy}, полярный J_p и при свободном крученіи J_k

$J_x = \frac{\pi D^4}{64} \times \left(1 - \alpha^4 - 16 \frac{\alpha^2 \beta^2}{(1 - \alpha^2)^2} \right)$

$J_y = \frac{\pi D^4}{64} (1 - \alpha^4)$

$W_x = \frac{\pi D^3}{32} \times \left(1 - \alpha^2 (1 - 2\beta) \right)$

$W_y = \frac{\pi D^3}{32} \times \left(1 - \alpha^2 (1 - 2\beta) \right)$

$W_p = W_x = \frac{\pi d^2}{4}$

$W_k = \frac{R^3}{k_2}$

Радиусы винц.

$i_x = \sqrt{i_x}$

$i_x = \frac{D}{4} \times \sqrt{\frac{1 + \alpha^2}{1 - \alpha}}$

$i_y = \frac{D}{4} \sqrt{1 + \alpha^4}$

r/R	0	0,005	0,1	0,2	0,4	0,6	0,8	1	1,5
k_1 | 1,57 | 1,56 | 1,56 | 1,46 | 1,22 | 0,92 | 0,63 | 0,38 | 0,07
k_2 | 0,64 | 1,22 | 1,22 | 1,23 | 1,31 | 1,52 | 1,91 | 2,63 | 7,14

$J_x = J_y = \frac{\pi \delta d^3}{8} = \pi \delta r^3 = \frac{F d^2}{8} \approx 0,3936d^3$

$J_p = J_k = \frac{\pi \delta d^3}{4} = 2\pi \delta r^3 \approx 0,785\delta d^3$

$W_x = W_y = \frac{\pi \delta d^2}{4} = \pi \delta r^2 \approx 0,785\delta d^2$

$W_p = W_k = \frac{\pi \delta d^2}{2} = 2\pi \delta r^2 \approx 1,57\delta d^2$

$\frac{i_x}{i_y} = \frac{d}{2\sqrt{2}} = \frac{r}{\sqrt{2}} \approx 0,353d$

Эллипс инерции — круг
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты краевых точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Круговое незамкнутое тонкостенное кольцо</td>
<td>$-\delta \ll d$</td>
<td>$x_1 = y_1 = \frac{d \pm \delta}{2}$</td>
</tr>
<tr>
<td>Полукруг</td>
<td>$F = \frac{\pi d^2}{8} = \frac{\pi r^2}{2} \approx 0,393d^2$</td>
<td>$x_1 = \frac{d}{2} = r$</td>
</tr>
<tr>
<td>$y_1 = \frac{2}{3} \frac{d}{\pi} \approx 0,212d$</td>
<td>$y_1' \approx 0,288d$</td>
<td></td>
</tr>
<tr>
<td>Четверть круга</td>
<td>$F = \frac{\pi r^2}{4} \approx 0,785r^2$</td>
<td>$x_1 = y_1 = \frac{4r}{3\pi} \approx 0,424r$</td>
</tr>
<tr>
<td>$x_1' = y_1' \approx 0,576r$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Оси $x - x$ и $y - y$ — главные центральные
Моменты инерции
осевые J_x, J_y;
центробежный J_{xy};
полярный J_p и при
вободном кручении J_k

$$J_k = \frac{\pi d^4}{3}$$

Моменты сопротивления,
osевые W_x, W_y;
полярный W_p и при свободном кручении W_k

$$W_k = \frac{(\pi d^4)^4}{3\pi d + 1,8d} \approx \frac{\pi d^4}{3}$$

Максимальные касательные
напряжения в точках внутреннего и наружного контуров сечения

$$\tau_{\max} = \frac{3\pi d + 1,8d}{(\pi d)^2} M_k$$

Радиусы инерции

$$i_x = \sqrt{\frac{J_x}{\rho}}$$
$$i_y = \sqrt{\frac{J_y}{\rho}}$$

$$W_x \approx 0,0324d^3 \approx 0,259r^3$$ (для нижних волокон)

$$W_x \approx 0,0239d^3 \approx 0,191r^3$$ (для верхних волокон)

$$i_x \approx 0,132d$$

$$i_y = \frac{d}{4}$$

$$W_x = W_y = \frac{\pi r^3}{48} \times$$

$$\times \frac{9\pi^2 - 64}{3\pi - 4} \approx 0,923r^3$$

(для верхних и правых волокон)

$$W_x = W_y = \frac{\pi r^3}{192} \times$$

$$\times (9\pi^2 - 64) \approx 1,245r^3$$

(для нижних и левых волокон)

$$i_{x\max} \approx 0,302r$$

$$i_{y\min} \approx 0,221r$$

$$J_{x_{\max}} \approx 0,0714r^4$$

$$J_{y_{\min}} \approx 0,0384r^4$$

$$J_x = J_y \approx 0,0549r^4$$

$$J_{x_{\max}} = J_{y_{\min}} \approx 0,196r^4$$

$$J_{x_{\max}} = J_{y_{\min}} = -0,0165r^4$$

$$J_{x_{\max}} = \frac{r^4}{8}$$

$$J_{x_{\max}} = \frac{r^4}{8}$$
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Круговой сектор</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F = \frac{sr}{2} = \alpha r^2$</td>
<td>$x_1 = \frac{b}{2} = r \sin \alpha$</td>
<td></td>
</tr>
<tr>
<td>$s = 2r \alpha$</td>
<td>$y_1 = \frac{2}{3} \frac{rb}{s} = \frac{2r \sin \alpha}{3 \alpha}$</td>
<td></td>
</tr>
<tr>
<td>$\alpha = \frac{\pi \alpha^\circ}{180^\circ}$</td>
<td>$y_1' = r \left(1 - \frac{2 \sin \alpha}{3 \alpha}\right)$</td>
<td></td>
</tr>
<tr>
<td>$b = 2r \sin \alpha$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Круговой сегмент		
$F = \frac{r^2}{2} (2\alpha - \sin 2\alpha)$;	$x_1 = \frac{b}{2}$	
$\alpha = \frac{\pi \alpha^\circ}{180^\circ}$	$b = 2r \sin \alpha$	
$y_0 = \frac{4r \sin^3 \alpha}{3(2\alpha - \sin 2\alpha)}$	$y_1 = r \left(\frac{4}{3} \frac{\sin^3 \alpha}{2\alpha - \sin 2\alpha} - \cos \alpha\right)$	
$y_1' = r \left(1 - \frac{4}{3} \times \frac{\sin^3 \alpha}{2\alpha - \sin 2\alpha}\right)$		

Оси $x-x$ и $y-y$ — главные центральные
Моменты инерции: осевые J_x, J_y, центробежный J_{xy}; полярный J_p и при свободном кручении J_k

$J_x = \frac{r^4}{8} \left(2\alpha + \sin 2\alpha - \frac{32 \sin^3 \alpha}{9\alpha} \right)$	$W_x = \frac{r^3}{8} \times \left(2\alpha + \frac{32 \sin^3 \alpha}{9\alpha} \right)$	$i_x = \frac{r}{2} \times \sqrt{1 + \frac{\sin 2\alpha}{2\alpha}}$
$J_y = \frac{r^4}{8} \left(2\alpha - \sin 2\alpha \right)$	$W_y = \frac{r^3}{8} \sin \alpha \left(2\alpha - \frac{32 \sin^3 \alpha}{9\alpha} \right)$	$i_y = \frac{r}{2} \times \sqrt{1 - \frac{\sin 2\alpha}{2\alpha}}$
$J_z = \frac{r^4}{8} \left(2\alpha - \sin 2\alpha + 4 \cos \alpha \sin^3 \alpha \right)$	$W_z = \frac{J_x}{y_1}$ (для нижних волокон)	$i_x = \frac{r}{2} \sqrt{1 + \frac{4 \cos \alpha \sin^3 \alpha}{2\alpha - \sin 2\alpha}}$
$J_{xy} = \frac{r^4}{8} \left(2\alpha - \sin 2\alpha - \frac{4}{3} \cos \alpha \sin^3 \alpha \right)$	$W_{xy} = \frac{J_x}{y_1}$ (для верхних волокон)	$i_y = \frac{r}{2} \sqrt{1 - \frac{4 \cos \alpha \sin^3 \alpha}{3 \sin 2\alpha}}$

Моменты сопротивления, осевые W_x, W_y; полярный W_p и при свободном кручении W_k

$W_x = \frac{r^3}{8} \times \left(2\alpha + \frac{32 \sin^3 \alpha}{9\alpha} \right)$

$W_y = \frac{r^3}{8} \sin \alpha \left(2\alpha - \frac{32 \sin^3 \alpha}{9\alpha} \right)$

$W_p = \frac{r^3}{8} \left(2\alpha - \sin 2\alpha \right)$

$W_k = \frac{r^3}{8} \sin \alpha \left(2\alpha - \sin 2\alpha \right)$

Радиусы инерции

$i_x = \frac{\sqrt{J_x}}{F}$

$i_y = \frac{\sqrt{J_y}}{F}$

$i_z = \frac{\sqrt{J_z}}{F}$

F - момент силы, приложенной к волокну.
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Полукольцо</td>
<td>$F = \frac{\pi (D^3 - d^3)}{8}$</td>
<td>$x_1 = \frac{D}{2}$</td>
</tr>
<tr>
<td></td>
<td>$= \frac{\pi D^2}{8} (1 - \alpha^2) \approx$</td>
<td>$y_1 = \frac{2}{3\pi} \frac{D^3 + Dd + d^2}{D + d}$</td>
</tr>
<tr>
<td></td>
<td>$\approx 0.393D^2 (1 - \alpha^2)$</td>
<td>$\approx \frac{2}{3} \frac{D}{\pi} \frac{1 + \alpha + \alpha^2}{1 + \alpha}$</td>
</tr>
<tr>
<td></td>
<td>$\alpha = \frac{d}{D}$</td>
<td>$\approx 0.212D \frac{1 + \alpha + \alpha^2}{1 + \alpha}$</td>
</tr>
<tr>
<td></td>
<td>$y_1' \approx D \left(0,288 - \right.$</td>
<td>$\left.- 0,212 \frac{\alpha^3}{1 + \alpha}\right)$</td>
</tr>
<tr>
<td>Оси $x-x$ и $y-y$ — главные центральные</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Сектор кольца</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$F = \gamma (R^2 - r^2) = \gamma R^2 (1 - \alpha^2)$</td>
<td>$x_1 = R \sin \gamma$</td>
<td></td>
</tr>
<tr>
<td>$\gamma = \frac{\pi \varphi}{180^o}$</td>
<td>$y_1 = \frac{2}{3} \frac{R^2 - r^2}{\gamma} \times \sin \gamma \cdot \frac{1}{\gamma}$</td>
<td></td>
</tr>
<tr>
<td>$\alpha = \frac{r}{R}$</td>
<td>$y_1' = R \left(1 - \frac{2}{3} \frac{\sin \gamma}{\gamma}\right) \times \frac{1 - \alpha^3}{1 - \alpha^2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y_1'' = \frac{2R \sin \gamma}{3\gamma} \times \left(1 - \frac{\alpha^3}{1 - \alpha^2} - \frac{3}{2} \alpha \gamma \cot \gamma\right)$</td>
<td></td>
</tr>
<tr>
<td>Моменты инерции соответственно</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>осевые (J_x, J_y)</td>
<td>(J_{xy})</td>
<td></td>
</tr>
<tr>
<td>центробежный (J_{xy})</td>
<td>поларный (J_p) и при свободном кручении (J_k)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Моменты сопротивления</th>
<th>осевые (W_x, W_y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>поларный (W_p)</td>
<td>при свободном кручении (W_k)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Радиусы инерции</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i_x = \sqrt{\frac{J_x}{F}})</td>
</tr>
<tr>
<td>(i_y = \sqrt{\frac{J_y}{F}})</td>
</tr>
</tbody>
</table>

\[
J_x = \frac{0.00686}{D} \left(D^4 - d^4 \right) - \frac{0.0177D^2d^2}{D + d} = \]

\[
= \frac{0.00686D^4}{128} \left(1 - \alpha^4 \right) - \frac{254\alpha^2}{1 + \alpha} \]

\[
J_y = \frac{\pi}{128} \left(D^4 - d^4 \right)
\approx \frac{0.0246D^4}{128} \left(1 - \alpha^4 \right)
\approx \frac{0.0246D^4}{128} \left(1 - \alpha^4 \right)
\]

\[
W_x = 0.00686D^3 \times
\left(1 - \alpha^4 \right) \left(1 + \alpha \right) - \frac{254\alpha^2}{1 + \alpha} \times \frac{0.288}{1 + \alpha} - \frac{0.212\alpha^2}{1 + \alpha}
\]

\[
W_y = \frac{\pi D^3}{64} \left(1 - \alpha^4 \right)
\approx \frac{0.05D^3}{128} \left(1 - \alpha^4 \right)
\]

\[
W_x = 0.0324D^3 \times
\left(1 - \alpha^4 \right) \left(1 + \alpha \right) - \frac{254\alpha^2}{1 + \alpha} \times \frac{0.288}{1 + \alpha} - \frac{0.212\alpha^2}{1 + \alpha}
\]

\[
W_y = \frac{\pi D^3}{64} \left(1 - \alpha^4 \right)
\approx \frac{0.05D^3}{128} \left(1 - \alpha^4 \right)
\]

\[
J_x = \frac{R^4 - r^4}{8} \left(2\gamma + \sin 2\gamma \right) - \frac{32\sin^2\gamma}{9\gamma}
\]

\[
= \frac{FR^2}{3\gamma} \left(1 + \alpha^2 \right) \left(2\gamma + \sin 2\gamma \right)
\]

\[
J_y = \frac{R^4 - r^4}{8} \left(2\gamma - \sin 2\gamma \right)
\]

\[
W_x = \frac{J_x}{y_1} (для верхних волокон)
\]

\[
W_x = \frac{J_x}{y_1} (для нижних волокон)
\]

\[
W_y = \frac{R^3}{8} \left(1 - \alpha^4 \right) \times \frac{2\gamma - \sin 2\gamma}{\sin \gamma}
\]

\[
i_x = \frac{R}{2} \sqrt{1 + \alpha^2} \left(1 + \frac{\sin 2\gamma}{2\gamma} \right)
\]

\[
i_y = \frac{R}{2} \times \sqrt{1 + \alpha^2} \left(1 - \frac{16\sin^2\gamma}{9\gamma^3} \right)
\]

\[
i_y = \frac{R}{2} \times \sqrt{1 + \alpha^2} \left(1 - \frac{\sin 2\gamma}{2\gamma} \right)
\]

67
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сектор тонкостенного кольца</td>
<td></td>
<td>$x_1 = r \sin \alpha$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y_1 = r \frac{\sin \alpha}{\alpha}$</td>
</tr>
<tr>
<td></td>
<td>$F = 2\pi r \delta$</td>
<td>$y'_1 = r \left(1 - \frac{\sin \alpha}{\alpha}\right)$</td>
</tr>
<tr>
<td></td>
<td>$\alpha = \frac{\pi \varphi^\circ}{180^\circ}$</td>
<td>$y''_1 = r \left(\frac{\sin \alpha}{\alpha} - \cos \alpha\right)$</td>
</tr>
<tr>
<td></td>
<td>$\delta \ll 2r$</td>
<td></td>
</tr>
<tr>
<td>Оси $x - x$ и $y - y$ —</td>
<td></td>
<td></td>
</tr>
<tr>
<td>главные центральные</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Круг с лыской

$\alpha = \frac{h}{d} > 0,5$

Оси $x - x$ и $y - y$ — главные центральные
<table>
<thead>
<tr>
<th>Моменты инерции:</th>
</tr>
</thead>
<tbody>
<tr>
<td>осевые (J_x, J_y, J_{xy})</td>
</tr>
<tr>
<td>центробежный (J_0)</td>
</tr>
<tr>
<td>и при свободном кручении (J_K)</td>
</tr>
<tr>
<td>Моменты сопротивления</td>
</tr>
<tr>
<td>осевые (W_x, W_y)</td>
</tr>
<tr>
<td>полярный (W_0)</td>
</tr>
<tr>
<td>и при свободном кручении (W_K)</td>
</tr>
<tr>
<td>Радиусы инерции</td>
</tr>
<tr>
<td>(i_x = \sqrt{\frac{J_x}{F}})</td>
</tr>
<tr>
<td>(i_y = \sqrt{\frac{J_y}{F}})</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
J_x &= \frac{\delta r^2}{2} \left(2\alpha + \sin 2\alpha - 4 \sin^2 \frac{\alpha}{2} \right) = \frac{Fr^2}{4\alpha} (2\alpha - \sin 2\alpha) \\
W_x &\approx \frac{\delta r^2}{2} \times \\
&\times \frac{2\alpha + \sin 2\alpha - 4 \sin^2 \frac{\alpha}{2}}{\alpha} \times \frac{1 - \sin \frac{\alpha}{2}}{\sin \frac{\alpha}{2}} \\
&\times \sqrt{2 - \frac{\sin 2\alpha}{\alpha}} \\
&\times \frac{\frac{\sin \alpha}{\alpha} - \cos \alpha}{\sin \alpha} \\
&\times \sqrt{2 - \frac{\sin 2\alpha}{\alpha}} \\
i_x &= \frac{r}{2} \times \\
&\times \sqrt{2 - \frac{\sin 2\alpha}{\alpha}} \\
&\times \frac{\frac{\sin \alpha}{\alpha} - \cos \alpha}{\sin \alpha} \\
&\times \sqrt{2 - \frac{\sin 2\alpha}{\alpha}} \\
W_y &\approx \frac{\delta r^2}{2} \times \\
&\times \frac{2\alpha + \sin 2\alpha - 4 \sin^2 \frac{\alpha}{2}}{\alpha} \times \frac{1 - \sin \frac{\alpha}{2}}{\sin \frac{\alpha}{2}} \\
&\times \sqrt{2 - \frac{\sin 2\alpha}{\alpha}} \\
&\times \frac{\frac{\sin \alpha}{\alpha} - \cos \alpha}{\sin \alpha} \\
&\times \sqrt{2 - \frac{\sin 2\alpha}{\alpha}} \\
i_y &= \frac{r}{2} \times \\
&\times \sqrt{2 - \frac{\sin 2\alpha}{\alpha}} \\
&\times \frac{\frac{\sin \alpha}{\alpha} - \cos \alpha}{\sin \alpha} \\
&\times \sqrt{2 - \frac{\sin 2\alpha}{\alpha}} \\

J_K &= \frac{d^4}{16} \left(2,6 \frac{h}{d} - 1 \right) = \\
&\times \frac{d^4}{16} (2,6\alpha - 1) \\
W_K &= \frac{d^3 (2,6\alpha - 1)}{8 (0,3\alpha + 0,7)} \\

Максимальное касательное напряжение \(\tau_{max} \) в середине плоского среза
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения (F)</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
</table>
| Круг со срезанными сегментами сверху и снизу | \(a) \ b = d \cos \alpha \)
\(h = d \sin \alpha \)
\(F = \frac{d^2}{4} (2\alpha + \sin 2\alpha) \)
\(b) \ b = \frac{d}{2} \)
\(h = 0,866d \)
\(F = 0,74d^2 \)
\(e) \ b = \frac{d}{3} \)
\(h = 0,943d \)
\(F = 0,773d^2 \) | \(x_1 = \frac{d}{2} \)
\(y_1 = \frac{d}{2} \sin \alpha \)
\(x_1 = \frac{d}{2} \)
\(y_1 = 0,433d \)
\(x_1 = \frac{d}{2} \)
\(y_1 = 0,471d \) |
| Круг со срезанными сегментами с четырех сторон | \(F = \frac{\pi d^2}{12} \left(1 + \frac{3V\sqrt{3}}{\pi} \right) \)
\(= 0,694d^2 \) | \(x_1 = y_1 = 0,433d \) |
| Правильный шестиугольник | \(F = 0,866d^2 \)
\(= 2,598R^2 \) | \(y_1 = \frac{d}{2} \) |

Оси \(x - x \) и \(y - y \) — главные центральные
Моменты инерции
осевые J_x, J_y
центральный J_{xy}
полярный J_ρ и при свободном кручении J_K

<table>
<thead>
<tr>
<th>J_x</th>
<th>J_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_x = \frac{d^4}{32} \left(\alpha - \frac{\sin 4\alpha}{4} \right)$</td>
<td>$J_y = \frac{d^4}{32} \left(\alpha + \frac{\sin 2\alpha}{2} + \frac{\sin 2\alpha \cos^2 \alpha}{3} \right)$</td>
</tr>
<tr>
<td>$J_x = 0,0395d^4$</td>
<td>$J_y = 0,0485d^4$</td>
</tr>
<tr>
<td>$J_x = 0,0461d^4$</td>
<td>$J_y = 0,049d^4$</td>
</tr>
</tbody>
</table>

Моменты сопротивления
осевые W_x, W_y
полярный W_ρ и при свободном кручении W_K

<table>
<thead>
<tr>
<th>W_x</th>
<th>W_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_x = \frac{d^3}{16 \sin \alpha} \left(\alpha - \frac{\sin 4\alpha}{4} \right)$</td>
<td>$W_y = \frac{d^3}{16} \left(\alpha + \frac{\sin 2\alpha}{2} + \frac{\sin 2\alpha \cos^2 \alpha}{3} \right)$</td>
</tr>
<tr>
<td>$W_x = 0,0912d^3$</td>
<td>$W_y = 0,097d^3$</td>
</tr>
<tr>
<td>$W_x = 0,0978d^3$</td>
<td>$W_y = 0,098d^3$</td>
</tr>
</tbody>
</table>

Радиусы инерции

<table>
<thead>
<tr>
<th>i_x</th>
<th>i_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i_x = \sqrt{\frac{J_x}{F}}$</td>
<td>$i_y = \sqrt{\frac{J_y}{F}}$</td>
</tr>
<tr>
<td>$i_x = 0,231d$</td>
<td>$i_y = 0,256d$</td>
</tr>
<tr>
<td>$i_x = 0,244d$</td>
<td>$i_y = 0,252d$</td>
</tr>
</tbody>
</table>

$J_x = J_y = 0,038d^4$

$W_x = W_y = 0,087d^3$

$i_x = i_y = 0,234d$

$J_x = J_y = \frac{5\sqrt{3}}{16} R^4 = 0,5413R^4 = 0,06d^4$

$J_K = 0,533F \frac{d^2}{4}$

Максимальные касательные напряжения τ_{max} посередине сторон
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Правильный восьмиугольник</td>
<td>$F = 0,828d^2 = 4,828c^2$</td>
<td>$x_1 = y_1 = \frac{d}{2}$</td>
</tr>
<tr>
<td>Оси x и y — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Правильный многоугольник с n сторонами</td>
<td>$F = \frac{1}{4} na^2 \text{ctg} \alpha = nr^2 \text{tg} \alpha = \frac{nar}{2}$</td>
<td>$R = \frac{a}{2 \sin \alpha}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$r = \frac{a}{2 \text{tg} \alpha}$</td>
</tr>
<tr>
<td>Круговое сечение с одной шпоночной канавкой</td>
<td>$F \approx \frac{\pi d^2}{4} - bl$</td>
<td>$x_1 = y_1 = \frac{d}{2}$</td>
</tr>
<tr>
<td>Оси x и y — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Моменты инерции: осевые J_x, J_y, J_z; центробежный J_{xy}; полярный J_p и при свободном кручении J_K</td>
<td>Моменты сопротивления: осевые W_x, W_y; полярный W_p и при свободном кручении W_K</td>
<td>Радиус инерции</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$J_x = J_y = J_z =$ [= \frac{1+2\sqrt{2}}{6} R^4 = 0.638 R^4 = 0.0547 d^4] [J_K = 0.52 F \frac{d^4}{4}]</td>
<td>$W_x = W_y = 0.6906 R^3 = 0.1095 d^3$</td>
<td>$i_x = i_y = i_z =$ [= 0.257 d]</td>
</tr>
<tr>
<td>Относительно диагонали $W_y = 0.638 R^3 = 0.1012 d^3$</td>
<td>$W_K = 0.447 F \frac{d}{2}$</td>
<td>Максимальные касательные напряжения τ_{max} посередине сторон</td>
</tr>
<tr>
<td>$J_x = J_{xz} = \frac{F}{24} (6R^2 - a^2) =$ [= \frac{nar}{48} (6R^2 - a^2)] [J_x = J_{xz} = \frac{F}{48} (12r^2 + a^2) =$ [= \frac{nar}{96} (12r^2 + a^2)]</td>
<td>$i_x = \sqrt{\frac{6R^3 - a^3}{24}}$</td>
<td>$i_{xz} = \sqrt{\frac{12r^3 + a^3}{48}}$</td>
</tr>
<tr>
<td>$J_x \approx \frac{\pi d^4}{64} - \frac{bt (d - t)^2}{4}$ [J_K \approx \frac{\pi d^4}{32} - \frac{bt (d - t)^2}{4}]</td>
<td>$W_x \approx \frac{\pi d^3}{32} - \frac{bt (d - t)^2}{2d}$</td>
<td>$i_x = \sqrt{\frac{J_x}{F}}$</td>
</tr>
</tbody>
</table>

73
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Круговое сечение с двумя шпоночными канавками</td>
<td>$F \approx \frac{\pi d^2}{4} - 2bt$</td>
<td>$x_1 = \frac{d}{2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y_1 \approx \frac{d}{2}$</td>
</tr>
<tr>
<td>Оси $x - x$ и $y - y$ — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мостовой бых с за круглениями</td>
<td>$F = bh + \pi r^2 = bh \left(1 + \frac{\pi}{4} \alpha\right)$</td>
<td>$x_1 = \frac{b+h}{2} = \frac{b}{2} (1 + \alpha)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$r = \frac{h}{2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y_1 = \frac{h}{2}$</td>
</tr>
<tr>
<td>Оси $x - x$ и $y - y$ — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Эллипс</td>
<td>$F = \pi ab$</td>
<td>$x_1 = b$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{a}{b} > 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y_1 = a$</td>
</tr>
<tr>
<td>Оси $x - x$ и $y - y$ — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Моменты внердинги</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>осевые J_x, J_y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>центробежный J_{xy}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>полярный J_p и при</td>
<td></td>
<td></td>
</tr>
<tr>
<td>свободном кручення J_k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Моменты сопротивления</td>
<td></td>
<td></td>
</tr>
<tr>
<td>осевые W_x, W_y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>полярный W_p и при</td>
<td></td>
<td></td>
</tr>
<tr>
<td>свободном кручення W_k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Радиус внердинги</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i_x = \sqrt{\frac{J_x}{F}}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i_y = \sqrt{\frac{J_y}{F}}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| $J_x \approx \frac{\pi d^4}{64} - \frac{bt(d-t)^2}{2}$ |
| $W_x \approx \frac{\pi d^3}{32} - \frac{bt(d-t)^2}{d}$ |
| $i_x = \sqrt{\frac{J_x}{F}}$ |

| $J_k \approx \frac{\pi d^4}{32} - \frac{bt(d-t)^2}{2}$ |
| $W_k \approx \frac{\pi d^3}{16} - \frac{bt(d-t)^2}{d}$ |
| $i_y = \sqrt{\frac{J_y}{F}}$ |

| $J_x = \frac{bh^3}{12} \left(1 + \frac{3\pi}{16} \alpha \right)$ |
| $W_x = \frac{bh^2}{6} \left(1 + \frac{3\pi}{16} \alpha \right)$ |
| $i_x = \sqrt{\frac{J_x}{F}}$ |

| $J_y = \frac{hh^3}{12} \left[1 + 0, 165\alpha^3 + \right. |
| $W_y = \frac{hh^2}{6} \left(1 + \alpha \right) \left[1 + + 0, 165\alpha^2 + \right.$ |
| $+ 0, 212\alpha \right]$ |
| $W_y = \frac{hh^2}{6} \left(1 + \alpha \right) \left[1 + + 0, 165\alpha^2 + \right.$ |
| $+ 0, 212\alpha \right]$ |
| $i_y = \sqrt{\frac{J_y}{F}}$ |

| $J_p = \frac{\pi ab^3}{4} = \frac{Fa^3}{4} \approx \approx 0, 785a^3b$ |
| $W_p = \frac{\pi ab^2}{4} \approx \approx 0, 785ab^2$ |
| $i_x = \frac{a}{2}$ |

| $J_k = \frac{\pi ab}{4} (a^2 + b^2) = \frac{F}{4} (a^2 + b^2)$ |
| $W_k = \frac{\pi b^2a}{2}$ |
| $i_y = \frac{b}{2}$ |

По концам малой оси

$\tau_{max} = \frac{M_k}{W_k} = \frac{2M_k}{\pi b^2a}$

Пос концам большишей оси

$\tau = \frac{b\tau_{max}}{a}$
<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>Площадь сечения F</th>
<th>Координаты крайних точек сечения</th>
</tr>
</thead>
</table>
| Полуэллипс | $F = \frac{\pi ab}{2}$ | $x_1 = b$
$y_1 = \frac{4}{3\pi}a$
$y_1' = \left(1 - \frac{4}{3\pi}\right)a$ |
| Оси $x-x$ и $y-y$ главные центральные |
| Четверть эллипса | $F = \frac{\pi ab}{4}$ | $x_1 = \frac{4}{3\pi}b$
$y_1 = \frac{4}{3\pi}a$ |
| Полый эллипс | $F = \pi(ab - a_1b_1)$ | $x_1 = b$
$y_1 = a$
$a - a_1 = b - b_1 = \delta$
$a \over b = \frac{a_1}{b_1} = n > 1$
$\frac{a_1}{a} = \frac{b_1}{b} = \alpha < 1$ |
<p>| Оси $x-x$ и $y-y$ главные центральные |</p>
<table>
<thead>
<tr>
<th>Моменты инерции: осевые J_x, J_y; центробежный J_{xy}; поларный J_p и при свободном кручении J_k</th>
<th>Моменты сопротивления: осевые W_x, W_y; поларный W_p и при свободном кручении W_k</th>
<th>Радиусы инерции</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_x = ba^3 \left(\frac{\pi}{8} - \frac{8}{9\pi} \right) = 2Fa^3 \left(\frac{1}{8} - \frac{8}{9\pi^2} \right)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$J_y = \frac{\pi ab^3}{8} = \frac{Fb^2}{4}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W_x = \frac{3}{4} ba^2 \left(\frac{\pi^2}{8} - \frac{8}{9} \right)$ (для нижних волокон)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W_y = \frac{\pi ab^2}{8} \approx 0,392ab^2$ (для верхних волокон)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i_x = \frac{a}{2} \sqrt{1 - \left(\frac{8}{3\pi} \right)^2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i_y = \frac{b}{2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$J_x = ba^3 \left(\frac{1}{16} - \frac{4}{9\pi^2} \right) = 4Fa^3 \left(\frac{1}{16} - \frac{4}{9\pi^2} \right)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$J_y = ab^3 \left(\frac{1}{16} - \frac{4}{9\pi^2} \right) = 4Fb^2 \left(\frac{1}{16} - \frac{4}{9\pi^2} \right)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W_{x_{\text{min}}} = \frac{3}{4} ba^2 \left(\frac{\pi^2}{16} - \frac{4}{9} \right)$ (для нижних волокон)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W_{y_{\text{min}}} = \frac{3}{4} ab^2 \left(\frac{\pi^2}{16} - \frac{4}{9} \right)$ (для правых волокон)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i_x = \frac{a}{2} \sqrt{1 - \left(\frac{8}{3\pi} \right)^2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i_y = \frac{b}{2} \sqrt{1 - \left(\frac{8}{3\pi} \right)^2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$J_x = \frac{\pi}{4} (a^3b - a_1^3b_1) \approx \frac{\pi}{4} (a^3b - a_1^3b_1) \delta$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$J_y = \frac{\pi}{4} (ab^3 - a_1b_1) \approx \frac{\pi}{4} (ab^3 - a_1b_1) \delta$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W_x = \frac{\pi}{4} \frac{a^3b - a_1^3b_1}{a} \approx \frac{\pi}{4} \frac{a(a + 3b) \delta}{a}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W_y = \frac{\pi}{4} \frac{ab^3 - a_1b_1^3}{b} \approx \frac{\pi}{4} \frac{b(b + 3a) \delta}{b}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i_x = \sqrt{\frac{J_x}{F}}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i_y = \sqrt{\frac{J_y}{F}}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Приближенные значения J и W пригодны, если отношения $\delta : a_1$ и $\delta : b_1$ малы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W_k = \frac{\pi b^3}{2} (1 - \alpha^4)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M_k : \text{Касательное напряжение } \tau \text{ в конце малой полусоси } \tau_{\text{max}} = \frac{M_k}{W_k}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i_x = \frac{i_{\text{max}}}{n}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Форма сечения</td>
<td>Площадь сечения F</td>
<td>Координаты крайних точек сечения</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Параболический сегмент</td>
<td>$F = \frac{2}{3} bh$</td>
<td>$x_1 = \frac{b}{2}$, $y_1 = \frac{2}{5} h$, $y_1' = \frac{3}{5} h$</td>
</tr>
<tr>
<td>Параболический полусегмент</td>
<td>$F = \frac{bh}{3}$</td>
<td>$x_1 = \frac{3}{16} b$, $x_1' = \frac{5}{16} b$, $y_1 = \frac{2}{5} h$, $y_1' = \frac{3}{5} h$</td>
</tr>
<tr>
<td>Круговой треугольник</td>
<td>$F = 0,215r^2$</td>
<td>$x_1 = y_1 = 0,223r$, $x_1 = y_1' = 0,777r$</td>
</tr>
</tbody>
</table>

Оси $x - x$ и $y - y$ — главные центральные.
<table>
<thead>
<tr>
<th>Моменты инерции: осевые J_x, J_y; центробежный J_{xy}; полярный J_p и при свободном кручении J_k</th>
<th>Моменты сопротивления: осевые W_x, W_y; полярный W_p и при свободном кручении W_k</th>
<th>Радиусы инерции</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_x = \frac{8}{175} bh^3 = \frac{12Fh^2}{175}$</td>
<td>$W_x = \frac{4}{35} bh^3$ (для нижних волокон)</td>
<td>$i_x = \frac{2}{5} h \sqrt{\frac{3}{7}}$</td>
</tr>
<tr>
<td>$J_{xy} = \frac{16}{105} bh^3 = \frac{8Fh^2}{35}$</td>
<td>$W_x = \frac{8}{105} bh^3$ (для верхних волокон)</td>
<td>$i_x = \frac{b}{2 \sqrt{5}}$</td>
</tr>
<tr>
<td>$J_k = \frac{2}{7} bh^3 = \frac{3Fh^2}{7}$</td>
<td>$W_y = \frac{hb^2}{15}$</td>
<td>$i_y = \frac{b}{2 \sqrt{5}}$</td>
</tr>
<tr>
<td>$J_y = \frac{hb^2}{30} = \frac{Fb^2}{20}$</td>
<td>$W_{x_{min}} = \frac{2}{35} bh^2$ (для нижних волокон)</td>
<td>$i_x = \frac{2}{5} h \sqrt{\frac{3}{7}}$</td>
</tr>
<tr>
<td>$J_x = J_y = 0,00755r^4$</td>
<td>$W_{x_{min}} = 0,0097r^3$</td>
<td>$i_{x_{min}} = 0,187r$</td>
</tr>
<tr>
<td>$J_{xy} = 0,003r^4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$J_{xy} = J_{yz} = 0,0181r^4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$J_{yz} = 0,0121r^4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Форма сечения</td>
<td>Площадь сечения F</td>
<td>Координаты крайних точек сечения</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Полое сечение в виде чечевицы</td>
<td>$F = \alpha \left(1 + \text{ctg}^2 \frac{\alpha}{2}\right) \times \frac{\alpha \delta}{h} \left(h^2 + b^2\right) = 4\alpha \delta \frac{b}{h}$</td>
<td>$x_1 = \sqrt{\frac{(\delta + h) \times (r + \frac{\delta - h}{4})}{2}}$</td>
</tr>
<tr>
<td>Ося $x - x$ и $y - y$ - главные центральные</td>
<td>$r = \frac{h}{4} \left(1 + \text{ctg}^2 \frac{\alpha}{2}\right)$</td>
<td>$y_1 = \frac{\delta + h}{2}$</td>
</tr>
<tr>
<td>Волнистое железо (волны образованы параболическими дугами)</td>
<td>$F = 12,5\delta \frac{b}{h} \times \left(\frac{4h}{b} \sqrt{1 + \left(\frac{4h}{b}\right)^2} + \ln \left[\frac{4h}{b} + \sqrt{1 + \left(\frac{4h}{b}\right)^2}\right]\right) \approx \frac{1}{3} \delta (2b + 5,2h)$</td>
<td>$x_1 = \frac{b}{2}$</td>
</tr>
<tr>
<td>Осн $x - x$ и $y - y$ - главные центральные</td>
<td></td>
<td>$y_1 = \frac{h + \delta}{2}$</td>
</tr>
<tr>
<td>Волнистое железо (волны образованы дугами круга)</td>
<td>$F = 26 \left(\frac{\pi b}{4} + h_1\right)$</td>
<td>$x_1 = \frac{b}{2}$</td>
</tr>
<tr>
<td>Оси $x - x$ и $y - y$ - главные центральные</td>
<td>$h_1 = h - \frac{b}{2}$</td>
<td>$y_1 = \frac{h + \delta}{2}$</td>
</tr>
<tr>
<td>Моменты инерции осевые J_x, J_y; центробежный J_{xy}; полярный J_p и при свободном кручении J_k</td>
<td>Моменты сопротивления осевые W_x, W_y; полярный W_p и при свободном кручении W_k</td>
<td>Радиусы инерции</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$J_x = r^3 \delta \left[2 \alpha (2 + \cos 2\alpha) - 3 \sin 2\alpha \right] = \frac{Fr^3}{4\alpha} \left[2 \alpha (2 + \cos 2\alpha) - 3 \sin 2\alpha \right]$</td>
<td>$W_x = \frac{J_x}{y_1} = \frac{2J_x}{\delta + h}$</td>
<td>$i_x = \sqrt{\frac{J_x}{F}}$</td>
</tr>
<tr>
<td>$J_y = r^3 \delta (2\alpha - \sin 2\alpha) = \frac{Fr^3}{4\alpha} (2\alpha - \sin 2\alpha)$</td>
<td>$W_y = \frac{J_y}{x_1}$</td>
<td>$i_y = \sqrt{\frac{J_y}{F}}$</td>
</tr>
<tr>
<td>$J_x = \frac{1280}{21} \cdot \frac{1}{b} (b_1 y_1^3 - b_2 y_1^3) = \frac{64}{105} (b_1 y_1^3 - b_2 y_1^3) - \frac{16}{105} b(y_1^3 - y_1'^3) + 2.66 (y_1^3 + y_1'^3)$</td>
<td>$W_x = \frac{2J_x}{h + \delta}$</td>
<td></td>
</tr>
<tr>
<td>$J_k = \frac{\delta}{4} \left(\frac{\pi b^3}{16} + bh_1 + \frac{\pi b h_1^2}{2} + \frac{2}{3} h_1^3 \right)$</td>
<td>$W_k = \frac{2J_k}{h + \delta}$</td>
<td></td>
</tr>
<tr>
<td>$i_x = \sqrt{\frac{3J_x}{\delta (2b + 5.2h)}} \approx 1.35 \times \sqrt{\frac{b_1 y_1^3 - b_2 y_1'^3}{\delta (2b + 5.2h)}}$</td>
<td>$i_x = \sqrt{\frac{J_k}{F}}$</td>
<td></td>
</tr>
<tr>
<td>Форма сечения</td>
<td>Площадь сечения (F)</td>
<td>Координаты крайних точек сечения</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Стандартный прокатный швеллер на ребро. Формулы приближенные, (h), см</td>
<td></td>
<td>(y_1 = \frac{h}{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Оси (x-x) и (y-y) — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Стандартный прокатный двутавр на ребро. Формулы приближенные, (h), см</td>
<td></td>
<td>(y_1 = \frac{h}{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Оси (x-x) и (y-y) — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сечение железодорожного рельса (формулы приближенные)</td>
<td>(F \approx 0,238h^2)</td>
<td>(y_1 \approx 0,5h)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Оси (x-x) и (y-y) — главные центральные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сечение любой формы. Формулы могут быть использованы только для ориентировочной оценки величины момента инерции и момента сопротивления относительно центральной оси</td>
<td>(F) — площадь внутри наружного контура сечения</td>
<td>(h) и (b) — высота и ширина сечения (s) и (t) — периметр и толщина (для полого сечения)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Моменты инерции: осевые J_x, J_y; центробежный J_{xy}; полярный J_p и при свободном кручении J_K</td>
<td>Моменты сопротивления: осевые W_x, W_y; полярный W_p и при свободном кручении W_K</td>
<td>Радиусы инерции</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$J_x \approx \frac{h(h+5)^3}{162}$</td>
<td>$W_x \approx \frac{(h+5)^3}{81}$</td>
<td>$r_x = \sqrt{\frac{J_x}{F}}$</td>
</tr>
<tr>
<td>$J_x \approx \frac{h(h+2)^3}{102}$</td>
<td>$W_x \approx \frac{(h+2)^3}{51}$</td>
<td>$r_x = \sqrt{\frac{J_x}{F}}$</td>
</tr>
<tr>
<td>$J_x \approx 0.032h^4$</td>
<td>$W_x \approx 0.064h^3$</td>
<td>$r_x \approx 0.37h$</td>
</tr>
</tbody>
</table>

Для сплошного сечения

\[
J \approx \frac{F^2h}{12b}
\]

Ошибка \(\sim 15 \% \)

Для полого сечения

\[
J \approx \frac{Fh}{6b} \left[s + \frac{F(b-h)}{bh} \right] t
\]

Ошибка \(\sim 25 \% \)
J — момент инерции;
i — радиус инерции;
Z_0 — расстояние от центра тяжести до наружной грани полки,
J_{xy} — центробежный момент инерции.

числовые величины для осей

<table>
<thead>
<tr>
<th>$X_0 - X_{0}$</th>
<th>$Y_0 - Y_{0}$</th>
<th>J_{xy}, см</th>
<th>Z_{0}, см</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_{x_{max}}$, см4</td>
<td>$t_{x_{max}}$, см</td>
<td>$J_{y_{min}}$, см4</td>
<td>$W_{y_{0}}$, см2</td>
</tr>
<tr>
<td>0,63</td>
<td>0,75</td>
<td>0,17</td>
<td>0,20</td>
</tr>
<tr>
<td>0,78</td>
<td>0,73</td>
<td>0,22</td>
<td>0,24</td>
</tr>
<tr>
<td>1,29</td>
<td>0,95</td>
<td>0,34</td>
<td>0,33</td>
</tr>
<tr>
<td>1,62</td>
<td>0,93</td>
<td>0,44</td>
<td>0,41</td>
</tr>
<tr>
<td>1,91</td>
<td>0,92</td>
<td>0,53</td>
<td>0,47</td>
</tr>
<tr>
<td>1,84</td>
<td>1,07</td>
<td>0,48</td>
<td>0,42</td>
</tr>
<tr>
<td>2,30</td>
<td>1,15</td>
<td>0,60</td>
<td>0,53</td>
</tr>
<tr>
<td>2,92</td>
<td>1,13</td>
<td>0,77</td>
<td>0,61</td>
</tr>
<tr>
<td>3,47</td>
<td>1,12</td>
<td>0,94</td>
<td>0,71</td>
</tr>
<tr>
<td>2,80</td>
<td>1,23</td>
<td>0,74</td>
<td>0,59</td>
</tr>
<tr>
<td>3,58</td>
<td>1,21</td>
<td>0,94</td>
<td>0,71</td>
</tr>
<tr>
<td>3,72</td>
<td>1,35</td>
<td>0,97</td>
<td>0,71</td>
</tr>
<tr>
<td>4,76</td>
<td>1,33</td>
<td>1,25</td>
<td>0,88</td>
</tr>
<tr>
<td>5,71</td>
<td>1,32</td>
<td>1,52</td>
<td>1,02</td>
</tr>
<tr>
<td>5,63</td>
<td>1,55</td>
<td>1,47</td>
<td>0,95</td>
</tr>
<tr>
<td>7,26</td>
<td>1,53</td>
<td>1,90</td>
<td>1,19</td>
</tr>
<tr>
<td>8,75</td>
<td>1,52</td>
<td>2,30</td>
<td>1,39</td>
</tr>
<tr>
<td>10,13</td>
<td>1,50</td>
<td>2,70</td>
<td>1,58</td>
</tr>
<tr>
<td>8,13</td>
<td>1,75</td>
<td>2,12</td>
<td>1,24</td>
</tr>
<tr>
<td>10,52</td>
<td>1,74</td>
<td>2,74</td>
<td>1,54</td>
</tr>
<tr>
<td>12,74</td>
<td>1,72</td>
<td>3,33</td>
<td>1,81</td>
</tr>
<tr>
<td>14,80</td>
<td>1,71</td>
<td>4,06</td>
<td>2,06</td>
</tr>
<tr>
<td>11,27</td>
<td>1,95</td>
<td>2,95</td>
<td>1,57</td>
</tr>
<tr>
<td>14,63</td>
<td>1,94</td>
<td>3,80</td>
<td>1,95</td>
</tr>
<tr>
<td>17,77</td>
<td>1,92</td>
<td>4,63</td>
<td>2,30</td>
</tr>
<tr>
<td>20,72</td>
<td>1,91</td>
<td>5,43</td>
<td>2,63</td>
</tr>
<tr>
<td>23,47</td>
<td>1,89</td>
<td>6,21</td>
<td>2,93</td>
</tr>
<tr>
<td>26,03</td>
<td>1,87</td>
<td>6,98</td>
<td>3,22</td>
</tr>
<tr>
<td>20,79</td>
<td>2,18</td>
<td>5,41</td>
<td>2,52</td>
</tr>
</tbody>
</table>
$$J$$ — момент инерции;
$$i$$ — радиус инерции;
$$Z_0$$ — расстояние от центра тяжести до наружной грани полки,
$$J_{xy}$$ — центробежный момент инерции

Таблица значений для осей

<table>
<thead>
<tr>
<th>$x_0 - x_0$</th>
<th>$y_0 - y_0$</th>
<th>$J_{xy, см^4}$</th>
<th>$Z_0, см$</th>
<th>Масса $1 м$ угл. кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63</td>
<td>0.75</td>
<td>0.17</td>
<td>0.20</td>
<td>0.39</td>
</tr>
<tr>
<td>0.78</td>
<td>0.73</td>
<td>0.22</td>
<td>0.24</td>
<td>0.38</td>
</tr>
<tr>
<td>1.29</td>
<td>0.95</td>
<td>0.34</td>
<td>0.33</td>
<td>0.49</td>
</tr>
<tr>
<td>1.62</td>
<td>0.93</td>
<td>0.44</td>
<td>0.41</td>
<td>0.48</td>
</tr>
<tr>
<td>1.91</td>
<td>0.92</td>
<td>0.53</td>
<td>0.47</td>
<td>0.48</td>
</tr>
<tr>
<td>1.84</td>
<td>1.07</td>
<td>0.48</td>
<td>0.42</td>
<td>0.55</td>
</tr>
<tr>
<td>2.30</td>
<td>1.15</td>
<td>0.60</td>
<td>0.53</td>
<td>0.59</td>
</tr>
<tr>
<td>2.92</td>
<td>1.13</td>
<td>0.77</td>
<td>0.61</td>
<td>0.58</td>
</tr>
<tr>
<td>3.47</td>
<td>1.12</td>
<td>0.94</td>
<td>0.71</td>
<td>0.58</td>
</tr>
<tr>
<td>2.80</td>
<td>1.23</td>
<td>0.74</td>
<td>0.59</td>
<td>0.63</td>
</tr>
<tr>
<td>3.58</td>
<td>1.21</td>
<td>0.94</td>
<td>0.71</td>
<td>0.62</td>
</tr>
<tr>
<td>3.72</td>
<td>1.35</td>
<td>0.97</td>
<td>0.71</td>
<td>0.69</td>
</tr>
<tr>
<td>4.76</td>
<td>1.33</td>
<td>1.25</td>
<td>0.88</td>
<td>0.68</td>
</tr>
<tr>
<td>5.71</td>
<td>1.32</td>
<td>1.52</td>
<td>1.02</td>
<td>0.68</td>
</tr>
<tr>
<td>5.63</td>
<td>1.55</td>
<td>1.47</td>
<td>0.95</td>
<td>0.79</td>
</tr>
<tr>
<td>7.26</td>
<td>1.53</td>
<td>1.90</td>
<td>1.19</td>
<td>0.78</td>
</tr>
<tr>
<td>8.75</td>
<td>1.52</td>
<td>2.30</td>
<td>1.39</td>
<td>0.78</td>
</tr>
<tr>
<td>10.13</td>
<td>1.50</td>
<td>2.70</td>
<td>1.58</td>
<td>0.78</td>
</tr>
<tr>
<td>8.13</td>
<td>1.75</td>
<td>2.12</td>
<td>1.24</td>
<td>0.89</td>
</tr>
<tr>
<td>10.52</td>
<td>1.74</td>
<td>2.74</td>
<td>1.54</td>
<td>0.89</td>
</tr>
<tr>
<td>12.74</td>
<td>1.72</td>
<td>3.33</td>
<td>1.81</td>
<td>0.88</td>
</tr>
<tr>
<td>14.80</td>
<td>1.71</td>
<td>3.90</td>
<td>2.06</td>
<td>0.88</td>
</tr>
<tr>
<td>11.27</td>
<td>1.95</td>
<td>2.95</td>
<td>1.57</td>
<td>1.00</td>
</tr>
<tr>
<td>14.63</td>
<td>1.94</td>
<td>3.80</td>
<td>1.95</td>
<td>0.99</td>
</tr>
<tr>
<td>17.77</td>
<td>1.92</td>
<td>4.63</td>
<td>2.30</td>
<td>0.98</td>
</tr>
<tr>
<td>20.72</td>
<td>1.91</td>
<td>5.43</td>
<td>2.63</td>
<td>0.98</td>
</tr>
<tr>
<td>23.47</td>
<td>1.89</td>
<td>6.21</td>
<td>2.93</td>
<td>0.97</td>
</tr>
<tr>
<td>26.03</td>
<td>1.87</td>
<td>6.98</td>
<td>3.22</td>
<td>0.97</td>
</tr>
<tr>
<td>20.79</td>
<td>2.18</td>
<td>5.41</td>
<td>2.52</td>
<td>1.11</td>
</tr>
<tr>
<td>Номер уголка</td>
<td>b</td>
<td>t</td>
<td>R</td>
<td>r</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>60</td>
<td>4</td>
<td>2,3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>5,83</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>6,92</td>
<td>23,21</td>
<td>5,40</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9,04</td>
<td>29,55</td>
<td>7,00</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11,08</td>
<td>35,32</td>
<td>8,52</td>
</tr>
<tr>
<td>6,3</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>6,13</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>7,28</td>
<td>27,06</td>
<td>5,98</td>
</tr>
<tr>
<td>7,5</td>
<td>70</td>
<td>4,5</td>
<td>8,0</td>
<td>2,7</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>6,86</td>
<td>31,94</td>
<td>6,27</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>8,15</td>
<td>37,58</td>
<td>7,43</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>9,42</td>
<td>42,98</td>
<td>8,57</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>10,67</td>
<td>48,16</td>
<td>9,63</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>13,11</td>
<td>57,90</td>
<td>11,82</td>
</tr>
<tr>
<td>75</td>
<td>75</td>
<td>5</td>
<td>9,0</td>
<td>3,0</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>8,78</td>
<td>46,57</td>
<td>8,57</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>10,15</td>
<td>53,34</td>
<td>9,89</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>11,50</td>
<td>59,84</td>
<td>11,18</td>
</tr>
<tr>
<td>12,33</td>
<td>9</td>
<td>12,93</td>
<td>66,10</td>
<td>12,43</td>
</tr>
<tr>
<td>8,33</td>
<td>80</td>
<td>5,5</td>
<td>9,0</td>
<td>3,0</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>9,38</td>
<td>56,97</td>
<td>9,80</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>10,85</td>
<td>65,31</td>
<td>11,32</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>12,30</td>
<td>73,36</td>
<td>12,80</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>15,14</td>
<td>88,58</td>
<td>15,67</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>17,90</td>
<td>102,74</td>
<td>18,42</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
<td>6</td>
<td>10,0</td>
<td>3,3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>12,28</td>
<td>94,30</td>
<td>14,45</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>13,93</td>
<td>106,11</td>
<td>16,36</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>15,60</td>
<td>118,00</td>
<td>18,29</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>17,17</td>
<td>128,60</td>
<td>20,07</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>20,33</td>
<td>149,67</td>
<td>23,85</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>6,5</td>
<td>12,0</td>
<td>4,0</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>13,75</td>
<td>130,59</td>
<td>17,90</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>15,60</td>
<td>147,19</td>
<td>20,30</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>18,24</td>
<td>178,95</td>
<td>24,97</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>22,80</td>
<td>208,90</td>
<td>29,47</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>26,23</td>
<td>237,15</td>
<td>33,83</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>27,99</td>
<td>250,68</td>
<td>35,95</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>29,68</td>
<td>263,82</td>
<td>38,04</td>
</tr>
<tr>
<td>110</td>
<td>110</td>
<td>7</td>
<td>15,15</td>
<td>175,61</td>
</tr>
<tr>
<td>$x_o - x_0$</td>
<td>$y_o - y_0$</td>
<td>$J_{y_{max}}$</td>
<td>$W_{y_{max}}$</td>
<td>$J_{y_{min}}$</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>25,36</td>
<td>2,16</td>
<td>6,59</td>
<td>2,97</td>
<td>1,10</td>
</tr>
<tr>
<td>25,69</td>
<td>2,33</td>
<td>6,72</td>
<td>2,93</td>
<td>1,19</td>
</tr>
<tr>
<td>31,40</td>
<td>2,32</td>
<td>8,18</td>
<td>3,49</td>
<td>1,18</td>
</tr>
<tr>
<td>36,81</td>
<td>2,31</td>
<td>9,60</td>
<td>3,99</td>
<td>1,18</td>
</tr>
<tr>
<td>46,77</td>
<td>2,27</td>
<td>12,34</td>
<td>4,90</td>
<td>1,17</td>
</tr>
<tr>
<td>55,64</td>
<td>2,24</td>
<td>15,00</td>
<td>5,70</td>
<td>1,16</td>
</tr>
<tr>
<td>29,90</td>
<td>2,45</td>
<td>7,81</td>
<td>3,26</td>
<td>1,25</td>
</tr>
<tr>
<td>76,80</td>
<td>2,44</td>
<td>9,52</td>
<td>3,87</td>
<td>1,25</td>
</tr>
<tr>
<td>42,91</td>
<td>2,43</td>
<td>11,18</td>
<td>4,44</td>
<td>1,24</td>
</tr>
<tr>
<td>46,53</td>
<td>2,72</td>
<td>12,04</td>
<td>4,53</td>
<td>1,39</td>
</tr>
<tr>
<td>70,37</td>
<td>2,72</td>
<td>13,22</td>
<td>4,92</td>
<td>1,39</td>
</tr>
<tr>
<td>59,64</td>
<td>2,71</td>
<td>15,52</td>
<td>5,66</td>
<td>1,38</td>
</tr>
<tr>
<td>68,19</td>
<td>2,69</td>
<td>17,77</td>
<td>6,31</td>
<td>1,37</td>
</tr>
<tr>
<td>76,35</td>
<td>2,68</td>
<td>19,97</td>
<td>6,99</td>
<td>1,37</td>
</tr>
<tr>
<td>91,52</td>
<td>2,64</td>
<td>24,27</td>
<td>8,17</td>
<td>1,36</td>
</tr>
<tr>
<td>82,65</td>
<td>2,91</td>
<td>16,41</td>
<td>5,74</td>
<td>1,49</td>
</tr>
<tr>
<td>73,87</td>
<td>2,90</td>
<td>19,28</td>
<td>6,62</td>
<td>1,48</td>
</tr>
<tr>
<td>84,61</td>
<td>2,89</td>
<td>22,07</td>
<td>7,43</td>
<td>1,47</td>
</tr>
<tr>
<td>94,89</td>
<td>2,87</td>
<td>24,80</td>
<td>8,16</td>
<td>1,47</td>
</tr>
<tr>
<td>104,72</td>
<td>2,86</td>
<td>27,48</td>
<td>8,91</td>
<td>1,46</td>
</tr>
<tr>
<td>83,56</td>
<td>3,11</td>
<td>21,80</td>
<td>7,10</td>
<td>1,59</td>
</tr>
<tr>
<td>90,40</td>
<td>3,11</td>
<td>23,54</td>
<td>7,60</td>
<td>1,58</td>
</tr>
<tr>
<td>103,66</td>
<td>3,09</td>
<td>26,97</td>
<td>8,55</td>
<td>1,58</td>
</tr>
<tr>
<td>116,39</td>
<td>3,08</td>
<td>30,32</td>
<td>9,44</td>
<td>1,57</td>
</tr>
<tr>
<td>140,31</td>
<td>3,04</td>
<td>36,85</td>
<td>11,09</td>
<td>1,56</td>
</tr>
<tr>
<td>162,27</td>
<td>3,01</td>
<td>43,21</td>
<td>12,62</td>
<td>1,55</td>
</tr>
<tr>
<td>130,00</td>
<td>3,50</td>
<td>33,97</td>
<td>9,88</td>
<td>1,79</td>
</tr>
<tr>
<td>149,57</td>
<td>3,49</td>
<td>38,94</td>
<td>11,15</td>
<td>1,78</td>
</tr>
<tr>
<td>168,42</td>
<td>3,48</td>
<td>43,80</td>
<td>12,34</td>
<td>1,77</td>
</tr>
<tr>
<td>186,00</td>
<td>3,46</td>
<td>48,60</td>
<td>13,48</td>
<td>1,77</td>
</tr>
<tr>
<td>203,93</td>
<td>3,45</td>
<td>53,27</td>
<td>14,54</td>
<td>1,76</td>
</tr>
<tr>
<td>235,88</td>
<td>3,41</td>
<td>62,40</td>
<td>16,53</td>
<td>1,75</td>
</tr>
<tr>
<td>193,46</td>
<td>3,89</td>
<td>50,73</td>
<td>13,38</td>
<td>1,99</td>
</tr>
<tr>
<td>207,01</td>
<td>3,88</td>
<td>54,16</td>
<td>14,13</td>
<td>1,98</td>
</tr>
<tr>
<td>233,46</td>
<td>3,87</td>
<td>60,92</td>
<td>15,66</td>
<td>1,98</td>
</tr>
<tr>
<td>283,83</td>
<td>3,84</td>
<td>74,08</td>
<td>18,51</td>
<td>1,96</td>
</tr>
<tr>
<td>330,95</td>
<td>3,81</td>
<td>86,84</td>
<td>21,10</td>
<td>2,05</td>
</tr>
<tr>
<td>374,98</td>
<td>3,78</td>
<td>99,32</td>
<td>23,49</td>
<td>2,01</td>
</tr>
<tr>
<td>395,87</td>
<td>3,76</td>
<td>105,49</td>
<td>24,62</td>
<td>2,01</td>
</tr>
<tr>
<td>416,04</td>
<td>3,74</td>
<td>111,61</td>
<td>25,79</td>
<td>2,04</td>
</tr>
<tr>
<td>278,54</td>
<td>4,29</td>
<td>72,68</td>
<td>17,36</td>
<td>2,13</td>
</tr>
<tr>
<td>Номер уголка</td>
<td>мм</td>
<td>Площадь поперечного сечения, см²</td>
<td>Справочник</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----</td>
<td>---------------------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>t</td>
<td>R</td>
<td>Jₓ, см²</td>
</tr>
<tr>
<td>12</td>
<td>120</td>
<td>8</td>
<td>17,20</td>
<td>198,17</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>23,24</td>
<td>317,16</td>
<td>36,59</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>27,60</td>
<td>371,80</td>
<td>43,30</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>33,99</td>
<td>448,90</td>
<td>52,96</td>
</tr>
<tr>
<td>12,5</td>
<td>125</td>
<td>8</td>
<td>19,69</td>
<td>294,36</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>22,0</td>
<td>327,48</td>
<td>36,00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>24,33</td>
<td>359,82</td>
<td>39,74</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>28,89</td>
<td>422,23</td>
<td>47,06</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>33,37</td>
<td>481,76</td>
<td>54,17</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>37,77</td>
<td>538,56</td>
<td>61,09</td>
</tr>
<tr>
<td>14</td>
<td>140</td>
<td>9</td>
<td>24,72</td>
<td>465,72</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>27,33</td>
<td>512,29</td>
<td>50,32</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>32,49</td>
<td>602,49</td>
<td>59,66</td>
</tr>
<tr>
<td>15</td>
<td>150</td>
<td>10</td>
<td>29,33</td>
<td>634,76</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>34,89</td>
<td>747,48</td>
<td>68,90</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>43,08</td>
<td>908,38</td>
<td>84,66</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>51,09</td>
<td>1060,08</td>
<td>99,86</td>
</tr>
<tr>
<td>16</td>
<td>160</td>
<td>10</td>
<td>31,43</td>
<td>774,24</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>34,42</td>
<td>844,21</td>
<td>72,44</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>37,39</td>
<td>912,89</td>
<td>78,62</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>43,57</td>
<td>1046,47</td>
<td>90,77</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>49,07</td>
<td>1175,19</td>
<td>102,64</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>54,79</td>
<td>1290,24</td>
<td>114,24</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>60,40</td>
<td>1418,85</td>
<td>125,60</td>
</tr>
<tr>
<td>18</td>
<td>180</td>
<td>11</td>
<td>38,80</td>
<td>1216,44</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>42,19</td>
<td>1316,62</td>
<td>100,41</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>52,18</td>
<td>1607,36</td>
<td>123,74</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>61,99</td>
<td>1884,07</td>
<td>146,36</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>68,43</td>
<td>2061,11</td>
<td>161,07</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
<td>12</td>
<td>47,10</td>
<td>1822,78</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>50,85</td>
<td>1960,77</td>
<td>134,44</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>54,6</td>
<td>2097,00</td>
<td>144,17</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>61,98</td>
<td>2362,57</td>
<td>163,37</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>69,30</td>
<td>2620,64</td>
<td>182,22</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>76,54</td>
<td>2871,47</td>
<td>200,73</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>90,78</td>
<td>3350,66</td>
<td>236,77</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>94,29</td>
<td>3466,21</td>
<td>245,59</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>111,54</td>
<td>4019,60</td>
<td>288,57</td>
</tr>
<tr>
<td>22</td>
<td>220</td>
<td>14</td>
<td>60,38</td>
<td>2814,36</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>68,58</td>
<td>3175,44</td>
<td>198,71</td>
</tr>
<tr>
<td>$x_{n} - x_{o}$</td>
<td>$J_{y_{o} \text{max}}$</td>
<td>$t_{x_{o} \text{min}}$</td>
<td>$W_{y_{o}}$</td>
<td>$I_{y_{o} \text{min}}$</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>314,51</td>
<td>4,28</td>
<td>81,83</td>
<td>19,29</td>
<td>2,18</td>
</tr>
<tr>
<td>412,45</td>
<td>4,68</td>
<td>107,04</td>
<td>23,29</td>
<td>2,99</td>
</tr>
<tr>
<td>503,79</td>
<td>4,66</td>
<td>130,54</td>
<td>27,72</td>
<td>2,37</td>
</tr>
<tr>
<td>590,28</td>
<td>4,62</td>
<td>153,33</td>
<td>31,79</td>
<td>2,36</td>
</tr>
<tr>
<td>711,32</td>
<td>4,57</td>
<td>186,48</td>
<td>37,35</td>
<td>2,34</td>
</tr>
<tr>
<td>466,76</td>
<td>4,87</td>
<td>121,96</td>
<td>25,67</td>
<td>2,49</td>
</tr>
<tr>
<td>520,00</td>
<td>4,86</td>
<td>135,88</td>
<td>28,26</td>
<td>2,48</td>
</tr>
<tr>
<td>571,04</td>
<td>4,84</td>
<td>148,59</td>
<td>30,45</td>
<td>2,47</td>
</tr>
<tr>
<td>670,02</td>
<td>4,82</td>
<td>174,43</td>
<td>34,94</td>
<td>2,46</td>
</tr>
<tr>
<td>763,90</td>
<td>4,78</td>
<td>199,62</td>
<td>39,10</td>
<td>2,45</td>
</tr>
<tr>
<td>852,84</td>
<td>4,75</td>
<td>224,29</td>
<td>43,10</td>
<td>2,44</td>
</tr>
<tr>
<td>739,42</td>
<td>5,47</td>
<td>192,03</td>
<td>35,92</td>
<td>2,79</td>
</tr>
<tr>
<td>813,62</td>
<td>5,46</td>
<td>210,96</td>
<td>39,05</td>
<td>2,78</td>
</tr>
<tr>
<td>956,98</td>
<td>5,43</td>
<td>248,01</td>
<td>44,97</td>
<td>2,76</td>
</tr>
<tr>
<td>1008,56</td>
<td>5,86</td>
<td>260,97</td>
<td>45,34</td>
<td>2,98</td>
</tr>
<tr>
<td>1187,86</td>
<td>5,83</td>
<td>307,09</td>
<td>52,32</td>
<td>2,97</td>
</tr>
<tr>
<td>1442,60</td>
<td>5,79</td>
<td>374,17</td>
<td>61,96</td>
<td>2,95</td>
</tr>
<tr>
<td>1680,92</td>
<td>5,74</td>
<td>439,24</td>
<td>70,91</td>
<td>2,93</td>
</tr>
<tr>
<td>1229,10</td>
<td>6,25</td>
<td>319,38</td>
<td>52,52</td>
<td>3,19</td>
</tr>
<tr>
<td>1340,66</td>
<td>6,24</td>
<td>347,77</td>
<td>56,53</td>
<td>3,18</td>
</tr>
<tr>
<td>1450,00</td>
<td>6,23</td>
<td>375,78</td>
<td>60,53</td>
<td>3,17</td>
</tr>
<tr>
<td>1662,13</td>
<td>6,20</td>
<td>430,81</td>
<td>68,15</td>
<td>3,16</td>
</tr>
<tr>
<td>1865,73</td>
<td>6,17</td>
<td>484,64</td>
<td>75,92</td>
<td>3,14</td>
</tr>
<tr>
<td>2061,03</td>
<td>6,13</td>
<td>537,46</td>
<td>82,08</td>
<td>3,13</td>
</tr>
<tr>
<td>2248,26</td>
<td>6,10</td>
<td>589,43</td>
<td>90,02</td>
<td>3,12</td>
</tr>
<tr>
<td>1933,10</td>
<td>7,06</td>
<td>499,78</td>
<td>72,86</td>
<td>3,59</td>
</tr>
<tr>
<td>2092,78</td>
<td>7,04</td>
<td>540,45</td>
<td>78,15</td>
<td>3,58</td>
</tr>
<tr>
<td>2554,99</td>
<td>7,00</td>
<td>659,73</td>
<td>93,11</td>
<td>3,56</td>
</tr>
<tr>
<td>2992,69</td>
<td>6,95</td>
<td>775,44</td>
<td>106,88</td>
<td>3,54</td>
</tr>
<tr>
<td>3271,31</td>
<td>6,91</td>
<td>850,92</td>
<td>115,71</td>
<td>3,53</td>
</tr>
<tr>
<td>2896,16</td>
<td>7,84</td>
<td>749,40</td>
<td>98,68</td>
<td>3,99</td>
</tr>
<tr>
<td>3116,18</td>
<td>7,83</td>
<td>805,35</td>
<td>105,07</td>
<td>3,98</td>
</tr>
<tr>
<td>3333,00</td>
<td>7,81</td>
<td>861,00</td>
<td>111,50</td>
<td>3,97</td>
</tr>
<tr>
<td>3755,39</td>
<td>7,78</td>
<td>969,74</td>
<td>123,77</td>
<td>3,96</td>
</tr>
<tr>
<td>4164,54</td>
<td>7,75</td>
<td>1076,74</td>
<td>135,43</td>
<td>3,94</td>
</tr>
<tr>
<td>4560,42</td>
<td>7,72</td>
<td>1181,92</td>
<td>146,62</td>
<td>3,93</td>
</tr>
<tr>
<td>5313,59</td>
<td>7,65</td>
<td>1387,73</td>
<td>167,74</td>
<td>3,91</td>
</tr>
<tr>
<td>5494,04</td>
<td>7,63</td>
<td>1438,38</td>
<td>172,68</td>
<td>3,91</td>
</tr>
<tr>
<td>7351,05</td>
<td>7,55</td>
<td>1698,16</td>
<td>193,06</td>
<td>3,89</td>
</tr>
<tr>
<td>4470,15</td>
<td>8,60</td>
<td>1158,56</td>
<td>138,62</td>
<td>4,38</td>
</tr>
<tr>
<td>5045,37</td>
<td>8,58</td>
<td>1305,52</td>
<td>153,34</td>
<td>4,36</td>
</tr>
</tbody>
</table>
Таблица 3 Уголки стальные горячекатанные неравнолопочные. Сорт

<table>
<thead>
<tr>
<th>Номер уголка</th>
<th>мм</th>
<th>Площадь поперечного сечения, см²</th>
<th>Справоч</th>
<th>x — x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>t</td>
<td>R</td>
<td>r</td>
</tr>
<tr>
<td>25</td>
<td>250</td>
<td>16</td>
<td>24,0</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>20</td>
<td>96,96</td>
<td>5764,87</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>106,12</td>
<td>22</td>
<td>106,12</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>119,71</td>
<td>25</td>
<td>119,71</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>133,12</td>
<td>28</td>
<td>133,12</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>141,96</td>
<td>30</td>
<td>141,96</td>
</tr>
</tbody>
</table>

B — ширина большей полки,
b — ширина меньшей полки;
t — толщина полки;
R — радиус внутреннего закругления;
r — радиус закругления полок;

<table>
<thead>
<tr>
<th>Номер уголка</th>
<th>мм</th>
<th>Площадь поперечного сечения, см²</th>
<th>Справоч</th>
<th>x — x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>b</td>
<td>t</td>
<td>R</td>
</tr>
<tr>
<td>2,5/1,6</td>
<td>25</td>
<td>16</td>
<td>3</td>
<td>3,5</td>
</tr>
<tr>
<td>3/2</td>
<td>30</td>
<td>20</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3,2/2</td>
<td>32</td>
<td>20</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>20</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4/2,5</td>
<td>40</td>
<td>25</td>
<td>3</td>
<td>4,0</td>
</tr>
<tr>
<td>4/3</td>
<td>40</td>
<td>28</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4,5/2,8</td>
<td>45</td>
<td>28</td>
<td>3</td>
<td>5,0</td>
</tr>
</tbody>
</table>

90
Продолжение табл. 2

<table>
<thead>
<tr>
<th>$x_0 - x_0$</th>
<th>$y_0 - y_0$</th>
<th>$J_{x_0\text{max}}$</th>
<th>$I_{x_0\text{max}}$</th>
<th>$J_{y_0\text{min}}$</th>
<th>W_{y_0}</th>
<th>$I_{y_0\text{min}}$</th>
<th>J_{xy}</th>
<th>Z_0, см</th>
<th>Mасса 1 м угол-ка, кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>7492,10</td>
<td>9,78</td>
<td>1942,09</td>
<td>203,45</td>
<td>4,98</td>
<td>2775,00</td>
<td>6,75</td>
<td>61,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8336,69</td>
<td>9,75</td>
<td>2157,78</td>
<td>223,39</td>
<td>4,96</td>
<td>3069,00</td>
<td>6,83</td>
<td>68,86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9159,73</td>
<td>9,72</td>
<td>2370,01</td>
<td>242,52</td>
<td>4,94</td>
<td>3395,00</td>
<td>6,91</td>
<td>76,11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9961,60</td>
<td>9,69</td>
<td>2579,04</td>
<td>260,52</td>
<td>4,93</td>
<td>3691,00</td>
<td>7,00</td>
<td>83,31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11125,52</td>
<td>9,64</td>
<td>2887,26</td>
<td>287,14</td>
<td>4,91</td>
<td>4119,00</td>
<td>7,11</td>
<td>93,97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12243,84</td>
<td>9,59</td>
<td>3189,89</td>
<td>311,98</td>
<td>4,90</td>
<td>4527,00</td>
<td>7,23</td>
<td>104,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12964,66</td>
<td>9,56</td>
<td>3388,98</td>
<td>327,82</td>
<td>4,89</td>
<td>4788,00</td>
<td>7,31</td>
<td>111,44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

тамент (ГОСТ 8510—86)

J — момент инерции;

i — радиус инерции;

x_0, y_0 — расстояние от центра тяжести до наружных граней полок;

J_{xy} — центробежный момент инерции

<table>
<thead>
<tr>
<th>$y - y$</th>
<th>$u - u$</th>
<th>W_{u_0}</th>
<th>I_{u_0}</th>
<th>W_{y_0}</th>
<th>I_{y_0}</th>
<th>x_0, см</th>
<th>y_0, см</th>
<th>J_{xy}, см2</th>
<th>Угол наклона оси, град</th>
<th>Масса 1 м угол-ка, кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,19</td>
<td>0,44</td>
<td>0,13</td>
<td>0,16</td>
<td>0,34</td>
<td>0,42</td>
<td>0,86</td>
<td>0,22</td>
<td>0,392</td>
<td>0,91</td>
<td></td>
</tr>
<tr>
<td>0,30</td>
<td>0,56</td>
<td>0,26</td>
<td>0,25</td>
<td>0,43</td>
<td>0,51</td>
<td>1,00</td>
<td>0,43</td>
<td>0,427</td>
<td>1,12</td>
<td></td>
</tr>
<tr>
<td>0,39</td>
<td>0,55</td>
<td>0,34</td>
<td>0,32</td>
<td>0,43</td>
<td>0,54</td>
<td>1,04</td>
<td>0,54</td>
<td>0,421</td>
<td>1,46</td>
<td></td>
</tr>
<tr>
<td>0,30</td>
<td>0,55</td>
<td>0,28</td>
<td>0,25</td>
<td>0,43</td>
<td>0,49</td>
<td>1,08</td>
<td>0,47</td>
<td>0,382</td>
<td>1,17</td>
<td></td>
</tr>
<tr>
<td>0,39</td>
<td>0,54</td>
<td>0,35</td>
<td>0,33</td>
<td>0,43</td>
<td>0,53</td>
<td>1,12</td>
<td>0,59</td>
<td>0,374</td>
<td>1,52</td>
<td></td>
</tr>
<tr>
<td>0,49</td>
<td>0,70</td>
<td>0,56</td>
<td>0,41</td>
<td>0,54</td>
<td>0,59</td>
<td>1,32</td>
<td>0,96</td>
<td>0,385</td>
<td>1,48</td>
<td></td>
</tr>
<tr>
<td>0,63</td>
<td>0,69</td>
<td>0,71</td>
<td>0,52</td>
<td>0,54</td>
<td>0,63</td>
<td>1,37</td>
<td>1,22</td>
<td>0,381</td>
<td>1,94</td>
<td></td>
</tr>
<tr>
<td>0,77</td>
<td>0,68</td>
<td>0,86</td>
<td>0,64</td>
<td>0,53</td>
<td>0,66</td>
<td>1,41</td>
<td>1,44</td>
<td>0,374</td>
<td>2,38</td>
<td></td>
</tr>
<tr>
<td>0,91</td>
<td>0,87</td>
<td>1,09</td>
<td>0,75</td>
<td>0,64</td>
<td>0,78</td>
<td>1,28</td>
<td>1,65</td>
<td>0,544</td>
<td>2,09</td>
<td></td>
</tr>
<tr>
<td>1,11</td>
<td>0,86</td>
<td>1,33</td>
<td>0,91</td>
<td>0,64</td>
<td>0,82</td>
<td>1,32</td>
<td>2,00</td>
<td>0,539</td>
<td>2,57</td>
<td></td>
</tr>
<tr>
<td>0,61</td>
<td>0,79</td>
<td>0,79</td>
<td>0,52</td>
<td>0,61</td>
<td>0,64</td>
<td>1,47</td>
<td>1,38</td>
<td>0,382</td>
<td>1,68</td>
<td></td>
</tr>
<tr>
<td>0,80</td>
<td>0,78</td>
<td>1,02</td>
<td>0,67</td>
<td>0,60</td>
<td>0,68</td>
<td>1,51</td>
<td>1,77</td>
<td>0,379</td>
<td>2,20</td>
<td></td>
</tr>
<tr>
<td>Номер уголка</td>
<td>m</td>
<td>t</td>
<td>R</td>
<td>r</td>
<td>Площадь поперечного сечения, см²</td>
<td>(J_x)</td>
<td>(W_y)</td>
<td>t_x</td>
<td>t_y</td>
<td>J_p</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>5/3,2</td>
<td>50</td>
<td>32</td>
<td>3</td>
<td>5,5</td>
<td>1,8</td>
<td>2,42</td>
<td>6,18</td>
<td>1,82</td>
<td>1,60</td>
<td>1,99</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>3,17</td>
<td>7,98</td>
<td>2,38</td>
<td>1,59</td>
<td>2,56</td>
</tr>
<tr>
<td>5,6/3,6</td>
<td>56</td>
<td>36</td>
<td>4</td>
<td>6,0</td>
<td>2,0</td>
<td>3,58</td>
<td>11,37</td>
<td>3,01</td>
<td>1,78</td>
<td>3,70</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td>4,41</td>
<td>13,82</td>
<td>3,70</td>
<td>1,77</td>
<td>4,48</td>
</tr>
<tr>
<td>6,3/4,0</td>
<td>63</td>
<td>40</td>
<td>4</td>
<td>7,0</td>
<td>2,3</td>
<td>4,04</td>
<td>16,33</td>
<td>3,83</td>
<td>2,01</td>
<td>5,16</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td>4,98</td>
<td>19,91</td>
<td>4,72</td>
<td>2,00</td>
<td>6,26</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td>5,90</td>
<td>23,31</td>
<td>5,58</td>
<td>1,99</td>
<td>7,29</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td>7,68</td>
<td>29,60</td>
<td>7,22</td>
<td>1,96</td>
<td>9,15</td>
</tr>
<tr>
<td>6,5/5</td>
<td>65</td>
<td>50</td>
<td>5</td>
<td>6,0</td>
<td>2,0</td>
<td>5,56</td>
<td>23,41</td>
<td>5,20</td>
<td>2,05</td>
<td>12,08</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td>6,60</td>
<td>27,46</td>
<td>6,16</td>
<td>2,04</td>
<td>14,12</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td>7,62</td>
<td>31,32</td>
<td>7,08</td>
<td>2,03</td>
<td>16,05</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td>8,62</td>
<td>35,00</td>
<td>7,99</td>
<td>2,02</td>
<td>18,88</td>
</tr>
<tr>
<td>7/4,5</td>
<td>70</td>
<td>45</td>
<td>5</td>
<td>7,5</td>
<td>2,5</td>
<td>5,59</td>
<td>27,76</td>
<td>5,88</td>
<td>2,23</td>
<td>9,05</td>
</tr>
<tr>
<td>7,5/5</td>
<td>75</td>
<td>50</td>
<td>5</td>
<td>8,0</td>
<td>2,7</td>
<td>6,11</td>
<td>34,81</td>
<td>6,81</td>
<td>2,39</td>
<td>12,47</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td>7,25</td>
<td>40,92</td>
<td>8,08</td>
<td>2,38</td>
<td>14,60</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td>8,37</td>
<td>46,77</td>
<td>9,31</td>
<td>2,36</td>
<td>16,61</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td>9,47</td>
<td>52,38</td>
<td>10,52</td>
<td>2,35</td>
<td>18,52</td>
</tr>
<tr>
<td>8/5</td>
<td>80</td>
<td>50</td>
<td>5</td>
<td>9,0</td>
<td>3,0</td>
<td>6,36</td>
<td>41,64</td>
<td>7,71</td>
<td>2,56</td>
<td>12,68</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td>7,55</td>
<td>48,98</td>
<td>9,15</td>
<td>2,55</td>
<td>14,85</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td>8,74</td>
<td>52,06</td>
<td>9,42</td>
<td>2,53</td>
<td>15,18</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td>9,42</td>
<td>59,61</td>
<td>10,87</td>
<td>2,52</td>
<td>18,74</td>
</tr>
<tr>
<td>8/6</td>
<td>80</td>
<td>60</td>
<td>6</td>
<td>10,0</td>
<td>3,3</td>
<td>10,67</td>
<td>66,88</td>
<td>12,38</td>
<td>2,50</td>
<td>32,15</td>
</tr>
<tr>
<td>9/5,6</td>
<td>90</td>
<td>56</td>
<td>5</td>
<td>9,0</td>
<td>3,0</td>
<td>7,86</td>
<td>65,28</td>
<td>10,74</td>
<td>2,88</td>
<td>19,67</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td>8,54</td>
<td>70,58</td>
<td>11,66</td>
<td>2,88</td>
<td>21,22</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td>11,18</td>
<td>90,87</td>
<td>15,24</td>
<td>2,85</td>
<td>27,08</td>
</tr>
<tr>
<td>10/6,3</td>
<td>100</td>
<td>63</td>
<td>6</td>
<td>10,0</td>
<td>3,3</td>
<td>9,58</td>
<td>98,29</td>
<td>14,52</td>
<td>3,20</td>
<td>30,58</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td>11,09</td>
<td>112,86</td>
<td>16,78</td>
<td>3,19</td>
<td>34,99</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td>12,57</td>
<td>126,96</td>
<td>19,01</td>
<td>3,18</td>
<td>39,21</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td>15,47</td>
<td>153,83</td>
<td>23,32</td>
<td>3,15</td>
<td>47,18</td>
</tr>
<tr>
<td>10/6,5</td>
<td>100</td>
<td>65</td>
<td>7</td>
<td>11,0</td>
<td>3,7</td>
<td>11,23</td>
<td>114,05</td>
<td>16,87</td>
<td>3,19</td>
<td>38,32</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td>12,73</td>
<td>138,31</td>
<td>19,11</td>
<td>3,18</td>
<td>42,96</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td>15,67</td>
<td>155,52</td>
<td>23,45</td>
<td>3,15</td>
<td>51,68</td>
</tr>
<tr>
<td>11/7</td>
<td>110</td>
<td>70</td>
<td>6</td>
<td>11,0</td>
<td>3,7</td>
<td>11,45</td>
<td>142,42</td>
<td>19,11</td>
<td>3,53</td>
<td>45,61</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td>13,93</td>
<td>171,54</td>
<td>23,22</td>
<td>3,51</td>
<td>54,64</td>
</tr>
<tr>
<td>12,5/8</td>
<td>125</td>
<td>80</td>
<td>7</td>
<td>11,0</td>
<td>3,7</td>
<td>14,06</td>
<td>226,53</td>
<td>26,67</td>
<td>4,01</td>
<td>73,73</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td>15,98</td>
<td>255,62</td>
<td>30,27</td>
<td>4,00</td>
<td>80,95</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td>19,70</td>
<td>311,61</td>
<td>37,27</td>
<td>3,98</td>
<td>100,47</td>
</tr>
</tbody>
</table>
Продолжение табл. 9

<table>
<thead>
<tr>
<th>(W_y, \text{ см}^2)</th>
<th>(t_y, \text{ см})</th>
<th>(J_{\text{штак.}} \text{ см}^4)</th>
<th>(W_z, \text{ см}^2)</th>
<th>(t_{\text{штак.}} \text{ см})</th>
<th>(x_0, \text{ см})</th>
<th>(y_0, \text{ см})</th>
<th>(J_{xy}, \text{ см}^4)</th>
<th>(\text{Угол наклона оси, deg})</th>
<th>(\text{Масса 1 м, кг})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,81</td>
<td>0,91</td>
<td>1,18</td>
<td>0,68</td>
<td>0,70</td>
<td>0,72</td>
<td>1,60</td>
<td>2,01</td>
<td>0,403</td>
<td>1,90</td>
</tr>
<tr>
<td>1,05</td>
<td>0,90</td>
<td>1,52</td>
<td>0,88</td>
<td>0,69</td>
<td>0,76</td>
<td>1,65</td>
<td>2,59</td>
<td>0,401</td>
<td>2,49</td>
</tr>
<tr>
<td>1,34</td>
<td>1,02</td>
<td>2,19</td>
<td>1,13</td>
<td>0,78</td>
<td>0,84</td>
<td>1,82</td>
<td>3,74</td>
<td>0,406</td>
<td>2,81</td>
</tr>
<tr>
<td>1,65</td>
<td>1,01</td>
<td>2,65</td>
<td>1,37</td>
<td>0,78</td>
<td>0,88</td>
<td>1,87</td>
<td>4,50</td>
<td>0,404</td>
<td>3,46</td>
</tr>
<tr>
<td>1,67</td>
<td>1,13</td>
<td>3,07</td>
<td>1,41</td>
<td>0,87</td>
<td>0,91</td>
<td>2,03</td>
<td>5,25</td>
<td>0,397</td>
<td>3,17</td>
</tr>
<tr>
<td>2,05</td>
<td>1,12</td>
<td>3,73</td>
<td>1,72</td>
<td>0,86</td>
<td>0,95</td>
<td>2,08</td>
<td>6,41</td>
<td>0,396</td>
<td>3,91</td>
</tr>
<tr>
<td>2,42</td>
<td>1,11</td>
<td>4,36</td>
<td>2,02</td>
<td>0,86</td>
<td>0,99</td>
<td>2,12</td>
<td>7,44</td>
<td>0,393</td>
<td>4,63</td>
</tr>
<tr>
<td>3,12</td>
<td>1,09</td>
<td>5,58</td>
<td>2,60</td>
<td>0,85</td>
<td>1,07</td>
<td>2,20</td>
<td>9,27</td>
<td>0,386</td>
<td>6,03</td>
</tr>
<tr>
<td>3,23</td>
<td>1,47</td>
<td>6,41</td>
<td>2,68</td>
<td>1,07</td>
<td>1,26</td>
<td>2,00</td>
<td>9,77</td>
<td>0,576</td>
<td>4,36</td>
</tr>
<tr>
<td>3,52</td>
<td>1,46</td>
<td>7,52</td>
<td>3,15</td>
<td>1,07</td>
<td>1,30</td>
<td>2,04</td>
<td>11,46</td>
<td>0,575</td>
<td>5,18</td>
</tr>
<tr>
<td>4,38</td>
<td>1,45</td>
<td>8,60</td>
<td>3,59</td>
<td>1,06</td>
<td>1,34</td>
<td>2,08</td>
<td>12,94</td>
<td>0,571</td>
<td>5,98</td>
</tr>
<tr>
<td>4,93</td>
<td>1,44</td>
<td>9,65</td>
<td>4,02</td>
<td>1,06</td>
<td>1,37</td>
<td>2,12</td>
<td>13,61</td>
<td>0,570</td>
<td>6,77</td>
</tr>
<tr>
<td>2,62</td>
<td>1,27</td>
<td>5,34</td>
<td>2,20</td>
<td>0,96</td>
<td>1,05</td>
<td>2,28</td>
<td>9,12</td>
<td>0,406</td>
<td>4,39</td>
</tr>
<tr>
<td>3,25</td>
<td>1,43</td>
<td>7,24</td>
<td>2,73</td>
<td>1,09</td>
<td>1,17</td>
<td>2,39</td>
<td>12,00</td>
<td>0,436</td>
<td>4,79</td>
</tr>
<tr>
<td>3,85</td>
<td>1,42</td>
<td>8,48</td>
<td>3,21</td>
<td>1,08</td>
<td>1,21</td>
<td>2,44</td>
<td>14,10</td>
<td>0,435</td>
<td>5,69</td>
</tr>
<tr>
<td>4,43</td>
<td>1,41</td>
<td>9,69</td>
<td>3,69</td>
<td>1,08</td>
<td>1,25</td>
<td>2,48</td>
<td>16,18</td>
<td>0,435</td>
<td>6,57</td>
</tr>
<tr>
<td>4,88</td>
<td>1,40</td>
<td>10,87</td>
<td>4,14</td>
<td>1,07</td>
<td>1,29</td>
<td>2,52</td>
<td>17,80</td>
<td>0,430</td>
<td>7,43</td>
</tr>
<tr>
<td>3,28</td>
<td>1,41</td>
<td>7,57</td>
<td>2,75</td>
<td>1,09</td>
<td>1,13</td>
<td>2,60</td>
<td>13,20</td>
<td>0,387</td>
<td>4,99</td>
</tr>
<tr>
<td>3,88</td>
<td>1,40</td>
<td>8,88</td>
<td>3,24</td>
<td>1,08</td>
<td>1,17</td>
<td>2,65</td>
<td>15,50</td>
<td>0,386</td>
<td>5,92</td>
</tr>
<tr>
<td>5,58</td>
<td>1,76</td>
<td>13,61</td>
<td>4,66</td>
<td>1,29</td>
<td>1,49</td>
<td>2,47</td>
<td>20,98</td>
<td>0,547</td>
<td>6,39</td>
</tr>
<tr>
<td>6,43</td>
<td>1,75</td>
<td>15,58</td>
<td>5,34</td>
<td>1,29</td>
<td>1,53</td>
<td>2,52</td>
<td>24,01</td>
<td>0,546</td>
<td>7,39</td>
</tr>
<tr>
<td>7,26</td>
<td>1,74</td>
<td>17,49</td>
<td>5,99</td>
<td>1,28</td>
<td>1,57</td>
<td>2,56</td>
<td>26,83</td>
<td>0,544</td>
<td>8,37</td>
</tr>
<tr>
<td>4,53</td>
<td>1,58</td>
<td>11,77</td>
<td>3,81</td>
<td>1,22</td>
<td>1,26</td>
<td>2,92</td>
<td>20,54</td>
<td>0,384</td>
<td>6,17</td>
</tr>
<tr>
<td>4,91</td>
<td>1,58</td>
<td>12,70</td>
<td>4,12</td>
<td>1,22</td>
<td>1,28</td>
<td>2,95</td>
<td>22,23</td>
<td>0,384</td>
<td>6,70</td>
</tr>
<tr>
<td>6,39</td>
<td>1,56</td>
<td>16,29</td>
<td>5,32</td>
<td>1,21</td>
<td>1,36</td>
<td>3,04</td>
<td>28,33</td>
<td>0,380</td>
<td>8,77</td>
</tr>
<tr>
<td>6,27</td>
<td>1,79</td>
<td>18,20</td>
<td>5,27</td>
<td>1,38</td>
<td>1,42</td>
<td>3,23</td>
<td>31,50</td>
<td>0,393</td>
<td>7,53</td>
</tr>
<tr>
<td>7,23</td>
<td>1,78</td>
<td>20,83</td>
<td>6,06</td>
<td>1,37</td>
<td>1,46</td>
<td>3,28</td>
<td>36,10</td>
<td>0,392</td>
<td>8,70</td>
</tr>
<tr>
<td>8,17</td>
<td>1,77</td>
<td>23,38</td>
<td>6,82</td>
<td>1,36</td>
<td>1,50</td>
<td>3,32</td>
<td>40,50</td>
<td>0,391</td>
<td>9,87</td>
</tr>
<tr>
<td>9,99</td>
<td>1,75</td>
<td>28,34</td>
<td>8,31</td>
<td>1,35</td>
<td>1,55</td>
<td>3,40</td>
<td>48,60</td>
<td>0,387</td>
<td>12,14</td>
</tr>
<tr>
<td>7,70</td>
<td>1,85</td>
<td>22,77</td>
<td>6,43</td>
<td>1,41</td>
<td>1,52</td>
<td>3,24</td>
<td>38,00</td>
<td>0,415</td>
<td>8,81</td>
</tr>
<tr>
<td>8,70</td>
<td>1,84</td>
<td>25,24</td>
<td>7,26</td>
<td>1,41</td>
<td>1,56</td>
<td>3,28</td>
<td>42,64</td>
<td>0,414</td>
<td>9,99</td>
</tr>
<tr>
<td>10,64</td>
<td>1,82</td>
<td>30,60</td>
<td>8,82</td>
<td>1,40</td>
<td>1,64</td>
<td>3,37</td>
<td>51,18</td>
<td>0,410</td>
<td>12,30</td>
</tr>
<tr>
<td>8,42</td>
<td>2,00</td>
<td>26,94</td>
<td>7,05</td>
<td>1,53</td>
<td>1,58</td>
<td>3,55</td>
<td>46,80</td>
<td>0,402</td>
<td>8,98</td>
</tr>
<tr>
<td>10,20</td>
<td>1,98</td>
<td>32,31</td>
<td>8,50</td>
<td>1,52</td>
<td>1,64</td>
<td>3,61</td>
<td>55,90</td>
<td>0,400</td>
<td>10,93</td>
</tr>
<tr>
<td>11,89</td>
<td>2,29</td>
<td>43,40</td>
<td>9,96</td>
<td>1,76</td>
<td>1,80</td>
<td>4,01</td>
<td>74,70</td>
<td>0,407</td>
<td>11,04</td>
</tr>
<tr>
<td>13,47</td>
<td>2,28</td>
<td>48,82</td>
<td>11,25</td>
<td>1,75</td>
<td>1,84</td>
<td>4,04</td>
<td>84,10</td>
<td>0,406</td>
<td>12,54</td>
</tr>
<tr>
<td>16,52</td>
<td>2,26</td>
<td>59,33</td>
<td>13,74</td>
<td>1,74</td>
<td>1,92</td>
<td>4,14</td>
<td>102,00</td>
<td>0,404</td>
<td>15,47</td>
</tr>
</tbody>
</table>
Таблица 4 Сталь горячекатаная. Швеллеры. Сортамент (ГОСТ 8240)

<table>
<thead>
<tr>
<th>Номер швеллера</th>
<th>b</th>
<th>b</th>
<th>s</th>
<th>t</th>
<th>R</th>
<th>r</th>
<th>Площадь сечения, см²</th>
<th>Масса 1 м, кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>50</td>
<td>32</td>
<td>4,4</td>
<td>7,0</td>
<td>6,0</td>
<td>2,5</td>
<td>6,16</td>
<td>4,34</td>
</tr>
<tr>
<td>6,5</td>
<td>65</td>
<td>36</td>
<td>4,4</td>
<td>7,2</td>
<td>6,0</td>
<td>2,5</td>
<td>7,51</td>
<td>5,90</td>
</tr>
<tr>
<td>8</td>
<td>80</td>
<td>40</td>
<td>4,5</td>
<td>7,4</td>
<td>6,5</td>
<td>2,5</td>
<td>8,98</td>
<td>7,05</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>46</td>
<td>4,5</td>
<td>7,6</td>
<td>7,0</td>
<td>3,0</td>
<td>10,90</td>
<td>8,59</td>
</tr>
<tr>
<td>12</td>
<td>120</td>
<td>52</td>
<td>4,8</td>
<td>7,8</td>
<td>7,5</td>
<td>3,0</td>
<td>13,30</td>
<td>10,40</td>
</tr>
<tr>
<td>14</td>
<td>140</td>
<td>58</td>
<td>4,9</td>
<td>8,1</td>
<td>8,0</td>
<td>3,0</td>
<td>15,60</td>
<td>12,30</td>
</tr>
<tr>
<td>14а</td>
<td>140</td>
<td>62</td>
<td>4,9</td>
<td>8,7</td>
<td>8,0</td>
<td>3,0</td>
<td>17,00</td>
<td>13,30</td>
</tr>
<tr>
<td>16</td>
<td>160</td>
<td>64</td>
<td>5,0</td>
<td>8,4</td>
<td>8,5</td>
<td>3,5</td>
<td>18,10</td>
<td>14,20</td>
</tr>
<tr>
<td>16а</td>
<td>160</td>
<td>68</td>
<td>5,0</td>
<td>9,0</td>
<td>8,5</td>
<td>3,5</td>
<td>19,50</td>
<td>15,30</td>
</tr>
</tbody>
</table>

h — высота,
b — ширина полки,
s — толщина стенки,
t — толщина полки;
R — радиус внутреннего закругления;
r — радиус закругления полки.
Продолжение табл. 3

<table>
<thead>
<tr>
<th>(y - y)</th>
<th>(u - u)</th>
<th>(x_0), см</th>
<th>(y_0), см</th>
<th>(J_{xy}), см³</th>
<th>(J_{x}), см³</th>
<th>(J_{y}), см³</th>
<th>(Z_0), см</th>
</tr>
</thead>
<tbody>
<tr>
<td>19,46</td>
<td>2,24</td>
<td>69,47</td>
<td>16,11</td>
<td>1,72</td>
<td>2,00</td>
<td>4,22</td>
<td>118,00</td>
</tr>
<tr>
<td>17,19</td>
<td>2,58</td>
<td>70,27</td>
<td>14,39</td>
<td>1,98</td>
<td>2,03</td>
<td>4,49</td>
<td>121,00</td>
</tr>
<tr>
<td>21,14</td>
<td>2,56</td>
<td>85,51</td>
<td>17,58</td>
<td>1,96</td>
<td>2,12</td>
<td>4,58</td>
<td>147,00</td>
</tr>
<tr>
<td>23,96</td>
<td>2,85</td>
<td>110,40</td>
<td>20,01</td>
<td>2,20</td>
<td>2,24</td>
<td>5,19</td>
<td>194,00</td>
</tr>
<tr>
<td>26,42</td>
<td>2,84</td>
<td>121,16</td>
<td>22,02</td>
<td>2,19</td>
<td>2,28</td>
<td>5,23</td>
<td>213,00</td>
</tr>
<tr>
<td>31,23</td>
<td>2,82</td>
<td>142,14</td>
<td>25,93</td>
<td>2,18</td>
<td>2,36</td>
<td>5,32</td>
<td>249,00</td>
</tr>
<tr>
<td>35,89</td>
<td>2,80</td>
<td>162,49</td>
<td>29,75</td>
<td>2,16</td>
<td>2,43</td>
<td>5,40</td>
<td>282,00</td>
</tr>
<tr>
<td>32,27</td>
<td>3,12</td>
<td>165,44</td>
<td>26,96</td>
<td>2,42</td>
<td>2,44</td>
<td>5,88</td>
<td>295,00</td>
</tr>
<tr>
<td>38,20</td>
<td>3,10</td>
<td>194,28</td>
<td>31,83</td>
<td>2,40</td>
<td>2,52</td>
<td>5,97</td>
<td>348,00</td>
</tr>
<tr>
<td>45,98</td>
<td>3,58</td>
<td>263,84</td>
<td>38,27</td>
<td>2,75</td>
<td>2,79</td>
<td>6,50</td>
<td>465,00</td>
</tr>
<tr>
<td>49,85</td>
<td>3,57</td>
<td>285,04</td>
<td>41,45</td>
<td>2,74</td>
<td>2,83</td>
<td>6,54</td>
<td>503,00</td>
</tr>
<tr>
<td>57,43</td>
<td>3,54</td>
<td>326,54</td>
<td>47,57</td>
<td>2,73</td>
<td>2,91</td>
<td>6,62</td>
<td>575,00</td>
</tr>
<tr>
<td>64,83</td>
<td>3,52</td>
<td>366,99</td>
<td>53,56</td>
<td>2,72</td>
<td>2,99</td>
<td>6,71</td>
<td>643,00</td>
</tr>
</tbody>
</table>

— 72). Швеллеры с уклоном внутренних граней полок

\[J \] — момент инерции;
\[W \] — момент сопротивления,
\[i \] — радиус инерции;
\[S \] — статический момент полусечения;
\[Z_0 \] — расстояние от оси \(y - y \) до наружной грани стенки.

<table>
<thead>
<tr>
<th>(x - x)</th>
<th>(y - y)</th>
<th>(Z_0), см</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_x), см³</td>
<td>(W_x), см³</td>
<td>(i_x), см</td>
</tr>
<tr>
<td>22,8</td>
<td>9,1</td>
<td>1,92</td>
</tr>
<tr>
<td>48,6</td>
<td>15,0</td>
<td>2,54</td>
</tr>
<tr>
<td>89,4</td>
<td>22,4</td>
<td>3,16</td>
</tr>
<tr>
<td>174,0</td>
<td>34,8</td>
<td>3,99</td>
</tr>
<tr>
<td>304,0</td>
<td>50,6</td>
<td>4,78</td>
</tr>
<tr>
<td>491,0</td>
<td>70,2</td>
<td>5,60</td>
</tr>
<tr>
<td>545,0</td>
<td>77,8</td>
<td>5,66</td>
</tr>
<tr>
<td>747,0</td>
<td>93,4</td>
<td>6,42</td>
</tr>
<tr>
<td>823,0</td>
<td>103,0</td>
<td>6,49</td>
</tr>
<tr>
<td>Номер швеллера</td>
<td>18</td>
<td>18а</td>
</tr>
<tr>
<td>----------------</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>7</td>
<td>6.3</td>
<td>5.6</td>
</tr>
<tr>
<td>7</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>7</td>
<td>8.7</td>
<td>9.3</td>
</tr>
<tr>
<td>7</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>7</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
<td>20.7</td>
<td>22.2</td>
</tr>
<tr>
<td>7</td>
<td>16.3</td>
<td>17.4</td>
</tr>
</tbody>
</table>

Таблица 5. Сталь горячекатаная. Швеллеры. Сортамент (ГОСТ 8240)

- \(h \) — высота,
- \(b \) — ширина полки;
- \(s \) — толщина стенки;
- \(t \) — толщина полки;
- \(R \) — радиус внутреннего закругления;
- \(r \) — радиус закругления полки;

<table>
<thead>
<tr>
<th>Номер швеллера</th>
<th>5</th>
<th>6,5</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>50</td>
<td>65</td>
<td>80</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>7</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td>46</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>4,4</td>
<td>4,4</td>
<td>4,5</td>
<td>4,5</td>
<td>4,8</td>
</tr>
<tr>
<td>7</td>
<td>7,0</td>
<td>7,2</td>
<td>7,4</td>
<td>7,6</td>
<td>7,8</td>
</tr>
<tr>
<td>7</td>
<td>6,0</td>
<td>6,0</td>
<td>6,0</td>
<td>7,0</td>
<td>7,5</td>
</tr>
<tr>
<td>7</td>
<td>3,5</td>
<td>3,5</td>
<td>3,5</td>
<td>4,0</td>
<td>4,5</td>
</tr>
<tr>
<td>7</td>
<td>6,16</td>
<td>7,51</td>
<td>8,98</td>
<td>10,90</td>
<td>13,30</td>
</tr>
<tr>
<td>7</td>
<td>4,84</td>
<td>5,90</td>
<td>7,05</td>
<td>8,59</td>
<td>10,40</td>
</tr>
</tbody>
</table>

96
Справочная величина для осей

<table>
<thead>
<tr>
<th>(x - x)</th>
<th>(y - y)</th>
<th>(Z_0), см</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_x), см³</td>
<td>(W_x), см³</td>
<td>(i_x), см</td>
</tr>
<tr>
<td>1090,0</td>
<td>121,0</td>
<td>7,24</td>
</tr>
<tr>
<td>1190,0</td>
<td>132,0</td>
<td>7,32</td>
</tr>
<tr>
<td>1520,0</td>
<td>152,0</td>
<td>8,07</td>
</tr>
<tr>
<td>1670,0</td>
<td>167,0</td>
<td>8,15</td>
</tr>
<tr>
<td>2110,0</td>
<td>192,0</td>
<td>8,89</td>
</tr>
<tr>
<td>2330,0</td>
<td>212,0</td>
<td>9,99</td>
</tr>
<tr>
<td>2900,0</td>
<td>242,0</td>
<td>9,73</td>
</tr>
<tr>
<td>3180,0</td>
<td>265,0</td>
<td>9,84</td>
</tr>
<tr>
<td>4160,0</td>
<td>308,0</td>
<td>10,90</td>
</tr>
<tr>
<td>5810,0</td>
<td>387,0</td>
<td>12,00</td>
</tr>
<tr>
<td>7980,0</td>
<td>484,0</td>
<td>13,10</td>
</tr>
<tr>
<td>10820,0</td>
<td>601,0</td>
<td>14,20</td>
</tr>
<tr>
<td>15220,0</td>
<td>761,0</td>
<td>15,70</td>
</tr>
</tbody>
</table>

—72). Швеллеры с параллельными гранями полок

J — момент инерции;
W — момент сопротивления;
i — радиус инерции;
S — статический момент полусечения;
Z_0 — расстояние от оси \(y - y\) до наружной грани стенки

Справочная величина для осей

<table>
<thead>
<tr>
<th>(x - x)</th>
<th>(y - y)</th>
<th>(Z_0), см</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_x), см³</td>
<td>(W_x), см³</td>
<td>(i_x), см</td>
</tr>
<tr>
<td>22,8</td>
<td>9,14</td>
<td>1,92</td>
</tr>
<tr>
<td>48,8</td>
<td>15,00</td>
<td>2,55</td>
</tr>
<tr>
<td>89,8</td>
<td>22,50</td>
<td>3,16</td>
</tr>
<tr>
<td>175,0</td>
<td>34,90</td>
<td>3,99</td>
</tr>
<tr>
<td>305,0</td>
<td>50,80</td>
<td>4,79</td>
</tr>
</tbody>
</table>
Таблица 6. Сталь горячекатаная. Балки двутавровые. Сортамент

<table>
<thead>
<tr>
<th>Номер швеллера</th>
<th>h</th>
<th>b</th>
<th>s</th>
<th>t</th>
<th>R</th>
<th>r</th>
<th>Площадь сечения, см²</th>
<th>Масса 1 м, кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>140</td>
<td>58</td>
<td>4,9</td>
<td>8,1</td>
<td>8,0</td>
<td>4,5</td>
<td>15,60</td>
<td>12,30</td>
</tr>
<tr>
<td>14а</td>
<td>140</td>
<td>62</td>
<td>4,9</td>
<td>8,7</td>
<td>8,0</td>
<td>4,5</td>
<td>17,00</td>
<td>13,30</td>
</tr>
<tr>
<td>16</td>
<td>160</td>
<td>64</td>
<td>5,0</td>
<td>8,4</td>
<td>8,5</td>
<td>5,0</td>
<td>18,10</td>
<td>14,20</td>
</tr>
<tr>
<td>16а</td>
<td>160</td>
<td>68</td>
<td>5,0</td>
<td>9,0</td>
<td>8,5</td>
<td>5,0</td>
<td>19,50</td>
<td>15,30</td>
</tr>
<tr>
<td>18</td>
<td>180</td>
<td>70</td>
<td>5,1</td>
<td>8,7</td>
<td>9,0</td>
<td>5,0</td>
<td>20,70</td>
<td>16,30</td>
</tr>
<tr>
<td>18а</td>
<td>180</td>
<td>74</td>
<td>5,1</td>
<td>9,3</td>
<td>9,0</td>
<td>5,0</td>
<td>22,20</td>
<td>17,40</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
<td>76</td>
<td>5,2</td>
<td>9,0</td>
<td>9,5</td>
<td>5,5</td>
<td>23,40</td>
<td>18,40</td>
</tr>
<tr>
<td>20а</td>
<td>200</td>
<td>80</td>
<td>5,2</td>
<td>9,7</td>
<td>9,5</td>
<td>5,5</td>
<td>25,20</td>
<td>19,80</td>
</tr>
<tr>
<td>22</td>
<td>220</td>
<td>82</td>
<td>5,4</td>
<td>9,5</td>
<td>10,0</td>
<td>6,0</td>
<td>26,70</td>
<td>21,00</td>
</tr>
<tr>
<td>22а</td>
<td>220</td>
<td>87</td>
<td>5,4</td>
<td>10,2</td>
<td>10,0</td>
<td>6,0</td>
<td>28,80</td>
<td>22,60</td>
</tr>
<tr>
<td>24</td>
<td>240</td>
<td>90</td>
<td>5,6</td>
<td>10,0</td>
<td>10,5</td>
<td>6,0</td>
<td>30,60</td>
<td>24,00</td>
</tr>
<tr>
<td>24а</td>
<td>240</td>
<td>95</td>
<td>5,6</td>
<td>10,7</td>
<td>10,5</td>
<td>6,0</td>
<td>32,90</td>
<td>25,80</td>
</tr>
<tr>
<td>27</td>
<td>270</td>
<td>95</td>
<td>6,0</td>
<td>10,5</td>
<td>11,0</td>
<td>6,5</td>
<td>33,20</td>
<td>27,70</td>
</tr>
<tr>
<td>30</td>
<td>300</td>
<td>100</td>
<td>6,5</td>
<td>11,0</td>
<td>12,0</td>
<td>7,0</td>
<td>40,50</td>
<td>31,80</td>
</tr>
<tr>
<td>33</td>
<td>330</td>
<td>105</td>
<td>7,0</td>
<td>11,7</td>
<td>13,0</td>
<td>7,5</td>
<td>46,50</td>
<td>36,50</td>
</tr>
<tr>
<td>36</td>
<td>360</td>
<td>110</td>
<td>7,5</td>
<td>12,6</td>
<td>14,0</td>
<td>8,5</td>
<td>53,40</td>
<td>41,90</td>
</tr>
<tr>
<td>40</td>
<td>400</td>
<td>115</td>
<td>8,0</td>
<td>13,5</td>
<td>15,0</td>
<td>9,0</td>
<td>61,50</td>
<td>48,30</td>
</tr>
</tbody>
</table>

h — высота балки;
b — ширина полки;
s — толщина стенки;
t — средняя толщина полки;
R — радиус внутреннего закругления;

Таблица 7. Сталь горячекатаная. Балки двутавровые. Сортамент

<table>
<thead>
<tr>
<th>Номер балки</th>
<th>h</th>
<th>b</th>
<th>s</th>
<th>t</th>
<th>R</th>
<th>r</th>
<th>Площадь сечения, см²</th>
<th>Масса 1 м, кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100</td>
<td>55</td>
<td>4,5</td>
<td>7,2</td>
<td>7,0</td>
<td>2,5</td>
<td>12,0</td>
<td>9,46</td>
</tr>
<tr>
<td>12</td>
<td>120</td>
<td>64</td>
<td>4,8</td>
<td>7,3</td>
<td>7,5</td>
<td>3,0</td>
<td>14,7</td>
<td>11,50</td>
</tr>
<tr>
<td>14</td>
<td>140</td>
<td>73</td>
<td>4,9</td>
<td>7,5</td>
<td>8,0</td>
<td>3,0</td>
<td>17,4</td>
<td>13,70</td>
</tr>
<tr>
<td>16</td>
<td>160</td>
<td>81</td>
<td>5,0</td>
<td>7,8</td>
<td>8,5</td>
<td>3,5</td>
<td>20,2</td>
<td>15,90</td>
</tr>
<tr>
<td>18</td>
<td>180</td>
<td>90</td>
<td>5,1</td>
<td>8,1</td>
<td>9,0</td>
<td>3,5</td>
<td>23,4</td>
<td>18,40</td>
</tr>
<tr>
<td>18а</td>
<td>180</td>
<td>100</td>
<td>5,1</td>
<td>8,3</td>
<td>9,0</td>
<td>3,5</td>
<td>25,4</td>
<td>19,90</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
<td>100</td>
<td>5,2</td>
<td>8,4</td>
<td>9,5</td>
<td>4,0</td>
<td>26,8</td>
<td>21,00</td>
</tr>
</tbody>
</table>
Справочная величина для осей

<table>
<thead>
<tr>
<th>(x - x)</th>
<th>(y - y)</th>
<th>(z_0, \text{ см})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_x, \text{ см}^4)</td>
<td>(W_x, \text{ см}^4)</td>
<td>(i_x, \text{ см})</td>
</tr>
<tr>
<td>493,0</td>
<td>70,40</td>
<td>5,61</td>
</tr>
<tr>
<td>547,0</td>
<td>78,20</td>
<td>5,68</td>
</tr>
<tr>
<td>750,0</td>
<td>93,80</td>
<td>6,44</td>
</tr>
<tr>
<td>827,0</td>
<td>103,00</td>
<td>6,51</td>
</tr>
<tr>
<td>1090,0</td>
<td>121,00</td>
<td>7,26</td>
</tr>
<tr>
<td>1200,0</td>
<td>133,00</td>
<td>7,34</td>
</tr>
<tr>
<td>1530,0</td>
<td>153,00</td>
<td>8,08</td>
</tr>
<tr>
<td>1680,0</td>
<td>168,00</td>
<td>8,17</td>
</tr>
<tr>
<td>2120,0</td>
<td>193,00</td>
<td>8,90</td>
</tr>
<tr>
<td>2340,0</td>
<td>212,00</td>
<td>9,01</td>
</tr>
<tr>
<td>2910,0</td>
<td>243,00</td>
<td>9,75</td>
</tr>
<tr>
<td>3200,0</td>
<td>266,00</td>
<td>9,86</td>
</tr>
<tr>
<td>4180,0</td>
<td>319,00</td>
<td>10,90</td>
</tr>
<tr>
<td>5830,0</td>
<td>389,00</td>
<td>12,00</td>
</tr>
<tr>
<td>8010,0</td>
<td>486,00</td>
<td>13,10</td>
</tr>
<tr>
<td>10850,0</td>
<td>603,00</td>
<td>14,30</td>
</tr>
<tr>
<td>15260,0</td>
<td>763,00</td>
<td>15,80</td>
</tr>
</tbody>
</table>

(ГОСТ 8239—72)

\(r \) — радиус закругления полки;
\(J \) — момент инерции;
\(W \) — момент сопротивления;
\(S \) — статический момент полусечения;
\(i \) — радиус инерции

Справочные величины для осей

<table>
<thead>
<tr>
<th>(x - x)</th>
<th>(y - y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_x, \text{ см}^4)</td>
<td>(W_x, \text{ см}^4)</td>
</tr>
<tr>
<td>198</td>
<td>39,7</td>
</tr>
<tr>
<td>350</td>
<td>58,4</td>
</tr>
<tr>
<td>572</td>
<td>81,7</td>
</tr>
<tr>
<td>873</td>
<td>109,0</td>
</tr>
<tr>
<td>1290</td>
<td>143,0</td>
</tr>
<tr>
<td>1430</td>
<td>159,0</td>
</tr>
<tr>
<td>1840</td>
<td>184,0</td>
</tr>
<tr>
<td>Номер балки</td>
<td>h</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>мм</td>
</tr>
<tr>
<td>20а</td>
<td>200</td>
</tr>
<tr>
<td>22</td>
<td>220</td>
</tr>
<tr>
<td>22а</td>
<td>220</td>
</tr>
<tr>
<td>24</td>
<td>240</td>
</tr>
<tr>
<td>24а</td>
<td>240</td>
</tr>
<tr>
<td>27</td>
<td>270</td>
</tr>
<tr>
<td>27а</td>
<td>270</td>
</tr>
<tr>
<td>30</td>
<td>300</td>
</tr>
<tr>
<td>30а</td>
<td>300</td>
</tr>
<tr>
<td>33</td>
<td>330</td>
</tr>
<tr>
<td>36</td>
<td>360</td>
</tr>
<tr>
<td>40</td>
<td>400</td>
</tr>
<tr>
<td>45</td>
<td>450</td>
</tr>
<tr>
<td>50</td>
<td>500</td>
</tr>
<tr>
<td>55</td>
<td>550</td>
</tr>
<tr>
<td>60</td>
<td>600</td>
</tr>
<tr>
<td>J_x, см4</td>
<td>W_x, см3</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>2030</td>
<td>203,0</td>
</tr>
<tr>
<td>2550</td>
<td>232,0</td>
</tr>
<tr>
<td>2790</td>
<td>254,0</td>
</tr>
<tr>
<td>3460</td>
<td>269,0</td>
</tr>
<tr>
<td>3880</td>
<td>317,0</td>
</tr>
<tr>
<td>5010</td>
<td>371,0</td>
</tr>
<tr>
<td>5500</td>
<td>407,0</td>
</tr>
<tr>
<td>7080</td>
<td>472,0</td>
</tr>
<tr>
<td>7780</td>
<td>518,0</td>
</tr>
<tr>
<td>9840</td>
<td>597,0</td>
</tr>
<tr>
<td>13 380</td>
<td>743,0</td>
</tr>
<tr>
<td>19 062</td>
<td>953,0</td>
</tr>
<tr>
<td>27 696</td>
<td>1231,0</td>
</tr>
<tr>
<td>39 727</td>
<td>1589,0</td>
</tr>
<tr>
<td>55 962</td>
<td>2035,0</td>
</tr>
<tr>
<td>76 806</td>
<td>2560,0</td>
</tr>
</tbody>
</table>
Глава 3

ВНЕШНИЕ И ВНУТРЕННИЕ СИЛЫ.
МЕТОД СЕЧЕНИЯ. ЭПЮРЫ ВНУТРЕННИХ СИЛ.
НАПРЯЖЕНИЯ В СЕЧЕНИИ

3.4. Классификация внешних сил

Внешними силами, или нагрузками, называются силы взаимодействия рассматриваемого элемента конструкции со связанными с ним телами. Если внешние силы являются результатом непосредственного, контактного взаимодействия данного тела с другими телами, то они приложены только к точкам поверхности тела в месте контакта и называются поверхностными силами. Поверхностные силы могут быть

непрерывно распределены по всей поверхности тела или ее части. Величина нагрузки, приходящаяся на единицу площади, называется интенсивностью нагрузки, обозначается обычно буквой \(p \) (рис. 26, а) и имеет размерность \(\text{Н/м}^2 \), \(\text{kН/м}^2 \), \(\text{МН/м}^2 \) (ГОСТ 8 417—81). Допускается применение обозначения \(\text{Па} \) (паскаль), \(\text{kПа} \), \(\text{МПа} \); 1Па=1 Н/м\(^2\).

Поверхностная нагрузка, приведенная к главной плоскости (рис. 26, б), т. е. нагрузка, распределенная по линии, называется погонной нагрузкой, обозначается обычно буквой \(q \) и имеет размерность \(\text{Н/м} \), \(\text{kН/м} \), \(\text{МН/м} \). Изменение \(q \) по длине обычно показывают в виде эпюры (графика) \(q \).

В случае равномерно распределенной нагрузки (рис 26, а) эпюра \(q \) прямоугольная (рис. 26, б). При действии гидростатического давления эпюра \(q \) треугольная (рис. 26, в).

Равнодействующая распределенной нагрузки численно равна площади ее эпюры и приложена в ее центре тяжести. Если нагрузка распределена на небольшой части поверхности тела, то ее всегда заменяют равнодействующей, называемой сосредоточенной силой \(P \) (Н, кН).

Встречаются нагрузки, которые могут быть представлены в виде сосредоточенного момента (пары). Моменты \(M \) (Н·м или кН·м) обозначают обычно одним из двух способов (рис. 27, а, б), или в виде вектора, перпендикулярного к плоскости действия пары. В отличие от вектора силы вектор момента изображают в виде двух стрелок или волнистой линией (рис. 27, в, г). Вектор момента обычно принято считать правовинтовым.

Силы, не являющиеся результатом контакта двух тел, а приложенные к каждой точке объема занятого тела (собственный вес, силы инерции), называются объемными или массовыми силами.

102
В зависимости от характера приложения сил во времени различают нагрузки статические и динамические. Нагрузка считается статической, если она сравнительно медленно и плавно (хотя бы в течение нескольких секунд) возрастает от нуля до своего конечного значения, а затем остается неизменной. При этом можно пренебречь ускорениями деформируемых масс, а следовательно, и силами инерции.

Динамические нагрузки сопровождаются значительными ускорениями как деформируемого тела, так и взаимодействующих с ним тел. Возникающими при этом силах инерции пренебречь нельзя. Динамические нагрузки делятся на мгновенно приложенные, ударные и повторно-переменные.

Мгновенно приложенная нагрузка возрастает от нуля до максимума в течение долей секунды. Такие нагрузки возникают, например, при выбивке свай с помощью копра, в элементах кузнецкого молота.

Повторно-переменная нагрузка характерна своей периодичностью. Такие нагрузки испытывают при работе штоки, вальные, оси железнодорожных вагонов, колеблющиеся элементы конструкций и т. д.

3.2. Внутренние силы. Метод сечений.

Эпюры внутренних сил

Между соседними частицами любого тела (кристаллами, молекулами, атомами) всегда имеются определенные силы взаимодействия, или внутренние силы, которые стремятся сохранить тело как единое целое, противодействуя всему, что может изменить взаимное расположение частиц, т. е. деформировать тело.

Внешние силы, наоборот, всегда стремятся вызвать деформацию тела.

Величина внутренних сил, действующих между двумя каким-либо частицами тела, в нагруженном и ненагруженном теле будет различной.

В сопротивлении материалов не принимаются во внимание внутренние силы, действующие в ненагруженном теле, а рассматриваются только те дополнительные внутренние силы, которые носятся при нагружении тела. Эти дополнительные внутренние силы взаимодействия, возникающие в результате нагружения, часто называют усилиями.

Для выявления внутренних усилий, возникающих в теле под нагрузкой, в сопротивлении материалов пользуются методом сечений.

Смысл этого метода состоит в том, что нагруженное тело (рис. 28, а) мысленно рассекают некоторой плоскостью на две части A и B. Для того чтобы каждая из таких частей находилась в равновесии под
действием приложенных к ней внешних нагрузок, необходимо действие осевой части заменить некоторой системой внутренних сил в сечении. Эти силы являются силами взаимодействия частей тела А и В. Внутренние силы, действующие в сечении со стороны части А, в соответствии с третьим законом Ньютона, равны по величине и противоположны по направлению внутренним силам, действующим в сечении со стороны части В (рис. 28, б).

Как всякую систему сил, внутренние силы, распределенные по сечению, можно привести к одной точке (например, к центру тяжести сечения), в результате чего на каждой стороне сечения получим главный вектор и главный момент внутренних сил в сечении (рис. 28, в). Применительно к стержню последний обычно рассекают плоскостью, перпендикулярной к оси (рис. 29, а). Если главный вектор и главный момент спроектировать на ось стержня и и главные центральные оси сечения u и x, то на каждой стороне сечения получим шесть внутренних силовых факторов (рис. 29, б): три силы (N, Q_y, Q_x) и три момента (M_z, M_y, M_x). Эти величины называются усилиями и моментами в сечении стержня.

Как видно из рисунка, сила N вызывает продольную деформацию стержня (растяжение или сжатие); силы Q_y и Q_x — свдвиг сторон сечения соответственно в направлении y и x; момент M_z вызывает кручение стержня; моменты M_y и M_x — изгиб стержня в главных плоскостях (xz и yz). Поэтому для усилий и моментов в сечении приняты следующие названия: N — продольная, или осевая (направленная вдоль оси) сила; Q_y и Q_x — поперечные (реже перерезывающие) силы; M_z = M_кр — крутящий момент; M_y и M_x — изгибающие моменты.

Можно дать следующие определения перечисленным компонентам внутренних усилий: продольная сила N представляет собой сумму проекций всех внутренних сил, действующих в сечении, на нормаль к сечению (или на ось стержня); поперечные силы Q_y и Q_x — это суммы проекций всех внутренних сил в сечении на главные центральные оси сечения u и x соответственно; крутящий момент M_z (или M_кр) — это сумма моментов всех внутренних сил в сечении относитель-
но оси стержня; изгибающие моменты M_y и M_x — это суммы моментов всех внутренних сил в сечении относительно главных центральных осей инерции сечения y и x соответственно.

Для практического вычисления усилий и моментов в сечении следует иметь в виду, что N численно равно алгебраической сумме проекций всех внешних сил, действующих на одну из частей (левую или правую) рассеченного стержня, на ось стержня (или на нормаль к сечению); Q_y — то же на ось y; Q_x — то же на ось x; M_{kr} численно равно алгебраической сумме моментов всех внешних сил, действующих на одну из частей (левую или правую) относительно оси стержня; M_y — то же относительно оси y; M_x — то же относительно оси x.

Таким образом, метод сечений позволяет найти все усилия и моменты в любом сечении стержня при действии любой нагрузки. Для этого необходимо сделать следующее.

1. Найти главные центральные оси поперечного сечения стержня.

Рис. 30

2. Разделить мысленно стержень в том поперечном сечении, где нужно найти усилия и моменты.

3. Вычислить усилия N, Q_y, Q_x и моменты M_{kr}, M_y, M_x как алгебраические суммы проекций и моментов внешних сил, действующих на одну из частей (левую или правую по отношению к сечению) рассеченного стержня, обычно на ту, где проекции и моменты вычисляются проще.

Усилия и моменты в разных сечениях одного и того же стержня в общем случае различны. Графики (диаграммы), показывающие, как изменяются усилия и моменты при переходе от сечения к сечению, называются эпюрами усилий и моментов.

При построении эпюр рекомендуется пользоваться следующими правилами.

1. Ось (базу), на которой строится эпюра, всегда выбирают так, чтобы она была параллельна оси стержня (или совпадала с ней).

2. Ординаты эпюры, выражающие в выбранном масштабе значение усилия или момента, откладывают от базы эпюры по перпендикуляру.

3. Эпюры принято штриховать линиями, перпендикулярными к базе. В зависимости от расположения базы (горизонтальное или вертикальное) положительные значения усилий или моментов откладывают вверх или слева от базы, отрицательные — вниз или справа.

4. На эпюрах проставляют числа, показывающие величины характерных ординат, а в поле эпюры в кружочке ставят знак усилия.

При построении эпюр продольных сил и крутящих моментов рекомендуется пользоваться следующими правилами в отношении их знаков.
1. Продольная сила N считается положительной, если она вызывает растяжение, и отрицательной, если вызывает сжатие.

2. Крутящий момент $M_\text{кр}$ считается положительным, если при наблюдении с торца вдоль оси рассматриваемой части он действует по часовой стрелке (рис 30).

Рис. 32

Рис. 33

Примеры построения эпюр продольных сил показаны на рис. 31, 32, 33 ($\alpha_1 = \arctg \gamma F_1; \alpha_2 = \arctg \gamma F_2; \gamma$ — объемная масса) Эпора крутящих моментов для трансмиссионного вала, схема которого приведена на рис. 34, а, показана на рис. 34, б. На рис. 34, в показано направление максимального положительного момента в сечении рассматриваемого вала.

Прежде чем перейти к построению эпюр поперечных сил и изгибающих моментов при изгибе балок — к разделу сопротивления материалов, имеющему весьма существенное значение для понимания поведения элементов конструкций под нагрузкой, напомним некоторые исходные понятия, связанные с балками.

3.3. Балки и их опоры

Балками называются прямолинейные стержни, работающие на изгиб. Плоским изгибо балка называется такой изгиб балки, при котором все заданные силы лежат в одной (силовой) плоскости (рис. 35, а), причем эта плоскость совпадает с одной из главных плоскостей балки.

При расчете балку принято заменять ее осью (рис. 35, б), все нагрузки должны быть приведены к этой оси, а силовая плоскость будет совпадать с плоскостью чертежа.

Все многообразие существующих опорных устройств балок схематизируется в виде следующих трех основных типов опор.

Шарнирно-подвижная опора (рис. 36, а), в которой может возникать только одна составляющая реакция R_A, направленная вдоль опорного стержня.

106
Шарнирно-неподвижная опора (рис. 36, б), в которой могут возникать две составляющие реакции — вертикальная R_A и горизонтальная H_A.

Зашеление (иногда жестков защемление или заделка), где могут быть три составляющие — вертикальная R_A и горизонтальная H_A реакции и опорный момент M_A (рис. 36, в).

![Diagram](image)

Рис. 35

![Diagram](image)

Рис. 36

![Diagram](image)

Рис. 37

![Diagram](image)

Рис. 38

Все реакции и моменты считаются приложенными в точке A — центре тяжести опорного сечения.

Балка, показанная на рис. 37, а, называется простой или однопролетной, или двухопорной, а расстояние l между опорами — пролетом.

Консолью называется балка, защеленная одним концом и не имеющая других опор (рис. 35, б), или часть балки, свешивающаяся за опоры (часть BC на рис. 37, б и части AC и BD на рис. 37, в). Балка, имеющая свешивающиеся части, называют консольными.

Балка называется статически определимой, если число неизвестных опорных реакций не превышает трех; в противном случае балка
статически неопределенна. Балки, изображенные на рис 35 и 37, статически определены, а балка, изображенная на рис 38, a, называется неразрезной и является статически неопределенной, поскольку имеет пять неизвестных опорных реакций. три — в опоре A и по одной — в опорах B и C. Поставив, например, в любых двух сечениях первого пролета балки шарниры (точки D и E на рис 38,岩石), получим статически определимую шарнирную балку, ибо каждый такой промежуточный шарнир к трем основным уравнениям статики прибавляет одно дополнительное уравнение, поскольку сумма моментов относительно центра шарнира от всех сил, расположенных по одну сторону от него, равна нулю.

3.4. Вычисление реакций

Для того чтобы можно было приступить к построению эпюр внутренних усилий, необходимо знать все внешние нагрузки, включая реакции, которые предварительно должны быть определены.

При определении реакций рекомендуется придерживаться следующей последовательности, которую мы проиллюстрируем на примере простой балки (рис. 37, a).

1. Обозначим опоры буквами A и B, три неизвестные реакции R_A, R_B и H_A определим из следующих уравнений равновесия:

сумма проекций всех сил на ось балки равна нулю:

$$\sum Z = 0,$$

откуда находим H_A;

сумма моментов всех сил относительно опорного шарнира A равна нулю:

$$\sum M_A = 0,$$

откуда находим R_B;

сумма моментов всех сил относительно опорного шарнира B равна нулю:

$$\sum M_B = 0,$$

откуда находим R_A.

2. Для контроля можно использовать условие равенства нулю суммы проекций всех сил на ось y:

$$\sum Y = 0$$

или условие равенства нулю суммы моментов относительно какой-либо точки C, отличной от A и B:

$$\sum M_C = 0.$$

3. Если в результате вычисления какая-либо реакция окажется отрицательной, то на рисунке необходимо изменить ее направление на обратное по сравнению с направлением, принятым в начале расчета.

4. Если нагрузки, действующие на балку, перпендикулярны к оси балки, то $H_A = 0$ и уравнением $\sum Z = 0$ не пользуются.
3.5. Усилия и моменты в сечениях балки.
Построение эпюр Q и M

При плоском изгибе вся нагрузка расположена в главной плоскости стержня xy (рис. 35, a), поэтому она не дает проекций на ось x и моментов относительно осей z и y. Следовательно, в любом сечении балки

$$Q_x = M_z = M_{kr} = M_y = 0,$$

и отличным от нуля будут три величины — N, Q_y и M_x, которые принято обозначать N, Q и M.

![Diagram of forces and moments](image)

Рис. 39

Эти усилия действуют в сечениях рам и кривых стержней. В балках же при нагрузке, перпендикулярной к оси, продольная сила $N = 0$. Поэтому в балках приходится иметь дело с поперечной силой Q и изгибающим моментом M.

![Diagram of forces and moments](image)

Рис. 40

Рис. 41

При построении эпюр поперечных сил Q и изгибающих моментов M принимают следующие правила знаков.

Поперечная сила Q в сечении положительна, если ее вектор стремится вращать части рассеченной балки по часовой стрелке (рис. 39, a).

Изгибающий момент M в сечении положителен, если он вызывает сжатие в верхних волокнах балки (рис. 39, a).

Очевидно, поперечные силы и моменты, показанные на рис. 39, b, имеют отрицательные знаки. Эпюры поперечных сил и изгибающих моментов...
моментов для балок, нагруженных по различным типичным схемам, приведены на рис. 40—44. Штриховкой линией условно показано положение балки в деформированном состоянии.

Как видно, с учетом правила построения эпюр и указанного правила знаков эпюр изгибающих моментов строят со стороны сжатых волокон балки. Иногда (при расчетах элементов строительных конструкций)

Эпюры изгибающих моментов строят со стороны растянутых волокон.

Для консоли, нагруженной сосредоточенной силой \(P \) на свободном конце (рис. 40), поперечная сила и изгибающий момент в произвольном сечении с абсциссой \(z \) определены соответственно по формулам

\[
Q (z) = P; \quad M (z) = -PKB = -P (l - z).
\]

Для двухопорной балки, нагруженной равномерно распределенной по длине нагрузкой интенсивностью \(q \) (рис. 41), реакции опор \(R_A = R_B = ql/2 \), поперечная сила и изгибающий момент определены по формулам

\[
Q (z) = R_A - qAK = q \left(\frac{1}{2} - z \right);
\]

\[
M (z) = R_A (z) - qz \frac{z}{2} = \frac{q l^3}{2} \left(\frac{z}{l} - \frac{z^2}{l^2} \right).
\]

Для двухопорной балки, нагруженной в пролете сосредоточенной силой \(P \) (рис. 42), реакции опор \(R_A = \frac{Pb}{l} \); \(R_B = \frac{Pa}{l} \), поперечная сила и изгибающий момент определены на участке \(AC (0 < z < a) \) по формулам

\[
Q (z) = R_A = \frac{Pb}{l} ; \quad M (z) = R_A AK_1 = \frac{Pb}{l} z
\]

и на участке \(CB (a < z < l) \) по формулам

\[
Q (z) = -R_B = -\frac{Pa}{l} ; \quad M (z) = R_B K_2 = \frac{Pa}{l} (l - z).
\]
Для двухопорной балки, нагруженной в пролете сосредоточенным моментом M_1 (рис. 43), реакции опор $R_A = R_B = M_1/l$, поперечная сила и изгибающий момент определены на участке AC ($0 < z < a$) по формулам

$$Q(z) = -R_A = -\frac{M_1}{l}; \quad M(z) = -R_AAK_1 = -\frac{M_1}{l}z$$

и на участке CB ($a < z < l$) по формулам

$$Q(z) = -R_B = -\frac{M_1}{l}; \quad M(z) = R_BK_2B = \frac{M_1}{l} (l - z).$$

В частном случае, когда момент приложен в опорном сечении, $Q(z)$ и $M(z)$ определяют по формулам для одного из рассмотренных участков. Например, если момент приложен в сечении A (рис. 44), то $Q(z)$ и $M(z)$ определяют по формулам для второго участка при $a = 0$.

3.6. Дифференциальные зависимости при изгибе балок.
Некоторые особенности эпюр Q и M

Рассмотрим балку с произвольной нагрузкой (рис. 45, a). Междун
интенсивностью q распределенной нагрузки, поперечной силой в сечении Q и изгибающим моментом M, действующими в некотором сечении, существуют следующие дифференциальные зависимости, которые легко могут быть выведены из условий равновесия выделенного из балки элемента длиной dz (рис. 45, b):

$$\frac{dQ}{dz} = q; \quad (3.1)$$

$$\frac{dM}{dz} = Q; \quad (3.2)$$

$$\frac{d^2M}{dz^2} = q. \quad (3.3)$$

Рис. 45

В тех случаях, когда на рассматриваемом участке действует равномерно распределенный момент интенсивностью m (Н · м/м) (рис. 45, в), формула (3.2) принимает вид

$$\frac{dM}{dz} = Q + m. \quad (3.4)$$

Соотношения (3.1) — (3.4) называются дифференциальными зависимостями при изгибе. Они позволяют установить некоторые особенности эпюр поперечных сил и изгибающих моментов.
1. На тех участках, где нет распределенной нагрузки, эпюра Q ограничена прямыми, параллельными базе, а эпюра M, в общем случае, — наклонными прямыми (рис. 46).

2. На тех участках, где к балке приложена равномерно распределенная нагрузка, эпюра Q ограничена наклонными прямыми, а эпюра M — квадратичными параболами (рис. 47). При построении эпюры M на сжатых волокнах выпуклость параболы обращена в сторону, противоположную направлению действия нагрузки q (рис. 48, a, b).

3. В тех сечениях, где $Q = 0$, касательная к эпюре M параллельна оси эпюры (рис. 47, 48).

4. На участках, где $Q > 0$, M возрастает, т. е. слева направо положительные ординаты эпюры M увеличиваются, отрицательные — уменьшаются (участки AC и BE на рис. 46 и 47); на тех же участках, где $Q < 0$, M убывает (участки CD и DB на рис. 46 и 47).

5. В тех сечениях, где к балке приложены сосредоточенные силы:

a) на эпюре Q будут скачки на величину q в направлении приложенных сил (на рис. 46 и 47 эти скачки отмечены жирными линиями со стрелками);

б) на эпюре M будут переломы (рис. 49), причем острие перелома направлено против действия силы.

6. В тех сечениях, где к балке приложены сосредоточенные моменты, на эпюрах M будут скачки на величину этих моментов, на эпюрах Q никаких изменений не будет.
7. Если на конце консоли или в концевой опоре приложен сосредоточенный момент, то в этом сечении изгибающий момент равен внешнему моменту (сечения C и B на рис. 50).

8. Эпюра Q представляет собой диаграмму производной от эпюры M. Значит, ординаты Q пропорциональны тангенсу угла наклона касательной к эпюре M (на рис. 43 $\alpha = \beta = \arctg M/1$).

Эпюры поперечных сил и изгибающих моментов для балок с различным закреплением концов приведены в табл. 7.

3.7. Построение эпюр для статически определимых рам

Рамами называются системы, состоящие из стержней, соединенных жесткими узлами. Вертикальные стержни рамы принято называть стойками, горизонтальные — ригелями. Жесткость узлов устраняет возможность взаимного поворота скрепленных в узле стержней, т. е. в узловой точке углы между их осями при деформации остаются неизменимыми.

Рис. 51

Ось рамы представляет собой ломаную линию, однако каждый участок ее можно рассматривать как балку. Поэтому построение эпюр для рамы сводится к построению эпюр для каждого входящего в нее стержня как для балки. Однако в отличие от обыкновенных балок в сечениях стержней рамы, кроме изгибающих моментов M и поперечных сил Q, обычно действуют еще и продольные силы N. Поэтому для рам необходимо строить эпюры M, Q и N.

Для N и Q сохраняются ранее принятые правила знаков: $N > 0$, если продольная сила вызывает растяжение; $Q > 0$, если вектор силы вращает части рассеченной рамы по часовой стрелке.

Для изгибающих моментов специальных правил знаков не устанавливает, а при составлении выражений для M принимают по собственному усмотрению какой-либо момент положительным.

При построении эпюр положительные ординаты N и Q откладывают с внешней стороны, а отрицательные — внутрь контура рамы. Эпюры M для рам условным строить на сжатых волокнах.

При расчетах рам строительных конструкций эпюры изгибающих моментов строят со стороны растянутых волокон. Построению эпюр должно предшествовать определение неизвестных реакций.

Пример построения эпюр N, Q и M для рамы-консоли, нагруженной по схеме, приведенной на рис. 51, a, показан на рис. 51, b, в, г.

Значения внутренних усилий N, Q и M определены для соответствующих участков (рис. 51, a) по формулам, приведенным ниже.
Участок $AB \left(0 \leq z \leq \frac{l}{2}\right)$

$N(z) = 0; \quad Q(z) = -P; \quad M(z) = Pz.$

Участок $BC \left(0 \leq z \leq \frac{l}{2}\right)$

$N(z) = P; \quad Q(z) = 0; \quad M(z) = P \frac{l}{2}.$

Участок $CD \left(0 \leq z \leq \frac{l}{2}\right)$

$N(z) = P; \quad Q(z) = 2P; \quad M(z) = P \frac{l}{2} - 2Pz = P \left(\frac{l}{2} - 2z\right).$

Участок $DE \left(0 \leq z \leq \frac{2}{3}l\right)$

$N(z) = -2P; \quad Q(z) = P; \quad M(z) = 2P \frac{l}{2} - P \left(\frac{l}{2} - z\right) = P \left(\frac{l}{2} + z\right).$

Участок $EK \left(\frac{2}{3}l \leq z \leq l\right)$

$N(z) = -2P; \quad Q(z) = P; \quad M(z) = P \left(\frac{l}{2} + z\right) - M = P \left(z - \frac{l}{2}\right).$

3.6. Построение эпюр для кривых стержней

В поперечных сечениях плоского кривого бруса могут действовать, как и в рамках, три силовых фактора: N, Q и M. В случае, когда ось кривого стержня очерчена по дуге окружности, положение любого сечения удобно определять с помощью полярной системы координат, и тогда продольная и поперечная силы и изгибающий момент будут функциями угла $\phi = N(\phi), Q(\phi)$ и $M(\phi)$.

![Diagram](image)

Рис. 52

Для N и Q остаются ранее принятые правила знаков; эпюры M, как и в случае рам, строим со стороны сжатых волокон.

Пример построения эпюр $N(\phi), Q(\phi)$ и $M(\phi)$ для кривого бруса-консоли, нагруженного по схеме, приведенной на рис. 52, a, при $P_1 = 2P_2 = P$, когда

$N(\phi) = (\cos \phi + 0,5 \sin \phi) P;
Q(\phi) = (\sin \phi - 0,5 \cos \phi) P;
M(\phi) = (1 - \cos \phi - 0,5 \sin \phi) PR,$

показан на рис. 52, b, c, d.

114
Если на кривой стержень действует равномерно распределенная нагрузка, при вычислении N, Q и M полезно использовать следующую теорему: равнодействующая равномерно распределенной нагрузки, приложенной к дуге любого очерчения, равна произведению интенсивности нагрузки на длину хорды, стягивающей эту дугу, перпендикулярна этой хорде и проходит через ее середину.

Эпюры $N(\phi)$, $Q(\phi)$ и $M(\phi)$ для кривого стержня, нагруженного по схеме, приведенной на рис. 53, а, показаны на рис. 53, б, в, г.

![Diagram](image)

Рис. 53

На участке $0 \leq \phi \leq \alpha$ эпюры $N(\phi)$, $Q(\phi)$ и $M(\phi)$ определялись соответственно по формулам

\begin{align*}
N(\phi) &= -P_1 \sin \frac{\phi}{2} = -2qR \sin^2 \frac{\phi}{2} = -qR (1 - \cos \phi); \\
Q(\phi) &= P_1 \cos \frac{\phi}{2} = 2qR \sin \frac{\phi}{2} \cos \frac{\phi}{2} = qR \sin \phi; \\
M(\phi) &= P_1 \frac{AD_1}{2} = 2qR^2 \sin \frac{\phi}{2} = qR^2 (1 - \cos \phi),
\end{align*}

где равнодействующая распределенной нагрузки q на дуге, соответствующей углу ϕ, $P_1 = 2qR \sin \frac{\phi}{2}$.

На участке $\alpha \leq \phi \leq \beta$

\begin{align*}
N(\phi) &= -P_2 \sin \left(\phi - \frac{\alpha}{2}\right) = -2qR \sin \frac{\alpha}{2} \sin \left(\phi - \frac{\alpha}{2}\right); \\
Q(\phi) &= P_2 \cos \left(\phi - \frac{\alpha}{2}\right) = 2qR \sin \frac{\alpha}{2} \cos \left(\phi - \frac{\alpha}{2}\right); \\
M(\phi) &= P_2 KD_2 = P_2 R \cos \left(\phi - \frac{\alpha}{2}\right) = 2qR^2 \sin \frac{\alpha}{2} \sin \left(\phi - \frac{\alpha}{2}\right),
\end{align*}

где равнодействующая распределенной нагрузки q на дуге AB, соответствующей углу α, $P_2 = 2qR \sin \frac{\alpha}{2}$.

115
Таблица 7. Опорные реакции, поперечные силы и изгибающие моменты в статически определенных балках

<table>
<thead>
<tr>
<th>Схема нагружения балки, эпюры Q и M</th>
<th>Опорные реакции</th>
<th>Поперечная сила Q</th>
<th>Изгибающий момент M</th>
<th>Координата опасного сечения z и максимальный момент M_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Diagram 1]</td>
<td>R_B = 0</td>
<td>0 < z < l</td>
<td>Q = 0</td>
<td>M = -M_0</td>
</tr>
<tr>
<td></td>
<td>M_B = M_0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Diagram 2]</td>
<td>R_B = 0</td>
<td>0 < z < l</td>
<td>Q = 0</td>
<td>a < z < a + b</td>
</tr>
<tr>
<td></td>
<td>M_B = M_1 + M_2</td>
<td></td>
<td></td>
<td>M = -M_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Diagram 3]</td>
<td>R_B = 0</td>
<td>0 < z < l</td>
<td>Q = 0</td>
<td>a < z < a + b</td>
</tr>
<tr>
<td></td>
<td>M_B = M_1 - M_2</td>
<td></td>
<td></td>
<td>M = -M_1</td>
</tr>
</tbody>
</table>

<p>| Случай 1 | М_{1} > М_{2} | a < z < b | M_{max} = -M_{1} |
| Случай 2 | М_{2} > 2М_{1} | a + b < z < l | M_{max} = M_{2} - M_{1} |</p>
<table>
<thead>
<tr>
<th>Region</th>
<th>Condition</th>
<th>Reaction</th>
<th>Moment</th>
<th>Equation</th>
<th>Condition</th>
<th>Reaction</th>
<th>Moment</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < (z) < 1</td>
<td>(R_B = 0)</td>
<td>(Q = 0)</td>
<td>(M = -mz)</td>
<td>(z_0 = l)</td>
<td>(M_{\text{max}} = -ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 < (z) < 1</td>
<td>(R_B = P)</td>
<td>(Q = -P)</td>
<td>(M = -Pz)</td>
<td>(z_0 = l)</td>
<td>(M_{\text{max}} = -P l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a_t < z < a_{t+1})</td>
<td>(R_B = \sum_{i=1}^{n} P_i)</td>
<td>(Q = -\sum_{i=1}^{l} P_i)</td>
<td>(M = -\sum_{i=1}^{l} P_i(z - a_i))</td>
<td>(z_0 = l)</td>
<td>(M_{\text{max}} = -\sum_{i=1}^{n} P_i b_i)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Схема нагружения балки, упкырь q и M</td>
<td>Опорные реакции</td>
<td>Поперечная сила Q</td>
<td>Изгибающий момент M</td>
<td>Координата опасного сечения z₀ и максимальный момент Mₘₐₓ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(R_B = q l)</td>
<td>(0 \leq z \leq l)</td>
<td>(0 \leq z \leq l)</td>
<td>(z₀ = l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(M_B = \frac{q l^2}{2})</td>
<td>(Q = -q z)</td>
<td>(M = -\frac{q z^2}{2})</td>
<td>(M_{max} = -\frac{q l^2}{2})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(R_B = qa)</td>
<td>(0 \leq z \leq a)</td>
<td>(0 \leq z \leq a)</td>
<td>(z₀ = l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(M_B = qa \left(l - \frac{a}{2} \right))</td>
<td>(Q = -q z)</td>
<td>(M = -\frac{q z^2}{2})</td>
<td>(M_{max} = -qa \left(l - \frac{a}{2} \right))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_B)</td>
<td>(M_B)</td>
<td>(q \cdot z \leq l)</td>
<td>(q \cdot z \leq l)</td>
<td>(z_0 = l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{q}{2})</td>
<td>(\frac{q}{6})</td>
<td>(Q = -\frac{Qz^2}{2l})</td>
<td>(M = -\frac{Qz^3}{6l})</td>
<td>(M_{\text{max}} = -\frac{q}{6})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{q}{2})</td>
<td>(\frac{q}{3})</td>
<td>(R_B = \frac{q}{2} \times \left(\frac{z}{l} - \frac{1}{2} \right))</td>
<td>(M = -\frac{q}{2} \left(\frac{z^2}{l^2} - \frac{1}{3} \right))</td>
<td>(z_0 = l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{q}{2})</td>
<td>(\frac{q}{3})</td>
<td>(R_B = \frac{q}{2} \left(1 - \frac{2}{3} \right))</td>
<td>(M = -\frac{q}{6} \left(z - \frac{2}{3} a \right))</td>
<td>(M_{\text{max}} = -\frac{q}{2} \left(l - \frac{2}{3} a \right))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Схема нагружения балки,</td>
<td>Опорные реакции</td>
<td>Поперечная сила (Q)</td>
<td>Изгибающий момент (M)</td>
<td>Координата опасного сечения (z_0) и максимальный момент (M_{\text{max}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0 < z < a)</td>
<td>(Q = - \frac{qa^2}{2} \left(\frac{2}{a} z - \frac{z^2}{a} \right)) (M = - \frac{qa^2}{2} \left(\frac{z^2}{a} - \frac{1}{3} z^3 \right))</td>
<td>(z_0 = l) (M_{\text{max}} = - \frac{qa^2}{2} \left(1 - \frac{a}{3} \right))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(a < z < l)</td>
<td>(Q = - \frac{qa}{2}) (M = - \frac{qa}{2} \left(z - \frac{a}{3} \right))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(z < l)</td>
<td>(Q = - \frac{qa}{2}) (M = - \frac{qa}{2} \left(z - \frac{a}{3} \right))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

		\(0 < z < \frac{l}{2} \)	\(Q = - \frac{ql^2}{4} \left(\frac{1}{4} + \frac{z}{l} - \frac{1}{2} \right) \left[1 - 2 \left(\frac{z}{l} - \frac{1}{2} \right)^2 - \frac{z}{l} + \frac{1}{2} \right] \) \(M = - \frac{ql^2}{4} \left[1 - \frac{1}{3} \right] + \frac{z}{l} - \frac{1}{2} \left(\frac{z}{l} - \frac{1}{2} \right)^2 \)	\(z_0 = l \) \(M_{\text{max}} = - \frac{ql^2}{4} \)			
		\(\frac{l}{2} < z < l \)	\(M = - \frac{ql^2}{3} \left(\frac{z}{l} - \frac{1}{3} \right) + \frac{z}{l} - \frac{1}{2} \left(\frac{z}{l} - \frac{1}{2} \right)^2 \)				
$q_1=\frac{q_1}{2}$	$R_B = \frac{q_1 - q_2}{6}$	$0 \leq z < l$	$Q = -q_2 \times \frac{2l - z^2}{2l}$	$0 \leq z < l$	$M = -\frac{q_1 z^2}{2} - \frac{q_2 - q_3}{6l} \times \frac{z^3}{6}$	$z_0 = l$	$M_{\text{max}} = -\frac{q_1 z^2}{12}$
$q_2=q_2^{\frac{1}{2}}$	$M_B = \frac{q_1 z^2}{12}$						

| $q_2=\frac{q_2}{2}$ | $R_B = \frac{q_1}{3}$ | $0 \leq z < l$ | $Q = -\frac{q_2 z}{3l^2}$ | $0 \leq z < l$ | $M = -\frac{q_2 z^2}{12l^2}$ | $z_0 = l$ | $M_{\text{max}} = -\frac{q_2 z^2}{12}$ |
| $M_B = \frac{q_1 z^2}{4}$ | | | | | | |

| $q_2=\frac{q_2}{2}$ | $R_B = \frac{2}{3} q_1$ | $0 \leq z < l$ | $Q = -q_1 \left(\frac{z^2}{4l^2} - \frac{1}{3} \times \frac{z^3}{l^3} \right)$ | $0 \leq z < l$ | $M = -\frac{q_1 z^2}{3} \left(\frac{z^2}{l^2} - \frac{z^4}{4l^4} \right)$ | $z_0 = l$ | $M_{\text{max}} = -\frac{q_1 z^2}{4}$ |
Продолжение табл. 7

<table>
<thead>
<tr>
<th>Схема нагружения балки, эпюры Q и M</th>
<th>Опорные реакции</th>
<th>Поперечная сила Q</th>
<th>Изгибающий момент M</th>
<th>Координата опасного сечения (z_0) и максимальный момент (M_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q = \frac{4ql}{l^2})</td>
<td>(R_B = \frac{2}{3} ql)</td>
<td>(0 < z < l)</td>
<td>(M = -\frac{ql^2}{3} \left(\frac{2z}{l^2} - \frac{z^2}{l^2} \right))</td>
<td>(z_0 = l)</td>
</tr>
<tr>
<td></td>
<td>(M_B = \frac{ql^2}{3})</td>
<td>(Q = -2ql \left(\frac{z^2}{l^2} - \frac{2}{3} \frac{z^2}{l^2} \right))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_A = R_B = \frac{M_a}{l})</td>
<td>(0 < z < l)</td>
<td>(Q = -\frac{M_a}{l})</td>
<td>(0 < z < l)</td>
<td>(z_0 = 0)</td>
</tr>
<tr>
<td></td>
<td>(M_B = M_0)</td>
<td>(M = \frac{M_0}{l} \left(l - z \right))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_A = R_B =)</td>
<td>(0 < z < l)</td>
<td>(0 < z < l)</td>
<td>(I)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>(\frac{M_1 - M_2}{l})</td>
<td>(Q = -\frac{M_1 - M_2}{l} z)</td>
<td>(M = M_1 - \frac{M_1 - M_2}{l} z)</td>
<td>(z_0 = 0, M_{\text{max}} = M_1)</td>
<td></td>
</tr>
<tr>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td></td>
</tr>
<tr>
<td>(z_0 = l, M_{\text{max}} = M_2)</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(R_A = R_B =)</th>
<th>(0 < z < l)</th>
<th>(0 < z < l)</th>
<th>(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{M_1 + M_2}{l})</td>
<td>(Q = -\frac{M_1 + M_2}{l} z)</td>
<td>(M = M_1 - \frac{M_1 + M_2}{l} z)</td>
<td>(z_0 = 0, M_{\text{max}} = M_1)</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(z_0 = l, M_{\text{max}} = M_2)</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(R_A - R_B =)</th>
<th>(0 < z < a)</th>
<th>(a < \frac{l}{2})</th>
<th>(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{M_0}{l})</td>
<td>(Q = -\frac{M_0}{l} z)</td>
<td>(M = \frac{M_0}{l} \left(\frac{l - a}{l} \right))</td>
<td>(z_0 = a, M_{\text{max}} = M_0 \times \frac{l - a}{l})</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(a > \frac{l}{2})</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(z_0 = a, M_{\text{max}} = -M_0 \times \frac{a}{l})</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Схема нагружения балки, опоры Q и М</td>
<td>Опорные реакции</td>
<td>Поперечная сила Q</td>
<td>Изгибающий момент M</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>Rₐ = Rₜ =</td>
<td>0 < z < l</td>
<td>M = 0 < z < a</td>
</tr>
<tr>
<td></td>
<td>M₁ + M₂ / l</td>
<td>M = M₁ + M₂ / l</td>
<td>Mₘₐₓ = 0 < z < a</td>
</tr>
<tr>
<td></td>
<td>Rₐ = P b / I</td>
<td>0 < z < a</td>
<td>M = P b / l</td>
</tr>
<tr>
<td></td>
<td>Rₜ = P a / I</td>
<td>a < z < l</td>
<td>a < z < l</td>
</tr>
<tr>
<td></td>
<td>Q = P a / I</td>
<td>Q = - P a / I</td>
<td>M = P a / l (l - z)</td>
</tr>
<tr>
<td>Condition</td>
<td>Equation</td>
<td>Condition</td>
<td>Equation</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>$0 \leq z < a$</td>
<td>$R_A = R_B = P$</td>
<td>$0 \leq z < a$</td>
<td>$Q = P$</td>
</tr>
<tr>
<td>$a \leq z < l - a$</td>
<td>$Q = 0$</td>
<td>$a \leq z < l - a$</td>
<td>$M = Pa$</td>
</tr>
<tr>
<td>$l - a \leq z < l$</td>
<td>$Q = -P$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a \leq z < l - a$</td>
<td>$M_{\text{max}} = Pa$</td>
<td>$z_0 = \frac{l}{2}$</td>
<td>$M_{\text{max}} = \frac{ql^2}{8}$</td>
</tr>
</tbody>
</table>

For the case with $c > \frac{b}{2}$:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Equation</th>
<th>Condition</th>
<th>Equation</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \leq z < a$</td>
<td>$R_A = R_B = \frac{ql}{2}$</td>
<td>$0 \leq z < l$</td>
<td>$Q = \frac{ql}{2} \left(\frac{1}{2} - \frac{z}{l} \right)$</td>
<td>$0 \leq z < a$</td>
<td>$M = \frac{ql^2}{2} \left(\frac{z}{l} - \frac{z^3}{3l^2} \right)$</td>
</tr>
<tr>
<td>$a \leq z < a + b$</td>
<td>$Q = \frac{ql}{2} \left(\frac{2a + b}{2l} \right)$</td>
<td>$a + b \leq z < l$</td>
<td>$Q = -\frac{ql}{2} \left(\frac{2a + b}{2l} \right)$</td>
<td>$a + b \leq z < l$</td>
<td>$M = \frac{ql^2}{2l} \left(\frac{z}{l} - \frac{z^3}{3l^2} \right)$</td>
</tr>
<tr>
<td>$a + b \leq z < l$</td>
<td>$Q = -\frac{ql}{2} \left(\frac{2a + b}{2l} \right)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a + b \leq z < l$</td>
<td>$M_{\text{max}} = \frac{ql^2}{8}$</td>
<td>$z_0 = a + \frac{b(2c + b)}{2l}$</td>
<td>$M_{\text{max}} = \frac{ql^2}{8} \times \left[a + \frac{b(2c + b)}{4l} \right]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Схема нагружения балки, эпюры (q) и (M)</td>
<td>Опорные реакции</td>
<td>Поперечная сила (Q)</td>
<td>Изгибающий момент (M)</td>
<td>Координата опасного сечения (z_0) и максимальный момент (M_{\text{max}})</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(R_A = \frac{qa}{l} \left(\frac{a}{2} + \frac{b}{2} \right))</td>
<td>(Q = qa \left(\frac{a}{2l} + \frac{b}{2l} \right) - \frac{z}{a}) (a < z < l)</td>
<td>(M = qa^2 \left(\frac{a}{2l} + \frac{b}{2l} \right) - \frac{z}{a} \left(\frac{a}{2} + \frac{b}{2} \right))</td>
<td>(z_0 = \frac{a}{2} \left(2 - \frac{a}{l} \right) = \frac{a}{l} \left(\frac{a}{2} + \frac{b}{2} \right))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(R_B = \frac{qa^2}{2l})</td>
<td>(Q = -\frac{qa^2}{2l}) (a < z < l)</td>
<td>(M = \frac{qa^2}{2l} \left(1 - \frac{z}{l} \right))</td>
<td>(M_{\text{max}} = \frac{qa^2}{8} \left(2 - \frac{a}{l} \right)^3)</td>
<td></td>
</tr>
</tbody>
</table>

	\(R_A = q_1a - R \)	\(Q = q_1 \left(a - z \right) - R \) \(a < z < a + b \)	\(M = q_1a^2 \left(\frac{z}{a} - \frac{R}{q_1a} \right) - \frac{z}{a} \left(\frac{a}{2} + \frac{b}{2} \right) \)	\(z_0 = a - \frac{R}{q_1} \)
	\(R_B = q_1c + R \)	\(Q = -R \) \(a + b < z < l \)	\(M = q_1a^2 \left(\frac{z}{a} - \frac{R}{2a} \right) - \frac{z}{a} \left(\frac{a}{2} + \frac{b}{2} \right) \)	\(M_{\text{max}} = \frac{q_1}{2} \left(a - \frac{R}{q_1} \right)^2 \)
	\(R = q_1a^2 - q_1c^2 \)	\(Q = q_1 \left(a + b - z \right) - R \)	\(M = q_1a^2 \left(\frac{z}{a} - R \right) - Rz \)	\(z_0 = c + \frac{R}{q_1} \)

\(l \) — длина балки; \(a \) и \(b \) — длины отрезков балки; \(q \) — интенсивность распределенной нагрузки; \(M \) — изгибающий момент; \(z_0 \) — координата опасного сечения; \(R \) — опорная реакция.
| $R_A = \frac{q_1 l}{6}$ | $Q < z < l$ | $M = \frac{ql^3}{6} \left(\frac{2}{l} - \frac{z^2}{l^4} \right)$ |
| $R_B = \frac{q_1 l}{3}$ | $Q = \frac{ql}{6} \left(1 - 3 \frac{z^2}{l^2} \right)$ | $z_0 = \frac{l}{\sqrt[3]{3}} = 0.5774l$ |
| $M_{max} = \frac{ql^2}{9 \sqrt[3]{3}} = 0.0642ql^2$ |

<p>| $R_A = \frac{2q_1 + q_2 l}{6}$ | $0 < z < l$ | $M = R_A - \frac{q_1 z^2}{2l} + \frac{q_1 - q_2}{6l} z^3$ |
| $R_B = \frac{q_1 + 2q_2 l}{6}$ | $Q = R_A - z_0 + \frac{q_1 - q_2}{2l} z^2$ | $z_0 = \frac{l - R}{1 - k}$ |
| $M_{max} = \frac{q_1 l^2}{6} \times \frac{2R^2 - k (1 + k)}{(1 - k)^2}$ |
| $k = \frac{q_2}{q_1}$ |
| $R = \sqrt{\frac{1 + k + z^2}{3}}$ |</p>
<table>
<thead>
<tr>
<th>Схема нагружения балки, опоры Q и M</th>
<th>Опорные реакции</th>
<th>Поперечная сила Q</th>
<th>Изгибающий момент M</th>
<th>Координата опасного сечения z, и максимальный момент M_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$R_A = \frac{qc^2}{6l}$</td>
<td>$0 < z < a$</td>
<td>$Q = \frac{qc^2}{6l}$</td>
<td>$z_0 = a + \frac{c}{3l} \sqrt{\frac{c}{3l}}$</td>
</tr>
<tr>
<td></td>
<td>$R_B = \frac{qc}{6} \left(3 - \frac{c}{l}\right)$</td>
<td>$0 < z < a$</td>
<td>$M = \frac{qc^2 z}{6l}$</td>
<td>$M_{max} = \frac{qc^2}{6l} \times \left(1 + \frac{2}{3} \frac{c}{3l}\right)$</td>
</tr>
<tr>
<td></td>
<td>$R_A = \frac{qa}{6} \left(3 - 2 \frac{a}{l}\right)$</td>
<td>$0 < z < a$</td>
<td>$Q = \frac{qa^2}{6} \left(3 - 2 \frac{a}{l} - \frac{a^2}{l^2}\right)$</td>
<td>$z_0 = a \sqrt{1 - \frac{2a}{3l}}$</td>
</tr>
<tr>
<td></td>
<td>$R_B = \frac{qa^2}{3l}$</td>
<td>$0 < z < a$</td>
<td>$M = \frac{qa^2}{6} \left(3 - 2 \frac{a}{l} - \frac{a^2}{l^2}\right) \times \left(1 - \frac{a}{a^2}\right)$</td>
<td>$M_{max} = \frac{qa^2}{3} \times \left(1 - \frac{2a^2}{3l}\right)$</td>
</tr>
<tr>
<td>Схема нагружения балки, (q) и (M)</td>
<td>Опережающие реакции</td>
<td>Поперечная сила (Q)</td>
<td>Изгибающий момент (M)</td>
<td>Координаты опасного сечения (z_0) и максимальный момент (M_{\text{max}})</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(R_A = \frac{q l}{12})</td>
<td>(0 \leq z \leq l)</td>
<td>(0 \leq z \leq l)</td>
<td>(z_0 = 0.63l)</td>
<td>(M_{\text{max}} = 0.0394ql^2)</td>
</tr>
<tr>
<td>(R_B = \frac{q l}{4})</td>
<td>(Q = \frac{ql}{12} \left(1 - 4 \frac{z^2}{l^4} \right))</td>
<td>(M = \frac{ql^2}{12} \left(\frac{z}{l} - \frac{z^4}{4l^4} \right))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| (R_A = \frac{q l}{3}) | (0 \leq z \leq l) | (0 \leq z \leq l) | (z_0 = \frac{l}{2}) | (M_{\text{max}} = \frac{5}{48} ql^2) |
| (R_B = \frac{q l}{3}) | (Q = \frac{ql}{3} \left(1 - 6 \times \frac{z^2}{l^4} + \frac{z^4}{l^4} \right)) | (M = \frac{ql^2}{3} \left(\frac{z}{l} - 2 \times \frac{z^4}{l^4} \right)) |</p>
<table>
<thead>
<tr>
<th>Condition</th>
<th>R_A</th>
<th>R_B</th>
<th>Q</th>
<th>M</th>
<th>M_{max}</th>
<th>z_0</th>
<th>z_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 < z < l$</td>
<td>$R_A = \frac{q l}{2} - \frac{\Delta M}{l}$</td>
<td>$R_B = \frac{q l}{2} + \frac{\Delta M}{l}$</td>
<td>$Q = \frac{q l}{2} \left(1 - \frac{z^2}{l^2}\right)$</td>
<td>$M = \frac{q l^2}{2} \left(\frac{z}{l} - \frac{z^3}{l^3}\right) - \Delta M \frac{z^2}{l} - M_1$</td>
<td>$M_{\text{max}} = \frac{q l^2}{8} + \frac{(\Delta M)^2}{2ql}$</td>
<td>$z_0 = \frac{l}{2} - \frac{\Delta M}{ql}$</td>
<td>$z_{\text{max}} = \frac{M_{\text{max}}}{M_2 + M_1}$</td>
</tr>
<tr>
<td>$l < z < l + a$</td>
<td>$R_A = R_B = \frac{M}{l}$</td>
<td>$Q = 0$</td>
<td>$M = -M \frac{z}{l}$</td>
<td>$M = -M$</td>
<td>$l < z < l + a$</td>
<td>$M_{\text{max}} = -M$</td>
<td></td>
</tr>
<tr>
<td>$l < z < l + a$</td>
<td>$R_A = \frac{P a}{l}$</td>
<td>$R_B = P \left(1 + \frac{a}{l}\right)$</td>
<td>$Q = -P \frac{a}{l}$</td>
<td>$M = -P \frac{a z}{l}$</td>
<td>$l < z < l + a$</td>
<td>$M_{\text{max}} = -Pa$</td>
<td></td>
</tr>
<tr>
<td>Схема нагружения балки, эпюры Q и M</td>
<td>Опережение реакции</td>
<td>Поперечная сила Q</td>
<td>Изгибающий момент M</td>
<td>Координата опасного сечения z₀ и максимальным момент Mₘₚₓₓ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R_A = q \frac{1^2 - a^2}{2l}</td>
<td>0 ≤ z < l</td>
<td>0 ≤ z < l</td>
<td>I: t < a (1 + \sqrt{2})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R_B = q \left(\frac{1^2 + a^2}{2l} + qa \right)</td>
<td>l ≤ z < l + a</td>
<td>M = \frac{q^2 l}{2} \left(l - \frac{a^2}{l^2} \right)</td>
<td>z₀ = l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q = q(l + a - z)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M = -\frac{q^2}{2} \left(1 - \frac{a^2}{l^2} \right)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mmax = -\frac{q^2 l^2}{2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	R_A = \frac{qa^2}{2l}	0 ≤ z < l	0 ≤ z < l
	R_B = \frac{qa^2}{2l} \times \left(1 + \frac{1}{a} \right)	l ≤ z < l + a	
	Q = -\frac{qa^2}{2l}		
	M = -\frac{q^2 a^2}{2l}		
	Mmax = -\frac{qa^2 l}{2}		
	z₀ = l		

| | |

<table>
<thead>
<tr>
<th>$0 < z < a$</th>
<th>$0 < z < a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q = \sigma$</td>
<td>$M = \sigma l$</td>
</tr>
<tr>
<td>$a < z < a + l$</td>
<td>$a < z < a + l$</td>
</tr>
<tr>
<td>$Q = 0$</td>
<td>$M = 0$</td>
</tr>
<tr>
<td>$a + l < z < l + 2a$</td>
<td>$a + l < z < l + 2a$</td>
</tr>
<tr>
<td>$Q = P$</td>
<td>$M = P(l + 2a - z)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$a < z_0 < l + a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{\text{max}} = -Pa$</td>
</tr>
</tbody>
</table>

| $R_A = R_B = P$ |

| $R_A = R_B = q\left(\frac{1}{2} + a\right)$ |

<table>
<thead>
<tr>
<th>$l > 2\sqrt{2}a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z_0 = a + \frac{l}{2}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$l < 2\sqrt{2}a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z_0 = a; z_0 = a + l$</td>
</tr>
<tr>
<td>$M_{\text{max}} = -\frac{qz_0^2}{2}$</td>
</tr>
<tr>
<td>Схема нагружения балки, опоры Q и M</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Rₐ = P \left(1 + \frac{a}{b}\right)</td>
</tr>
<tr>
<td>Rₜ = P \frac{a}{b}</td>
</tr>
<tr>
<td>Mₜ = P \frac{ac}{b}</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Rₐ = q \left(\frac{(l - c)^3}{2b}\right)	0 < z < a	0 < z < a	z₀ = \frac{(l - c)^3}{2b}
Rₜ = q \left[l - \frac{(l - c)^3}{2b}\right]	Q = -qz	M = -\frac{1}{2} qz²	
Mₜ = q \left[\frac{(l - c)^3}{2b} - z\right]	a < z < l	a < z < l	Mₘₘₙ = -\frac{q}{2} \left[z₀ - \frac{zₜ - a}{b}\right]
			-(l - c)^3 \frac{zₜ - a}{b}
3.9. Дифференциальные зависимости при изгибе плоских кривых стержней

Дифференциальные соотношения между q, Q, N и M, которые могут быть выведены из условия равновесия элемента длиной ds, выделенного из произвольно нагруженного кривого стержня (рис. 54 и 55), имеют вид

$$\frac{dN}{d\varphi} = -Q; \quad \frac{dQ}{d\varphi} = N + qr; \quad \frac{dM}{d\varphi} = Qr. \quad (3.5)$$

Полагая $d\varphi = ds$, эти уравнения можно записать в виде

$$\frac{dN}{ds} = -\frac{Q}{r}; \quad \frac{dQ}{ds} = q + \frac{N}{r}; \quad \frac{dM}{ds} = Q. \quad (3.10)$$

При выводе указанных зависимостей было предположено, что изгибающий момент считается положительным, если он вызывает сжатие внутренних волокон стержня (волокон, расположенных на вогнутой стороне), а распределенная нагрузка положительна, если она направлена к центру кривизны стержня. Зависимости (3.5) — (3.10) позволяют проверить правильность составления выражений для $N (\varphi)$, $Q (\varphi)$ и $M (\varphi)$. Выражения для внутренних усилий в кривом стержне для различных случаев его нагружения приведены в табл. 8 и 9.

3.10. Построение эпюр внутренних сил для пространственных стержней

В рамках системах, оси составляющих стержней которых не лежат в одной плоскости, а также в плоских системах, находящихся под воздействием пространственной нагрузки, могут действовать в сечениях...
ниях стержней все шесть внутренних силовых факторов: \(N_z, Q_y, Q_x, M_z, My, M_x \) (рис. 29, б). В этом случае эпюры изгибающих моментов по-прежнему строятся на сжатых волокнах, причем ориентировать их следует так, чтобы плоскость эпюры совпадала с плоскостью действия пары того изгибающего момента, для которого она построена. Знак изгибающего момента вводится произвольно: я притом только в случае необходимости записать соответствующее уравнение.

Рис. 56

Для продольных сил и крутящих моментов сохраняются прежние правила знаков. Эпюры \(N \) и \(M_{xp} \) могут быть ориентированы как угодно, но их ординаты всегда откладываются по нормали к оси стержня.

Поперечные силы в сечении считаются положительными, если их направление совпадает с положительным направлением осей.

В качестве иллюстрации приведем для ломаного стержня (рис. 56) результаты построения эпюр внутренних силовых факторов (рис. 57). Внутренние усилия для соответствующих участков стержня определялись по формулам, приведенным ниже. На участке \(AB (0 \leq z \leq l_1) \)

\[
N \equiv 0; \quad Q_x = -P; \quad Q_y = q (l_1 - z); \quad M_{xp} \equiv 0;
\]

\[
M_y = P (l - z) \quad \text{(сжаты левые волокна)};
\]

\[
M_x = \frac{q (l_1 - z)^2}{2} \quad \text{(сжаты нижние волокна)}.
\]
На участке $BC \ (0 \leq z \leq l_2)$

$$
N = q l_1; \quad Q_x = 0; \quad Q_y = P; \quad M_{kr} = -P l_1 \\
M_y = \frac{q l_1^2}{2}; \quad M_x = P (l_2 - z).
$$

На участке $CD \ (0 \leq z \leq l_3)$

$$
N = -P, \quad Q_x = 0; \quad Q_y = q l_1; \quad M_{kr} = -\frac{q l_1^2}{2} \\
M_x = P l_3 + q l_1 (l_2 - z).
$$

Рис. 58

Рис. 59

Эпюры внутренних сил для пространственно нагруженного криволинейного стержня (рис. 58), построенные на основании зависимостей

$$
M_{kr} (\phi) = M_y (\phi) = (PR + M_A) \sin \phi; \\
M_{kr} (\phi) = M_x (\phi) = (PR + M_A) \cos \phi - PR,
$$

при $P = 2$ кН; $M_A = 20$ кН·см; $R = 30$ см приведены на рис. 59.

3.11. Напряжения в сечении

В сечениях нагруженного стержня возникают непрерывно распределенные внутренние усилия (рис. 60, а), равнодействующими которых являются главный вектор \vec{R} и главный момент \vec{M}, приложенные в центре тяжести сечения. Проекции \vec{R} и \vec{M} на главные центральные оси x, y и ось стержня z дают величины компонентов внутренних усилий N, Q_y, Q_x, M_y, M_x и M_z.

Рассмотрим бесконечно малый элемент площади dF (рис. 60, б) с произвольными координатами x, y. В силу малости элемента можно считать, что внутренние усилия распределены на нем равномерно, а равнодействующая их $d\vec{R}$ приложена в центре его тяжести. Следовательно, при приведении этих усилий к центру тяжести элемента $d\vec{R}$ будет являться главным вектором силы, а главный момент, очевидно, будет равен нулю.

Проекциями $d\vec{R}$ на оси z, y, x будут элементарные силы dN, dQ_y, dQ_x. Разделив все эти величины на площадь dF, получим выражения

138
для внутренних усилий, приходящихся на единицу площади, называемых напряжениями в точке \((y, x)\) поперечного сечения стержня:

\[
p = \frac{dR}{dF}; \quad \sigma = \frac{dN}{dF}; \quad \tau_y = \frac{dQ_y}{dF}; \quad \tau_x = \frac{dQ_x}{dF},
\]

где \(p\) — полное напряжение; \(\sigma\) — нормальное напряжение; \(\tau_y, \tau_x\) — касательные напряжения.

Размерность напряжений — сила, деленная на квадрат длины \((\text{Н/м}^2, \text{kН/м}^2, \text{MN/м}^2 \text{и т. д.})\). Обычно напряжения измеряют в паскалях \((1 \text{ Па} = 1 \text{ Н/м}^2)\) или кратных единицах \((\text{kПа, МПа})\).

Таким образом, напряжение называется внутренняя сила, отнесенная к единице площади в данной точке рассматриваемого сечения, т. е. интенсивность внутренней силы в данной точке сечения.

Рис. 60

Полное напряжение в точке может быть выражено через нормальное и касательные напряжения:

\[
p = \sqrt{\sigma^2 + \tau_y^2 + \tau_x^2}.
\]

Учитывая (3.11), нетрудно установить общие зависимости между напряжениями \(\sigma\) и \(\tau\), с одной стороны, и компонентами внутренних усилий — с другой:

\[
N = \int \sigma dF;
\]

(3.13)

\[
Q_y = \int \tau_y dF;
\]

(3.14)

\[
Q_x = \int \tau_x dF;
\]

(3.15)

\[
M_y = \int x \sigma dF;
\]

(3.16)

\[
M_x = \int y \sigma dF;
\]

(3.17)

\[
M_z = M_{кр} = \int (y \tau_x + x \tau_y) dF = \int \rho \tau dF,
\]

(3.18)

где

\[
\tau = \frac{dQ}{dF} = \sqrt{\left(\frac{dQ_y}{dF}\right)^2 + \left(\frac{dQ_x}{dF}\right)^2} = \sqrt{\tau_y^2 + \tau_x^2};
\]

139
\[\rho \] — расстояние от центра тяжести сечения до линии действия \(dQ \) (рис. 60, в).

Зависимости (3.13) — (3.18) называются статическими уравнениями. В общем случае расчета, когда закон распределения напряжений по сечению не известен, их применять нельзя. Например, зная величину изгибающего момента \(M_y \) в сечении, нельзя найти нормальные напряжения, пользуясь формулой (3.16). Однако если, пользуясь теми или иными соображениями, удается установить, как распределяются по сечению \(\sigma \) или \(\tau \), то тогда по формулам (3.13) — (3.18) можно найти и сами величины напряжений.

Выводы формулы для определения напряжений целесообразно проводить по такой схеме.

1. Рассматривается статическая сторона задачи — записываются те из уравнений (3.13) — (3.18), которые необходимы для вывода.

2. Рассматривается геометрическая сторона задачи — на основании опытных данных записываются геометрические уравнения, устанавливающие зависимость перемещений точек стержня от их положения в сечении.

3. Рассматривается физическая сторона задачи — на основании опытных данных записываются уравнения, выражающие зависимость между напряжениями и деформациями (или перемещениями).

4. Производится синтез, т. е. совместно решаются уравнения, полученные в п. 1—3, и путем исключения деформаций (или перемещений) получаются формулы, выражающие напряжения через усилия или моменты в сечении.

3.12. Условия прочности и жесткости

Основной задачей сопротивления материалов является определение надежных размеров поперечного сечения детали, подверженной тому или иному силовому, температурному или другому воздействию. Такие размеры могут быть определены из расчета на прочность, жесткость или устойчивость. Основным является расчет на прочность.

Физически очевидно, что материал не в состоянии выдерживать сколь угодно большие напряжения. Поэтому величины наибольших напряжений из условия надежности работы детали должны быть ограничены некоторыми допустимыми значениями. Эти значения называются допускаемыми напряжениями и обозначаются \([\sigma]\) или \([\tau]\).

Если известны допускаемые напряжения и имеются формулы, выражающие напряжения через усилия или моменты в сечении, то принципиально можно рассчитать на прочность (подобрав необходимые размеры, при которых напряжение не будет превышать допускаемые) любую деталь.

На практике встречаются три случая расчета на прочность.

1. По известным нагрузкам требуется для выбранного материала найти необходимые размеры поперечного сечения детали, обеспечивающие ее надежную работу (проектировочный расчет).

2. Известны материал и размеры детали. Требуется выяснить, может ли эта деталь выдержать заданную нагрузку (проверочный расчет).

3. Известны материал, размеры детали и схема ее нагружения; требуется найти допустимую величину нагрузки.

В основе всех этих расчетов лежит условие прочности

\[\sigma_{\max} < [\sigma] \text{ или } \tau_{\max} < [\tau], \]

выражающее тот факт, что наибольшие напряжения — нормальное,
<table>
<thead>
<tr>
<th>Схема</th>
<th>N</th>
<th>Q</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P \sin \varphi + T \cos \varphi$</td>
<td>$P \cos \varphi - T \sin \varphi$</td>
<td>$M_0 + PR \sin \varphi - TR (1 - \cos \varphi)$</td>
</tr>
<tr>
<td></td>
<td>$P \cos (\alpha - \varphi) + T \sin (\alpha - \varphi)$</td>
<td>$P \sin (\alpha - \varphi) - T \cos (\alpha - \varphi)$</td>
<td>$M_0 + PR \times [\cos (\alpha - \varphi) - \cos \alpha] - TR [\sin \alpha - \sin (\alpha - \varphi)]$</td>
</tr>
<tr>
<td></td>
<td>$qR (1 - \cos \varphi)$</td>
<td>$qR \sin \varphi$</td>
<td>$qR^2 (1 - \cos \varphi)$</td>
</tr>
<tr>
<td></td>
<td>$qR \sin \varphi$</td>
<td>$-qR (1 - \cos \varphi)$</td>
<td>$-qR^2 (\varphi - \sin \varphi)$</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>$mR\varphi$</td>
</tr>
</tbody>
</table>
касательное или эквивалентное (см. гл. 6), действующие в опасной точке, не должны превышать допускаемого напряжения.

Аналогично проводится и расчет на жесткость, только вместо условия прочности используется условие жесткости, ограничивающее величину деформаций (или перемещений). Однако даже в этом случае, когда выполнен расчет на жесткость, всегда необходимо проводить проверочный расчет на прочность, если он дает отрицательный результат, следует принять размеры, полученные из расчета на прочность.

Таблица 9. Изгибающий $M_{из}$ и крутящий $M_{кр}$ моменты в консольном круговом стержне при нагружении, перпендикулярном к его плоскости

<table>
<thead>
<tr>
<th>Схема</th>
<th>$M_{из}$ (перпендикулярно к плоскости yz)</th>
<th>$M_{кр}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$PR \sin \varphi$</td>
<td>$PR (1 - \cos \varphi)$</td>
</tr>
<tr>
<td></td>
<td>$M_0 \sin \varphi$</td>
<td>$-M_0 \cos \varphi$</td>
</tr>
<tr>
<td></td>
<td>$M_0 \cos \varphi$</td>
<td>$M_0 \sin \varphi$</td>
</tr>
<tr>
<td></td>
<td>$qR^2 (1 - \cos \varphi)$</td>
<td>$qR^2 (\varphi - \sin \varphi)$</td>
</tr>
</tbody>
</table>
Глава 4

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛА ПРИ РАСТЯЖЕНИИ И СЖАТИИ.
КОНЦЕНТРАЦИЯ НАПРЯЖЕНИЙ. ДОПУСКАЕМЫЕ НАПРЯЖЕНИЯ

4.1. Напряжения и деформации при растяжении и сжатии

Напряженное состояние осевого растяжения или сжатия характерно тем, что из шести компонентов внутренних усилий только продольная сила \(N \) не равна нулю. Рассмотрим стержень, нагруженный осевым силами (рис. 61). Для произвольного сечения \(n \) — \(n \) статически сторона задачи выражается уравнением

\[
N = \int \sigma \, dF.
\]

(4.1)

Геометрическая сторона задачи определяется гипотезой плоских сечений (гипотезой Бернулли), основанной на данных эксперимента: поперецные сечения стержня, плоские до деформации, остаются плоскими после деформации, перемещаясь поступательно вдоль оси стержня. Из этого следует, что все волокна элемента длиной \(l \) удлиняются на одну и ту же величину \(\Delta l \) и их относительные удлинения \(\varepsilon \) одинаковы:

\[
\varepsilon = \frac{\Delta l}{l} = \text{const}.
\]

(4.2)

Физическая сторона рассматриваемой задачи определяется законом Гука, выражающий линейную зависимость деформаций от напряжений:

\[
\varepsilon = \frac{\sigma}{E}, \quad \text{или} \quad \sigma = E \varepsilon,
\]

где \(E \) — коэффициент пропорциональности, называемый модулем упругости при растяжении (сжатии) или модулем Юнга. \(E \) имеет размерность напряжения (Н/м², МН/м² и т.д.), обычно измеряется в паскалях (Па) или кратных единицах (кПа, МПа), и является одной из физических констант материала (табл. 10, 11, 12). Учитывая, что \(E = \text{const} \), согласно формулам (4.2), (4.3) и \(\sigma = E \cdot \varepsilon = \text{const} \), из (4.1) находим

\[
\sigma = \frac{N}{F}.
\]

(4.4)

При растяжении \(\sigma \) положительно, при сжатии — отрицательно. Формула (4.4) справедлива для сечений, достаточно удаленных от мест приложения сосредоточенных нагрузок. Вблизи приложения нагрузок выполняется более сложный закон распределения напряжений.

При определении напряжений при растяжении и сжатии, как и при других видах деформаций, необходимо пользоваться вытекающи
из эксперимента положением, называемым принципом Сен-Вена: и в том случае, если тело нагружается статически эквивалентной системой сил, т. е. такими силами, у которых главный вектор и главный момент одинаковы, и при этом область приложения нагрузок невелика по сравнению с размерами тела, то в сечениях, достаточно удаленных от места приложения сил, напряжения мало зависят от способа нагружения.

Этот принцип можно проиллюстрировать примером приложения эквивалентных нагрузок, приведенным на рис. 62. Одна и та же стержень, закрепленный верхним концом, нагружается на свободном конце статически эквивалентными нагрузками, равнодействующие которых выражаются величиной вектора \(\mathbf{P} \). Исследования показывают, что напряжения в сечении, достаточно удаленным от места приложения нагрузки (на расстоянии, превышающем в 1,5—2 раза поперечные размеры стержня), практически оказываются во всех трех случаях одинаковыми.

Рис. 62

Рис. 63

Относительная деформация определяется через продольную силу на основании (4.3) и (4.4) следующей формулой:

\[
\varepsilon = \frac{N}{EF},
\]

(4.5)

а полная деформация стержня длиной \(l \) для однородного материала \(E = \text{const} \) при одинаковой по длине силе \(N \) — формулой

\[
\Delta l = e l = \frac{N l}{EF}.
\]

(4.6)

Формула (4.6) выражает закон Гука для абсолютно упругих уединений (укорочений). Произведение \(EF \) в знаменателе формулы называется жесткостью поперечного сечения стержня при растяжении (сжатии) и имеет размерность силы, а величина \(c = \frac{EF}{l} \) называется жесткостью стержня при растяжении (сжатии), ее размерность — сила, деленная на длину.

В том случае, когда продольная сила и поперечное сечение стержня по длине не постоянны (рис. 63), полное удлинение стержня определяется по формуле

\[
\Delta l = \int_0^l \frac{N(z)}{EF(z)} dz.
\]

(4.7)

144
Растяжение и сжатие сопровождаются также изменением поперечных размеров стержня (рис. 64, а, б). Абсолютные поперечные деформации стержня определяются формулами
\[\Delta a = a_1 - a; \]
\[\Delta b = b_1 - b. \]

Относительные поперечные деформации (при растяжении отрицательные, а при сжатии положительные) определяются формулой
\[\varepsilon' = \frac{\Delta a}{a} = \frac{\Delta b}{b}. \]

Между относительной поперечной и относительной продольной деформациями при простом растяжении и сжатии в пределах применимости закона Гука существует постоянное отношение, абсолютная величина которого называется коэффициентом Пуассона и обозначается буквой \(\mu \):
\[\mu = \left| \frac{\varepsilon'}{\varepsilon} \right|. \] (4.8)

Коэффициент Пуассона — безразмерная величина и для всех изотропных материалов (см. табл. 10) находится в пределах 0—0,5 (для полимеров близко к нулю; для каучука близко к 0,5, для стали \(\mu \approx 0,3 \)).

Учитывая, что в и \(\varepsilon' \) всегда имеют противоположные знаки, получаем
\[\varepsilon' = -\mu \varepsilon = -\mu \frac{\sigma}{E}. \] (4.9)

При расчете стержней, работающих на растяжение или сжатие, условие прочности следует записывать для опасного сечения, которое характеризуется максимальным значением \(N_{\text{max}} \) на эпюре осевых сил
\[\sigma_{\text{max}} = \frac{N_{\text{max}}}{F} \ll [\sigma], \] (4.10)
где \([\sigma]\) — допускаемое напряжение на растяжение \([\sigma_1]\) (при расчете на растяжение) или допускаемое напряжение на сжатие \([\sigma_2]\) (при расчете на сжатие).

По формуле (4.10) могут быть решены задачи трех типов: подбор размеров поперечного сечения стержня; проверка прочности; определение допускаемой нагрузки.

В некоторых случаях стержни рассчитывают исходя из условия жесткости
\[\Delta l = \int_0^l \frac{N(z)}{EF(z)} \, dz \ll [\Delta l], \] (4.11)
где \([\Delta l]\) — допускаемая величина изменения длины стержня.

Расчет из условия жесткости всегда должен быть дополнен расчетом на прочность. Если окажется, что условие прочности не удовлетворяется, то размеры стержня должны быть взяты исходя из этого условия.
4.2. Испытание материалов на растяжение, сжатие и твердость

Испытание на растяжение. Основным видом исследования механических свойств материалов является испытание на растяжение. Оно проводится на специальных испытательных машинах, создающих постепенно возрастающую нагрузку на испытуемый образец и осуществляющих в процессе нагружения регистрацию величины действующей на образец силы и его деформации.

Чаще всего применяют цилиндрические образцы (рис. 65, а), а при испытании листового материала — плоские образцы (рис. 65, б). Для цилиндрических образцов выдерживают определенное соотношение между расчетной длиной образца l_0 и диаметром образца d_0. Обычно $l_0 = 10d_0$ (длинный образец); реже $l_0 = 5d_0$ (короткий образец).

![Рис. 65](image1)

![Рис. 66](image2)

Учитывая, что диаметр d_0 связан с площадью сечения образца F_0 формулой

$$d_0 = \sqrt[4]{\frac{4F_0}{\pi}} = 1,13 \sqrt[4]{F_0},$$

связь между расчетной длиной l_0 и площадью поперечного сечения образца F_0 можно выразить для длинного и короткого образцов соответственно зависимостями

$$l_0 = 11,3 \sqrt[4]{F_0},$$
$$l_0 = 5,65 \sqrt[4]{F_0}.$$

(4.12)

В качестве основных образцов при испытании на растяжение применяют цилиндрические образцы с диаметром $d_0 = 10$ мм, расчетной длиной $l_0 = 100$ мм и $l_0 = 50$ мм. Допускается применение и других пропорциональных образцов, в которых выдерживается соотношения размеров в соответствии с формулами (4.12).

Диаграмма растяжения. При испытании материала на растяжение современные машины позволяют автоматически получить записанный в определенном масштабе график зависимости деформации образца от нагрузки, или так называемую диаграмму растяжения. Типичный вид диаграммы растяжения в координатах P — Δl для малоуглеродистой стали приведен на рис. 66.
На диаграмме имеется ряд характерных участков и точек, соответствующих различным стадиям деформирования образца. Точка A характеризует наибольшую (пределную) нагрузку $P_{пц}$ до которой создается линейная зависимость между нагрузкой и удлинением образца; точка B соответствует наименьшей нагрузке P_{un} при которой образец сохраняет упругие свойства, т. е. при разгрузке еще не наблюдается остаточная деформация; точка C соответствует нагружению P_{r} при которой образец деформируется без возрастания нагрузки, или, как говорят, материал начинает течь, образуя на диаграмме так называемую площадку текучести CD. После стадии текучести материал снова приобретает способность увеличивать сопротивление дальнейшей деформации. Точка E соответствует максимальной (пределной) нагрузке P_{max}, после которой начинается местное сужение образца в виде шейки (рис. 67), в результате чего происходит падение нагрузки. Точка F соответствует нагрузке P_{k}, при которой образец разрушается.

Пользуясь указанными характерными нагрузками, взятыми из диаграммы растяжения, и зная площадь сечения испытуемого образца F_0, определяют основные характеристики прочности материала:

$$
\sigma_n = \frac{P_{пц}}{F_0} — предел пропорциональности;
$$
$$
\sigma_{ун} = \frac{P_{ун}}{F_0} — предел упругости;
$$
$$
\sigma_t = \frac{P_{r}}{F_0} — предел текучести;
$$
$$
\sigma_p = \frac{P_{max}}{F_0} — предел прочности, или временное сопротивление;
$$
$$
\sigma_k = \frac{P_k}{F_0} — напряжение в момент разрыва.
$$

Поскольку при растяжении сечение образца непрерывно меняется, особенно в период нагружения, характеризуемый участком диаграммы DEF, значения σ_p и σ_k имеют достаточно условный характер. Особенно условным является напряжение σ_k, так как начальная нагрузка P_{max} происходит образование шейки и в момент разрыва сечение образца в шейке F_w оказывается существенно меньше начальной площади сечения образца F_0.

Для материалов, диаграмма растяжения которых не имеет резко выраженной площадки текучести, предел текучести условно определяют как напряжение, при котором остаточная деформация составляет величину, установленную ГОСТом или техническими условиями. По ГОСТу 1497—84 эта величина остаточной деформации составляет 0,2% расчетной длины образца, а условный предел текучести σ_t обозначается $\sigma_{0,2}$.

Учитывая, что практически трудно установить начало отклонения от закона пропорциональности и начало появления первых остаточных деформаций, вводят также понятие условного предела пропорциональности и условного предела упругости.

Под условным пределом пропорциональности понимают наименьшее напряжение, при котором отклонение от линейной зависимости
между напряжением и деформацией достигает некоторой заданной величины (порядка 0,002 %).

Под условным пределом упругости понимают наименьшее напряжение, при котором остаточная деформация достигает заданной величины (обычно 0,001 % — 0,05 %). Условный предел упругости отмечается индексом, соответствующим заданной величине остаточной деформации, например σ_{0,01} и σ_{0,05}.

При испытании образцов на растяжение определяют также характеристики пластичности, к которым относится относительное удлинение после разрыва

\[\delta = \frac{\Delta l}{l_0} \cdot 100\% \]

![Рис. 68](image)

и относительное сужение после разрыва

\[\psi = \frac{\Delta F}{F_0} \cdot 100\% , \]

где

\[\Delta F = F_0 - F_{\min} . \]

Кроме указанных выше механических свойств материала (прочности и пластичности), данные о которых для различных материалов приведены в Приложении 1, определяются еще энергетические характеристики материала. Оказывается, что диаграмма растяжения дает информацию и об этих его свойствах. Так, ее площадь характеризует работу, затраченную на растяжение образца. Работа, затраченная на растяжение образца до деформации λ₁ (рис. 68), определяется формулой

\[A_1 = \int_{0}^{\lambda_1} (P + dP) d\lambda \approx \int_{0}^{\lambda_1} P d\lambda , \]

что соответствует площади 0ABCDMN диаграммы, а работа, затраченная на разрыв образца, определяется площадью всей диаграммы 0ABCDEFG.

В пределах упругости работа деформации выражается площадью заштрихованного треугольника (рис. 69, а) и при удлинении образца Δl и соответствующей ему силе P равна

\[A_{yp} = \frac{P \Delta l}{2} \]
а удельная работа деформации

\[a_{yn} = \frac{A_{yn}}{V} = \frac{P\Delta l}{2F_{o} e} = \frac{\sigma e}{2} \]

и выражается площадью заштрихованного треугольника диаграммы в координатах \(\sigma - \varepsilon \) (рис. 69, б).

Diagramma напряжений. Поскольку диаграмма растяжения характеризует не только свойства материала, но и размеры образца, то ее принято перестраивать в относительных координатах \(\sigma - \varepsilon \). Такая диаграмма, построенная на основании диаграммы растяжения (рис. 66) и называемая диаframой напряжений, представлена на рис. 70. На этой диаграмме точки 0, a, b, c, d, e, f соответствуют точкам 0, A, B, C, D, E, F первой диаграммы растяжения (рис. 66).

Рис. 70

Рис. 71

Из диаграммы напряжений (рис. 70) видно, что

\[\tan \alpha = \frac{\sigma}{\varepsilon} = E, \]

t. е. модуль упругости при растяжении численно равен тангенсу угла наклона прямолинейного участка диаграммы напряжений к оси абсцисс. В этом заключается геометрический смысл модуля упругости при растяжении.

Заметим, что нисходящий участок ef диаграммы напряжений (рис. 70) — условный из-за значительного различия между сечением шейки и первоначальной площадью сечения образца \(F_0 \), на которую делят соответствующие усилия, взятые из диаграммы растяжения для получения ординат диаграммы напряжений на участке ef.

Примерный вид диаграммы напряжений для различных материалов приведен на рис. 71. Кривые 1, 2, 3, 4 соответственно характеризуют механические свойства бронзы (\(\sigma_b = 247 \) МПа; \(\delta = 36 \%)\); углеродистой стали (\(\sigma_b = 358 \) МПа; \(\delta = 38 \%)\); нержавеющей стали (\(\sigma_b = 715 \) МПа; \(\delta = 54 \%)\); мартенситной стали (\(\sigma_b = 916 \) МПа; \(\delta = 30 \%)\).

Diagramma напряжений для чугуна, являющаяся типичной для хрупкого материала, приведена на рис. 72. Диаграмма не имеет выраженного прямолинейного начального участка. При определении деформаций с использованием формул, выражающих закон Гука, значение модуля упругости \(E \) находят как тангенс угла (\(\alpha \)) наклона прямой, проведенной через начальную точку диаграммы 0 и точку B, соответствующую напряжению, при котором определяют деформацию. Такой модуль упругости называют секущим.
Если относить усилия, действующие на образец в каждый момент времени нагружения, к истинному значению поперечного сечения в соответствующий момент времени, то получим диаграмму истинных напряжений (рис. 70, штриховая линия).

Испытание на сжатие. Испытание материалов на сжатие производится на специальных прессах или универсальных испытательных машинах. Для испытания изготавливаются образцы в виде цилиндров небольшой высоты (обычно высота составляет от одного до трех диаметров) или кубиков. При испытании на сжатие трение, возникающее между сжимающими плитами испытательной машины и торцами образца, оказывает существенное влияние на результаты испытания и характер разрушения испытываемого образца.

При сжатии цилиндрического образца из малоуглеродистой стали последний принимает бочкообразную форму (рис. 73). Диаграмма сжатия, полученная для этого материала, приведена на рис. 74.

На рис. 75, а показан характер разрушения при сжатии образца из камня при наличии сил трения между плитами машины и торцами образца. При уменьшении сил трения путем нанесения на торцы слоя парафина характер разрушения того же образца может быть проиллюстрирован на рис. 75, б.

Вид разрушенного при сжатии чугунного образца показан на рис. 76, а соответствующая диаграмма сжатия — на рис. 77.

Диаграммы сжатия при испытании кубика древесины показаны на рис. 78 (кривая 1 — при сжатии вдоль волокон, кривая 2 — при сжатии поперек волокон).

Определение твердости материала. В некоторых случаях для оценки величины временного сопротивления можно воспользоваться косвенным методом, в частности измерением твердости.
Твердостью материала называют способность оказывать сопротивление механическому проникновению в его поверхность другого, более твердого тела. Для определения твердости чаще всего в поверхность материала с определенной силой вдавливают тело (индентор) в виде стального шарика, алмазного конуса или пирамиды. По размерам полученного отпечатка судят о твердости испытываемого материала.

Определение твердости — весьма распространенное испытание, что объясняется его чрезвычайной простотой. Твердость можно определять и непосредственно в условиях производства на готовых изделиях, так как оставшиеся отпечатки во многих случаях не портят изделия.

Наиболее распространенным способом определения твердости является способ Бринелля. Стальной закаленный шарик диаметром D (рис. 79) вдавливается в испытываемый образец (изделие) под действием нагрузки P, приложенной в течение определенного времени. После удаления нагрузки измеряется диаметр отпечатка, оставшегося на поверхности образца. Число твердости HB по Бринеллю определяется делением нагрузки P на площадь поверхности сферического отпечатка (м²) и может быть вычислено по формуле

$$
HB = \frac{2P}{\pi D (D - \sqrt{D^2 - d^2})},
$$

где P — нагрузка, Н; D — диаметр шарика, м; d — диаметр отпечатка, м.

Число твердости выражается в МПа, хотя обычно эту единицу не указывают. Для оценки твердости иногда используют диаметр отпечатка d и мм.

Если твердость измеряют шариком D = 0,01 м (10 мм) под нагрузкой P = 30 000 Н с выдержкой t = 10 с, то число твердости по Бринеллю сопровождают обозначением HB, например HB 3000. При других условиях определения твердости число твердости сопровождают индексами в следующем порядке: диаметр шарика, нагрузка и продолжительность выдержки. Например, HB 5/2500/30—2000 означает число твердости по Бринеллю (2000) при испытании шариком D = 5 мм под нагрузкой P = 2500 Н, приложеной в течение t = 30 с.

Опытным путем установлено, что для некоторых материалов существует определенная связь между числом твердости по Бринеллю и временем сопротивлением при разрыве. Например, для малоуглеродистой стали σb = 0,36 HB; для стального литья σb = (0,3 — 0,4) HB; для серого чугуна σb = \(\frac{HB - 40}{6} \).

Если твердость материала HB ≥ 4000 МПа, то определить ее, вдавливая шарик, нельзя в связи с заметной деформацией последнего. В этих случаях вместо шарика вдавливают алмазный конус (по Роквеллу) или алмазную пирамиду (по Виккерсу).

Число твердости HRC по Роквеллу (шкала C) соответствует разности глубины проникновения в поверхность исследуемого материала алмазного конуса с углом при вершине 120° под действием основной (1500 Н) и предварительной (100 Н) нагрузки.
В табл. 13 приведены установленные соотношения между числами твердости HB, HRC и временем сопротивлением σ в для различных сталей.

При определении твердости по Виккерсу используют индентор в виде правильной четырехгранной пирамиды с углом между противоположными гранями 136°. Число твердости HV по Виккерсу определяется отношением нагрузки на индентор к площади его отпечатка:

\[HV = \frac{P}{F} = \frac{2P \sin \gamma}{b^2} = 1,8544 \frac{P}{b^2}, \tag{4.14} \]

где \(P \) — нагрузка на индентор, Н; \(F \) — площадь поперечного сечения отпечатка, \(m^2 \); \(\gamma = 136^\circ/2 = 68^\circ \); \(b \) — среднее арифметическое длин двух диагоналей отпечатка, м.

![Рис. 80](image)

Величина нагрузки находится в пределах 50—1200 Н. Числа твердости HV и HB практически совпадают в диапазоне их значений до 4000.

Применяют и другие способы определения твердости материала, например, по высоте отскока бойка, падающего с определенной высоты на поверхность испытываемого материала, по периоду качаний маятника, упирающегося в поверхность материала.

Твердость, полученная различными методами, с помощью специальных таблиц может быть переведена в твердость по Бринеллю.

Для определения твердости сталей при повышенных температурах (673—773 К) может использоваться метод вдавливания шариком индентора в виде четырехугольной пирамиды из синтетического шарика. При температурах до 2273 К обычно используют метод вдавливания индентора в виде четырехугольной пирамиды из синтетического корунда (сапфира). При температурах до 3273 К применяют метод одностороннего сплющивания конической образца с углом при вершине 120° (рис. 80).

Значения твердости по методу одностороннего сплющивания конической образца определяют как среднее давление (в МПа) на площади отпечатка сплющивания:

\[H = \frac{P}{F} = \frac{4P}{\pi d^2} = 1,2732 \frac{P}{d^2}, \tag{4.15} \]

где \(P \) — нагрузка на образец, Н; \(F \) — площадь поверхности отпечатка сплющивания конической вершины образца, \(m^2 \); \(d \) — диаметр отпечатка, мм. Размеры образца обычно принимают равными 8 мм по диаг.
метру и 5—7 мм по высоте (до изготовления конуса). Нагрузка на образец $P = 50$ Н, выдержка образца под нагрузкой 60 с.

Согласно показателям твердости вольфрама и молибдена, полученных по методу вдавливания пирамидального индентора и одностороннего сближения в диапазоне температур 1673—2023 К, о демонстрировано на рис. 81. Данные о твердости некоторых тугоплавких материалов при различных температурах приведены в табл. 14.

4.3. Понятие о механизме образования деформаций

Как известно, металлы имеют кристаллическую структуру. При запирании металла в расплаве одновременно возникает много центров кристаллизации, вследствие чего рост каждого кристалла стеснен соседними. В результате технический металл состоит из большого числа кристаллов неправильной формы, называемых кристаллитами или кристаллическими зернами. Относительно друг друга кристаллические зерна ориентированы самым различным образом. Вместе с тем в каждом из них атомы расположены совершенно определенно и образуют так называемую кристаллическую решетку, состоящую из повторяющихся одинаковых ячеек.

Атомы электрически нейтральные. Однако при достаточном их сближении возникает возможность отрыва валентного электрона одного атома положительно заряженным ядром другого, у этого — следующим и т. д. Таким образом, часть валентных электронов начинает перемещаться вокруг идет все взаимодействующих атомов. Эти электроны называются свободными, поскольку не связаны с определенными атомами. Металл можно представить себе как постройку из нейтральных атомов и ионов, находящихся в атмосфере электронного газа, который как бы стягивает ионы. Связь между атомами, осуществляемая электростатическими силами в результате взаимодействия положительных ионов и электронного газа, называется металлической. Поскольку эти атомы по своей природе одинаковы, то расположиться они должны на таких расстояниях один от другого и в таких точках пространства, где действующие на них силы притяжения и отталкивания были бы равны. В результате происходит закономерное расположение атомов, наблюдаемое в кристаллической решетке.

Кристаллическую решетку образуют воображаемые линии в плоскости, проходящие через точки пространства, в которых располагаются ионы металла. Более правильно эти точки определяют как центры наиболее вероятного расположения ионов, так как те не остаются неподвижными, а колеблются около этих центров. Последние обычно называют узлами кристаллической решетки. Наиболее распространенными типами таких решеток металлов являются кубическая объемно центрированная (рис. 82, а), кубическая гранецентрированная (рис. 82, б) и гексагональная плотноупакованная (рис. 82, в). В них атомы находятся в устойчивом положении равновесия и обладают минимальной потенциальной энергией.

При деформации металла расстояния между атомами под действием внешних сил изменяются по определенным направлениям, линия и плоскости, проходящие через атомы, искаряются, кристаллическая решетка искажается. Так как при этом равнодействующие силы притяжения и отталкиваний между атомами уже не равны нулю, то в решете будут действовать внутренние силы, стремящиеся вернуть атомы в положение равновесия. Зависимость между малыми смещениями атомов и силами взаимодействия с известной степенью приближения можно считать линейной. Суммарно это проявляется в линейной
зависимости между смещениями точек тела и внешними силами, выражаемой законом Гука.

При устранении внешних сил атомы вновь занимают свои прежние места в кристаллической решетке, вследствие чего происходит упругое восстановление формы металлического тела. Так объясняется упругая деформация.

Если внешние силы увеличиваются, то возрастает и внутренние. Тогда в зернах металла происходит смещение одной части относительно другой, называемое скольжением. Исследованиями установлено, что оно происходит по плоскостям и направлениям, вдоль которых атомы располагаются наиболее плотно. В каждой из кристаллических решеток, изображенных на рис. 82, одна такая плоскость заштрихована, а направления скольжений указаны стрелками. Важной характеристикой этих плоскостей и направлений является величина сдвигающего напряжения, вызывающего скольжение.

Рассмотрим механизм образования пластической деформации в пределах одного кристалла с совершенной кристаллической решеткой, упрощенная модель которой изображена на рис. 83, а.

Пусть в такой решетке верхний слой атомов смещается относительно нижнего по плоскости \(A - A \). Если предположить, что в процессе сдвига кристаллическая решетка не искажается, т. е. в частях её выше и ниже плоскости \(A - A \) расстояния между атомами остаются неизменными, то можно прийти к выводу, что все атомы верхнего слоя смещаются относительно нижнего одновременно и на одну и ту же величину.

154
Пока взаимное смещение u (рис. 83, б), возрастая, остается меньше половины расстояния между атомами ($a/2$), силы взаимодействия последних препятствуют сдвигу. Как только это смещение превысит расстояние $a/2$, силы взаимодействия начинают способствовать смещению решетки в новое устойчивое положение равновесия. Пластическая деформация произойдет в результате смещения части решетки на расстояния, кратные a (рис. 83, в). Наименьшая пластическая деформация соответствует смещению на a. В результате таких смещений каждый предыдущий атом занимает место последующего, все атомы оказываются на местах, присущих данной кристаллической решетке. Кристалл сохраняет свои свойства, меняя лишь конфигурацию.

Точные теоретические расчеты, основанные на подобной картине деформации, позволяют определить максимальные касательные напряжения, которые должны возникнуть в кристалле, чтобы появилась пластическая деформация. В действительности она начинает образовываться при напряжениях, в сотни раз меньших, чем дает теория. Такое расхождение между теоретическим и действительным сопротивлением сдвигу в кристаллах объясняется тем, что переход атомов из одного положения в другое совершается не одновременно, а во времени, подобно волне, с местными искажениями решетки, называемыми дислокациями.

На рис. 84, а показана так называемая краевая дислокация. Верхняя часть решетки сдвинута относительно нижней на одно межатомное расстояние, причем зафиксировано положение, когда сдвиг охватит еще всю плоскость скольжения. В результате появилось искажение решетки: одна вертикальная атомная плоскость верхней половины не имеет продолжения в нижней.

Отметим, что реальные кристаллы либо с самого своего возникновения содержат дислокации, либо имеют какие-то иные несовершенства и в них дислокации образуются уже при низких напряжениях сдвига. Поэтому-то при низких напряжениях дислокации движутся через кристаллическую решетку, отчего и происходит пластическая деформация кристалла. После того как дислокация выйдет наружу кристалла, форма его изменяется, но структура остается прежней (рис. 84, б). Возникают новые дислокации и движутся через кристалл. Суммарно результат этих скольжений в зернах проявляется в виде пластической деформации образца.

Перемещение дислокации через кристалл можно уподобить движению складки по ковру. Когда складка пройдет через весь ковер, он будет несколько сдвинут. Сила, необходимая для перемещения складки, существенно меньше той, которая нужна, чтобы сдвинуть весь ковер целиком.

Так теория дислокаций объясняет механизм образования пластических деформаций в расхождение между теоретической и действительной прочностью металлов.
При массовой пластической деформации дислокации, движущиеся в кристаллической решетке по пересекающимся плоскостям, образуют неподвижные пороги, поэтому перемещение дислокаций тормозится. Суммарно это проявляется в виде упрочнения металла после определенной пластической деформации.

Появление сдвигов в кристаллической решетке, приводящих к пластической деформации, не исключает искажений кристаллической решетки, соответствующих упрогим деформациям. Это подтверждается тем, что при любой стадии деформации образца, вплоть до разрыва, полная деформация состоит из упругой и пластической.

Повышение сопротивления движению дислокаций приводит к увеличению прочности металла. Этого достигают введением в металлы специальных примесей, термической обработкой, наклепом и т. п. Уже сделаны первые шаги по созданию металлов, не имеющих дефектов кристаллической решетки. Получены бездислокационные интегральные металлические кристаллы («усы»), обладающие очень высокой прочностью, приближающейся к теоретической.

4.4. Концентрация напряжений

Концентрация напряжений — местное повышение напряжений в элементах конструкций, обусловленное резкими переходами в поперечных сечениях, связанными с наличием отверстий, выкружек, канавок, надрезов и т. п., называемых концентратами. На рис. 85 по-

караньт график распределения напряжений в сечении растягивающей полосы, ослабленной круглым отверстием (рис. 85, а) и полукруглыми выкружками (рис. 85, б).

Степень концентрации напряжений характеризуется так называемым коэффициентом концентрации

\[\alpha = \frac{\sigma_{\text{max}}}{\sigma_n}, \]

где \(\sigma_{\text{max}} \) — максимальное напряжение в месте концентрации, \(\sigma_n \) — номинальное напряжение, определяемое по формуле

\[\sigma_n = \frac{N}{F_{\text{min}}}. \]

Здесь \(N \) — нормальная сила в ослабленном сечении; \(F_{\text{min}} \) — площадь ослабленного сечения, называемая площадью нетто.
Иногда номинальное напряжение определяют по формуле

$$\sigma_n = \frac{N}{F_{6p}},$$

(4.18)

где F_{6p} — площадь сплошного сечения (без учета ослабления ее наличием концентратора), или площадь брутом.

При концентраторах, занимающих незначительную часть сечения (например, при малых отверстиях), номинальные напряжения, определенные по формулам (4.17) и (4.18), практически будут одинаковыми.

При определении максимальных напряжений в зоне концентратора расчетным путем коэффициент концентрации, вычисленный по формуле (4.16), называется теоретическим коэффициентом концентрации. Например, в случае малого круглого отверстия (рис. 85, а) $\alpha = 3$, а в случае полукруглых вырезов (рис. 85, б) $\alpha \approx 2$. В действительности коэффициент концентрации реальных элементов конструкций, так называемый эффективный коэффициент концентрации k, определяемый экспериментально, оказывается меньше теоретического ($\alpha > k$). Обычно расчеты на прочность с учетом концентрации напряжений проводят на основании значений величин теоретических коэффициентов концентрации, значения которых для случая растяжения полосы и круглых стержней с различной формой концентраторов приведены на рис. 86 и ниже соответственно.

<table>
<thead>
<tr>
<th>Вид концентратора напряжений</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Полукруглая выточка при отношении радиуса к диаметру стержня</td>
<td></td>
</tr>
<tr>
<td>0,1</td>
<td>2,0</td>
</tr>
<tr>
<td>0,5</td>
<td>1,6</td>
</tr>
<tr>
<td>1,0</td>
<td>1,2</td>
</tr>
<tr>
<td>2,0</td>
<td>1,1</td>
</tr>
<tr>
<td>Галтель, при отношении радиуса галтели к диаметру стержня</td>
<td></td>
</tr>
<tr>
<td>0,0625</td>
<td>1,75</td>
</tr>
<tr>
<td>0,125</td>
<td>1,50</td>
</tr>
<tr>
<td>0,25</td>
<td>1,20</td>
</tr>
<tr>
<td>0,5</td>
<td>1,10</td>
</tr>
<tr>
<td>Переход под прямым углом</td>
<td>2,0</td>
</tr>
<tr>
<td>Острый V-образный выточка</td>
<td>3,0</td>
</tr>
<tr>
<td>Нарезка дюймовая</td>
<td>2,0</td>
</tr>
<tr>
<td>Нарезка метрическая</td>
<td>2,5</td>
</tr>
<tr>
<td>Отверстие, при отношении диаметра отверстия к диаметру стержня от 0,1 до 0,33</td>
<td>2,0</td>
</tr>
<tr>
<td>Риски от резца на поверхности изделия</td>
<td>1,2—1,4</td>
</tr>
</tbody>
</table>

Более полные данные о коэффициентах концентрации приведены в Приложении 2.

Высокая концентрация напряжений особенно опасна для элементов конструкций, изготовленных из хрупких материалов, так как при достижении в зоне концентрации напряжений, равных пределу прочности материала, материал начнет разрушаться. В случае пластичного материала концентрация напряжений менее опасна, поскольку
при достижении в зоне концентриатора напряжения, равного пределу текучести от произойдет перераспределение напряжений по схеме, показанной штриховыми линиями на рис. 87.

4.5. Влияние различных факторов на механические свойства материалов

На свойства металлов и сплавов существенное влияние оказывают химический состав, технология их получения, термическая и механическая обработка, условия эксплуатации — температура, среда, характер нагрузки и др.

Ниже рассматривается влияние некоторых факторов на механические характеристики наиболее важных в машиностроении материалов — сталей, чугуна, алюминия, различных сплавов.

Влияние скорости деформации. При увеличении скорости деформации все материалы, находящиеся в пластическом состоянии, обнаруживают общую тенденцию к увеличению сопротивляемости деформированию. Чем выше скорость деформирования, тем выше предел текучести и временное сопротивление. Особенно сильно зависят от скорости нагружения механические свойства пластических и других органических материалов. У металлов влияние скорости нагружения заметно проявляется лишь при значительной разнице в скоростях.

Сравнение результатов статических и динамических испытаний малоглубинных сталей на растяжение при нормальной температуре (рис. 88) показывает следующее:

1) кривая 1 динамического растяжения лежит выше кривой 2 статического растяжения;
2) максимум диаграммы для динамической нагрузки смещается в сторону начала диаграммы;
3) временное сопротивление при динамической нагрузке повышается, но меньше, чем предел текучести.
4) модуль упругости при динамической нагрузке практически не изменяется.

Влияние технологических факторов. Механические свойства стали одного и того же состава весьма изменяются в зависимости от способа ее получения и обработки.

При отливке заготовок возможно образование различных внутренних дефектов в виде пустот, раковин и включений, снижающих прочность изготовленных деталей. В связи с этим требуется тщательный контроль качества таких деталей рентгеновскими, ультразвуковыми или каким-либо другим способом.

Прокатка делает сталь анисотропной. Прокатанная сталь имеет характерную структуру, у которой зерна, вытянутые в направлении прокатки, образуют своего рода волокна. Механические свойства стали в направлении прокатки существенно отличаются от таковых в направлении, перпендикулярном к ней. Образцы, вырезанные таким образом, что их ось совпадает с направлением прокатки, оказываются более прочными.

Предварительная вытяжка в холодном состоянии за предел текучести (наклеп) очень сильно повышает предел текучести и прочность, но снижает остаточное удлинение после разрыва. Материал становится более упругим и прочным, но менее пластичным.

Волочение в холодном состоянии, представляющее собой вытяжку с обжатием, еще сильнее влияет на механические свойства стали. Стальная проволока и стальные ленты полученные волочением, весьма прочны.
Токарная обработка, обработка поверхности роликами, обдувка дробью, хромирование, никелирование, анилирование, азотирование и другие виды поверхностной обработки могут оказать существенное влияние на прочность деталей, особенно работающих при переменных напряжениях.

Влияние термической обработки. Закалка стали значительно повышает ее твердость, предел текучести и предел прочности, но сильно снижает пластичность. Модуль упругости стали закалки практически не меняет. Если нужна высокая поверхностная твердость с сохранением других свойств стали, используют поверхностную закалку токами высокой частоты. Для малоуглеродистых сталей с этой целью применяют цементацию — увеличение в поверхностном слое содержания углерода — с последующей закалкой. При этом закаливается только науглероженный поверхностный слой, а основная часть материала сохраняет свойства малоуглеродистой стали.

![Рис. 88](image1)

![Рис. 89](image2)

Для устранения наклепа используют отжиг. Чтобы выровнять и улучшить структуру, а также улучшить механические свойства стали, применяют нормализацию. Подробно эти виды термической обработки рассмотриваются в металловедении.

Влияние температуры. Многие детали современных машин (например, паровых и газовых турбин, реактивных двигателей и др.) работают при высоких температурах, достигающих 1073—1273 К. Испытания показали, что все механические характеристики металлов существенно изменяются в зависимости от температуры.

На рис. 89 приведены диаграммы напряжения углеродистой стали при различных температурах, а на рис. 90 — графики зависимости предела текучести, временного сопротивления и относительного удлинения при разрыве от температуры. В диапазоне температур 423—523 К временное сопротивление достигает наибольшего значения, а относительное удлинение после разрыва — наименьшего; сталь, как говорят, становится нежеломой. При более высоких температурах прочность углеродистой стали быстро падает, поэтому выше 623—673 К такую сталь не применяют.

При повышении температуры также существенно уменьшается модуль упругости Е (рис. 91), а коэффициент Пуассона несколько возрастает. Так, при повышении температуры от комнатной до 773 К коэффициент Пуассона увеличивается с 0,28 до 0,33.

Углеродистые стали при высоких температурах сильно окисляются, на их поверхности образуется окалина. В связи с этим применяют специальные жаростойкие и жаропрочные стали, содержащие различ-
Ползучесть. При высоких температурах существенное значение имеет явление ползучести материалов (крип), заключающееся в росте пластической деформации с течением времени при постоянном напряжении, не вызывающем пластических деформаций при кратковременном действии нагрузки.

Ползучесть обусловливает возможность непрерывного изменения с течением времени размеров нагруженных при высоких температурах деталей, что может нарушить работу машин.

В зависимости от величины напряжения и температуры деформация, происходящая в результате ползучести, может либо прекратиться, либо продолжаться до разрушения материала.

Зависимости суммарной (ε) и остаточной ($\varepsilon_{ост}$) деформации от времени испытания при постоянном напряжении в температуре называют кривыми ползучести.

Вид кривых ползучести зависит от напряжения и температуры. Для сравнительно небольших температур (673—733 К) и напряжений (80—150 МПа) кривая ползучести для стали имеет характерный вид.
(рис. 92). Остаточная деформация вначале быстро нарастает, но при постепенно уменьшающейся скорости ползучести \(\dot{e}_{\text{oct}} = \frac{d e_{\text{oct}}}{dt} \) (первая стадия — стадия неуставновившейся ползучести), затем скорость ползучести остается примерно постоянной и является минимальной (вторая стадия — стадия установившейся ползучести) и, наконец, перед разрушением образца (точка \(d \)) скорость ползучести быстро возрастает (третья стадия — стадия ускоренной ползучести). Для других материалов и других условий кривые ползучести могут отличаться отсутствием этой или иной стадии.

Повышение напряжения при постоянной температуре, как и возрастание температуры при постоянном напряжении, обусловливает увеличение скорости ползучести.

Наиболее напряженных, при котором скорость или деформация ползучести при данной температуре за определённый промежуток времени не превыщает установленной величины (например, скорости 0,0001 %/ч или деформации 1 % за 10 000 ч), называется пределом ползучести.

Рис. 93

Если предел ползучести определяют по величине деформации, то обозначают его буквой \(\sigma \) с тремя числовыми индексами: двумя нижними и одним верхним. Первый нижний индекс отражает заданное удлинение (суммарное или остаточное), %; второй нижний индекс — заданную продолжительность времени испытания, ч; верхний индекс — температуру, К. Например, запись \(\sigma_{0.02/100}^{773} \) означает предел ползучести при допуске на деформацию 0,2 % за 100 ч испытания при температуре 773 К. При этом необходимо дополнительно указать, по суммарной или остаточной деформации определялся предел ползучести. Пределы ползучести для некоторых сталей и сплавов при высоких температурах приведены в табл. 15, а для ряда тугоплавких материалов — в табл. 16.

В случае определения предела ползучести по скорости ползучести его обозначают буквой \(v \) с двумя числовыми индексами: одним верхним и одним нижним. Нижний индекс отражает заданную скорость ползучести, %/ч; верхний — температуру испытания, К. Например, \(v_{1.10^{-6}/873} \) — это предел ползучести при скорости \(1 \cdot 10^{-6} \) %/ч при температуре 873 К. При этом необходимо дополнительно указать время испытания, за которое была достигнута заданная скорость ползучести.

Детали, работающие при высоких температурах, рассчитывают на ползучесть специальными методами с использованием экспериментальных данных, характеризующих ползучесть материала. Целью таких расчетов является определение пределов ползучести.

По результатам экспериментального определения минимальной скорости ползучести \(\dot{e}_{\text{oct min}} \) при растройстве образцов строят графики в логарифмических координатах \(\lg \sigma - \lg \dot{e}_{\text{oct min}} \). Экспериментальные точки хорошо группируются около некоторой прямой (рис. 93, a).
Отметим, что у некоторых материалов (свинца, бетона, высоко-полимерных материалов и др.) ползучесть наблюдается и при нормальной температуре.

Длительная прочность. В случае высокой температуры и длительного воздействия нагрузки наблюдается разрушение материала при напряжении, величина которого меньше временного сопротивления материала при данной температуре. В связи с этим возникает необходимость определять длительную прочность материалов.

Предел длительной прочности называется напряжение, вызывающее разрыв образца после заданного срока непрерывного действия этого напряжения при определенной температуре. Обозначается предел длительной прочности буквой σ с двумя числовыми индексами. Верхний индекс дает температуру испытания, K, нижний — заданную продолжительность испытания до разрушения, ч. Последнюю можно обозначить числом часов или цифрой 10 с показателем степени. Например,

σ⁹⁷³ или σ⁹⁷³₁₀₀₀ — предел длительной прочности за 1000 ч испытания при температуре 973 К. Пределы длительной прочности для отдельных сталей и сплавов при высоких температурах приведены в табл. 15, а для ряда тугоплавких материалов — в табл. 16.

Испытания на длительную прочность заключаются в том, что образцы подвергают различным напряжениям при определенной температуре и определяют время до их разрыва. Результаты представляют в виде графика (рис. 93, б). По кривой длительной прочности материала можно определить разрушающее напряжение по заданной продолжительности службы детали при данной температуре. Наоборот, по заданному напряжению можно определить время до разрушения. Например, деталь, изготовленная из материала, для которого кривая длительной прочности изображена на рис. 93, б, при напряжении 30 МПа и температуре 773 К разрушится через 2550 ч.

Результаты экспериментального определения длительной прочности удобно представлять в логарифмических координатах lg σ — lg t, где они достаточно хорошо аппроксимируются прямыми (рис. 93, а).

Отметим, что чем меньше разрушающее напряжение, а значит, больше время до разрыва, тем меньше относительное удлинение при разрыве, т. е. материал становится более хрупким. Это явление называется охрупчиванием. Для ряда материалов (например, для высокополимеров) указанный эффект проявляется и при комнатной температуре.

Релаксацией напряжений называется уменьшение их с течением времени вследствие ползучести в нагруженной детали при незначительной ее полной деформации. Это обусловлено тем, что увеличение с течением времени пластической деформации приводит к уменьшению
упругой деформации и падению напряжения. У большинства металлов релаксация заметна лишь при высоких температурах (рис. 94).

Это явление можно проиллюстрировать следующими примерами. Если между разведенными концами разрезанного стального кольца (рис. 95) вставить пластинку, то вследствие деформации кольца в нём возникнут напряжения и его концы, стремясь сблизниться, с большой силой сожмут пластинку. Если это соединение выдержать некоторое время при высокой температуре, то в кольце произойдет релаксация напряжений, сила сжатия пластинки уменьшится, и его можно будет легко вынуть.

Известно, что начальная затяжка болтов, работающих при высоких температурах, с течением времени ослабевает и это вызывает необходимость их подтягивать.

Влияние низких температур. На механические свойства некоторых материалов существенно влияют низкие температуры. Проявляется это в том, что материалы, пластичные при нормальной температуре, становятся хрупкими при низких температурах. Такие материалы называют хладоинокулы.

Хладоинокумость характерна для металлов, имеющих кристаллическую решетку в виде объемно-центрированного куба или гексагональную. К числу их относятся большинство черных металлов, в частности стали, а также цинковые сплавы. Проявляется хладоинокумость при статическом действии нагрузки и в особенности при динамическом. В качестве примера на рис. 96 приведены графики изменения предела текучести, временного сопротивления, относительного удлинения и сужения при статических испытаниях углеродистой стали в области низких температур.

Металлы, кристаллизующиеся в системе куба с центрированной гранями (мед, алюминий, никель, серебро, золото и др.), не обнаруживают хладоинокумости ни при каком понижении температуры. Например, алюминий при температуре жидкого азота (77 K) увеличивает прочность приблизительно в 2 раза, увеличивая одновременно относительное удлинение в 4 раза. Аналогично ведут себя мед и никель. Многие сплавы алюминия, меди, а также некоторые стали не обладают свойством хладоинокумости.

В табл. 17 представлены основные механические характеристики некоторых конструкционных материалов при низких температурах.

4.6. Допускаемые напряжения

Определить механические свойства материала путем проведения соответствующих испытаний образцов, можно найти, какие напряжения являются безопасными для работы конструкции, т. е. установить допускаемые напряжения. Очевидно, допускаемое напряжение должно
быть меньше опасного для данного материала напряжения, составляя некоторую его часть. Примем

$$[\sigma] = \frac{\sigma_0}{n}, \quad (4.19)$$

где $[\sigma]$ — допускаемое напряжение; σ_0 — опасное напряжение;

n — коэффициент запаса прочности.

Для деталей, изготовленных из пластичных материалов, опасным напряжением следует считать предел текучести $\sigma_0 = \sigma_t$, из хрупких — временное сопротивление $\sigma_0 = \sigma_b$.

Выбор коэффициента запаса прочности n, показывающего во сколько раз допускаемое напряжение меньше опасного, зависит от состояния материала (хрупкое, пластичное), характера приложения нагрузки (статическая, динамическая, повторно-переменная), а также от таких общих факторов, как неоднородность материала, неточность в задании внешних нагрузок, приближенность расчетных схем и формул и т. п. Величина запаса прочности зависит также от того, какое напряжение считаем опасным (σ_t или σ_b). Для пластичных материалов при статической нагрузке, когда $\sigma_0 = \sigma_t$; $n = n_t$, $[\sigma] = \frac{\sigma_t}{n_t}$, запас прочности принимают равным $n_t = 1,4 — 1,6$. При статических нагрузках в случае хрупких материалов, когда $\sigma_0 = \sigma_b$; $n = n_b$, $[\sigma] = \frac{\sigma_b}{n_b}$, запас прочности принимают равным $n_b = 2,5 — 3,0$.

Иногда и для пластичных материалов допускаемые напряжения определяют по времени сопротивлению, величину которого prakticheski определить проще. Тогда $[\sigma] = \sigma_b/n_b$. Учитывая, что $\sigma_t = (0,5 — 0,7) \sigma_b$, получаем $n_b = 2,4 — 2,6$.

Иногда допускаемые напряжения на растяжение обозначают $[\sigma_+]$, а на сжатие — $[\sigma_—]$. Хрупкие материалы сопротивляются сжатию лучше, чем растяжению, и для них $[\sigma_+] < [\sigma_—]$.

При статических нагрузках в случае однородных хрупких материалов следует учитывать концентрацию напряжений и расчет вести по наибольшим местным напряжениям

$$\sigma_{\text{max}} = \alpha \sigma_n < [\sigma],$$

где σ_n — номинальное напряжение, определяемое с учетом ослабления сечения, но без учета концентрации напряжений.

Ориентировочные значения допускаемых напряжений при статических нагрузках для различных материалов приведены в табл. 1. Данные о физико-механических свойствах основных конструкционных материалов приведены в Приложении 1.

<table>
<thead>
<tr>
<th>Материал</th>
<th>$E \cdot 10^{-4}$, МПа</th>
<th>$G \cdot 10^{-4}$, МПа</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Чугун серый, белый</td>
<td>1,13—1,57</td>
<td>4,4</td>
<td>0,23—0,27</td>
</tr>
<tr>
<td>Колчуг</td>
<td>1,52</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Углеродистые стали</td>
<td>1,96—2,06</td>
<td>7,85—7,94</td>
<td>0,24—0,28</td>
</tr>
<tr>
<td>Легированные стали</td>
<td>2,06—2,16</td>
<td>7,85—7,94</td>
<td>0,25—0,30</td>
</tr>
<tr>
<td>Вольфрам</td>
<td>4,12</td>
<td>16,3</td>
<td>0,26</td>
</tr>
<tr>
<td>Вольфраммольбденовые сплавы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W + 20,08 % Mo</td>
<td>3,97</td>
<td>15,5</td>
<td>0,28</td>
</tr>
<tr>
<td>W + 39,5 % Mo</td>
<td>3,28</td>
<td>15,0</td>
<td>0,27</td>
</tr>
<tr>
<td>W + 50,1 % Mo</td>
<td>3,72</td>
<td>14,5</td>
<td>0,28</td>
</tr>
<tr>
<td>W + 60,1 % Mo</td>
<td>3,57</td>
<td>14,2</td>
<td>0,26</td>
</tr>
<tr>
<td>W + 79,5 % Mo</td>
<td>3,46</td>
<td>12,8</td>
<td>0,35</td>
</tr>
<tr>
<td>Молибден</td>
<td>3,28</td>
<td>12,2</td>
<td>0,35</td>
</tr>
<tr>
<td>Медь прокатанная</td>
<td>1,08</td>
<td>3,92</td>
<td>0,31—0,34</td>
</tr>
<tr>
<td>Медь холоднотянутая</td>
<td>1,27</td>
<td>4,81</td>
<td>—</td>
</tr>
<tr>
<td>Медь литая</td>
<td>0,82</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Бронза фосфористая ката</td>
<td>1,13</td>
<td>4,12</td>
<td>0,32—0,35</td>
</tr>
<tr>
<td>Бронза марганцовистая ката</td>
<td>1,08</td>
<td>3,92</td>
<td>0,35</td>
</tr>
<tr>
<td>Латунь холоднотянутая</td>
<td>0,89—0,97</td>
<td>3,43—3,63</td>
<td>0,32—0,42</td>
</tr>
<tr>
<td>Латунь карабельного ката</td>
<td>0,98</td>
<td>—</td>
<td>0,36</td>
</tr>
<tr>
<td>Алюминий катаный</td>
<td>0,68</td>
<td>2,55—2,65</td>
<td>0,32—0,36</td>
</tr>
<tr>
<td>Алюминневая проволока тянутая</td>
<td>0,69</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Алюминневая бронза литая</td>
<td>1,03</td>
<td>4,12</td>
<td>—</td>
</tr>
<tr>
<td>Диоралюминий катаный</td>
<td>0,7</td>
<td>2,65</td>
<td>—</td>
</tr>
<tr>
<td>Цинк катаный</td>
<td>0,82</td>
<td>3,14</td>
<td>0,27</td>
</tr>
<tr>
<td>Свинец</td>
<td>0,17</td>
<td>0,69</td>
<td>0,42</td>
</tr>
<tr>
<td>Лед</td>
<td>0,1</td>
<td>0,27—0,29</td>
<td>—</td>
</tr>
<tr>
<td>Стекло</td>
<td>0,55</td>
<td>2,16</td>
<td>0,25</td>
</tr>
<tr>
<td>Гранит</td>
<td>0,48</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Известняк</td>
<td>0,41</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Мрамор</td>
<td>0,55</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Песчаник</td>
<td>0,18</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Кладка из гранита</td>
<td>0,09—0,1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>известняка</td>
<td>0,6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>кирпича</td>
<td>0,026—0,029</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Бетон при пределе прочности</td>
<td></td>
<td>—</td>
<td>0,16—0,18</td>
</tr>
<tr>
<td>10 МПа</td>
<td>0,143—0,192</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15 МПа</td>
<td>0,161—0,21</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20 МПа</td>
<td>0,178—0,228</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Дерево вдоль волокон</td>
<td>0,1—0,12</td>
<td>0,054</td>
<td>—</td>
</tr>
</tbody>
</table>
Продолжение табл 10

<table>
<thead>
<tr>
<th>Материал</th>
<th>$E \ 10^{-3}$, МПа</th>
<th>$G \ 10^{-4}$, МПа</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дерево поперек волокон</td>
<td>0,005—0,01</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Каучук</td>
<td>0,00003</td>
<td>—</td>
<td>0,47</td>
</tr>
<tr>
<td>Текстолит</td>
<td>0,06—0,1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Гетинакс</td>
<td>0,1—0,17</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Бакелит</td>
<td>0,02—0,03</td>
<td>—</td>
<td>0,36</td>
</tr>
<tr>
<td>Висхомилит (IM-44)</td>
<td>0,039—0,041</td>
<td>—</td>
<td>0,37</td>
</tr>
<tr>
<td>Целлулонд</td>
<td>0,014—0,027</td>
<td>—</td>
<td>0,33—0,38</td>
</tr>
</tbody>
</table>

Таблица 11. Модули упругости E и G (в скобках) ($\times 10^{-2}$ МПа) ряду конструкционных материалов при комнатной и пониженных температурах

<table>
<thead>
<tr>
<th>Материал</th>
<th>293</th>
<th>273</th>
<th>233</th>
<th>193</th>
<th>153</th>
<th>113</th>
<th>77</th>
</tr>
</thead>
<tbody>
<tr>
<td>ХВГ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,858)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Х17Н2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,855)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Нержавеющие стали</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT3, листы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,457)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OT4, листы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,462)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Титановые сплавы
Продолжение табл. 11

<table>
<thead>
<tr>
<th>Материал</th>
<th>293</th>
<th>273</th>
<th>233</th>
<th>193</th>
<th>153</th>
<th>113</th>
<th>77</th>
</tr>
</thead>
<tbody>
<tr>
<td>сварной шов</td>
<td>1,202</td>
<td>1,226</td>
<td>1,254</td>
<td>1,275</td>
<td>1,301</td>
<td>1,318</td>
<td>1,333</td>
</tr>
<tr>
<td>(0,466)</td>
<td>(0,471)</td>
<td>(0,481)</td>
<td>(0,492)</td>
<td>(0,502)</td>
<td>(0,511)</td>
<td>(0,517)</td>
<td></td>
</tr>
<tr>
<td>ВТ8, прутки</td>
<td>1,264</td>
<td>1,278</td>
<td>1,297</td>
<td>1,316</td>
<td>1,333</td>
<td>1,350</td>
<td>1,364</td>
</tr>
<tr>
<td>(0,464)</td>
<td>(0,469)</td>
<td>(0,476)</td>
<td>(0,482)</td>
<td>(0,489)</td>
<td>(0,495)</td>
<td>(0,504)</td>
<td></td>
</tr>
<tr>
<td>ВТЗ-1, прутки</td>
<td>1,328</td>
<td>1,338</td>
<td>1,356</td>
<td>1,375</td>
<td>1,391</td>
<td>1,406</td>
<td>1,418</td>
</tr>
<tr>
<td>(0,485)</td>
<td>(0,490)</td>
<td>(0,497)</td>
<td>(0,502)</td>
<td>(0,508)</td>
<td>(0,514)</td>
<td>(0,519)</td>
<td></td>
</tr>
</tbody>
</table>

Тугоплавкие металлы

<table>
<thead>
<tr>
<th>Молибден</th>
<th>3,499</th>
<th>3,511</th>
<th>3,532</th>
<th>3,550</th>
<th>3,568</th>
<th>3,579</th>
<th>3,583</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сплав молибдена Mo + + 0,07 % C</td>
<td>3,372</td>
<td>3,385</td>
<td>3,405</td>
<td>3,42</td>
<td>3,443</td>
<td>3,445</td>
<td>3,450</td>
</tr>
</tbody>
</table>

Ниобий

<table>
<thead>
<tr>
<th>прутки</th>
<th>1,127</th>
<th>1,130</th>
<th>1,138</th>
<th>1,145</th>
<th>1,156</th>
<th>1,172</th>
<th>1,182</th>
</tr>
</thead>
<tbody>
<tr>
<td>листы</td>
<td>1,078</td>
<td>1,080</td>
<td>1,086</td>
<td>1,095</td>
<td>1,104</td>
<td>1,112</td>
<td>1,113</td>
</tr>
</tbody>
</table>

Сплав ниобия Nb + + 0,1 % С + + 1 % Zr

| 1,264 | 1,270 | 1,278 | 1,284 | 1,291 | 1,304 | 1,312|
| Модули упругости и коэффициент Пуассона тугоплавких металлов при комнатной и высоких температурах |
|--|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Температура, К | 293 | 373 | 473 | 573 | 673 | 773 | 873 | 973 | 1073 |
| Модули упругости и коэффициент Пуассона | E·10⁻⁸, МПа | G·10⁻⁸, МПа | μ |
| | 4,12 | 1,63 | 0,26 | 4,08 | 1,62 | 0,26 | 4,04 | 1,60 | 0,26 | 4,01 | 1,58 | 0,27 |
| | 4,97 | 1,57 | 0,27 | 3,93 | 1,55 | 0,27 | 3,89 | 1,53 | 0,27 | 3,85 | 1,51 | 0,27 |
| | 3,82 | 1,49 | 0,28 | | | | | | | | | |
| Металлокерамический | E·10⁻⁸, МПа | G·10⁻⁸, МПа | μ | E·10⁻⁸, МПа | G·10⁻⁸, МПа | μ | E·10⁻⁸, МПа | G·10⁻⁸, МПа | μ |
| | 3,95 | 1,48 | 0,34 | 3,93 | 1,46 | 0,34 | 3,88 | 1,44 | 0,34 | 3,84 | 1,42 | 0,35 |
| | 3,88 | 1,40 | 0,35 | 3,80 | 1,38 | 0,35 | 3,75 | 1,36 | 0,35 | 3,70 | 1,35 | 0,35 |
| | 3,66 | 1,34 | 0,34 | | | | | | | | | |
| Молибден | E·10⁻⁸, МПа | G·10⁻⁸, МПа | μ | E·10⁻⁸, МПа | G·10⁻⁸, МПа | μ | E·10⁻⁸, МПа | G·10⁻⁸, МПа | μ |
| | 3,28 | 1,21 | 0,35 | 3,24 | 1,20 | 0,35 | 3,20 | 1,18 | 0,35 | 3,16 | 1,16 | 0,36 |
| | 3,12 | 1,14 | 0,36 | 3,01 | 1,13 | 0,36 | 3,03 | 1,12 | 0,36 | 3,03 | 1,10 | 0,35 |
| | 2,98 | 1,08 | 0,36 | | | | | | | | | |
| Металлокерамический | E·10⁻⁸, МПа | G·10⁻⁸, МПа | μ | E·10⁻⁸, МПа | G·10⁻⁸, МПа | μ | E·10⁻⁸, МПа | G·10⁻⁸, МПа | μ |
| | 3,28 | 1,24 | 0,32 | 3,22 | 1,22 | 0,31 | 3,17 | 1,20 | 0,32 | 3,12 | 1,18 | 0,32 |
| | 3,12 | 1,14 | 0,31 | 3,06 | 1,16 | 0,31 | 3,00 | 1,12 | 0,31 | 3,00 | 1,14 | 0,31 |
| | 2,95 | 1,07 | 0,31 | | | | | | | | | |
| Тантал | E·10⁻⁸, МПа | G·10⁻⁸, МПа | μ | E·10⁻⁸, МПа | G·10⁻⁸, МПа | μ | E·10⁻⁸, МПа | G·10⁻⁸, МПа | μ |
| | 1,79 | 0,72 | 0,24 | 1,73 | 0,71 | 0,24 | 1,74 | 0,70 | 0,25 | 1,72 | 0,70 | 0,25 |
| | 1,70 | 0,69 | 0,24 | 1,68 | 0,68 | 0,24 | 1,67 | 0,67 | 0,25 | 1,65 | 0,67 | 0,25 |
| | 1,65 | 0,66 | | | | | | | | | | |

168
<table>
<thead>
<tr>
<th>Модули упругости и коэффициент Пуассона</th>
<th>Температура, К</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1173</td>
</tr>
<tr>
<td>Вольфрам</td>
<td></td>
</tr>
<tr>
<td>литой</td>
<td></td>
</tr>
<tr>
<td>$E \cdot 10^{-8}$, МПа</td>
<td>3,78</td>
</tr>
<tr>
<td>$G \cdot 10^{-8}$, МПа</td>
<td>1,48</td>
</tr>
<tr>
<td>μ</td>
<td>0,28</td>
</tr>
<tr>
<td>металллокерамический</td>
<td></td>
</tr>
<tr>
<td>литой</td>
<td></td>
</tr>
<tr>
<td>$E \cdot 10^{-8}$, МПа</td>
<td>3,57</td>
</tr>
<tr>
<td>$G \cdot 10^{-8}$, МПа</td>
<td>1,32</td>
</tr>
<tr>
<td>μ</td>
<td>0,35</td>
</tr>
<tr>
<td>Молибден</td>
<td></td>
</tr>
<tr>
<td>литой</td>
<td></td>
</tr>
<tr>
<td>$E \cdot 10^{-8}$, МПа</td>
<td>2,90</td>
</tr>
<tr>
<td>$G \cdot 10^{-8}$, МПа</td>
<td>1,07</td>
</tr>
<tr>
<td>μ</td>
<td>0,35</td>
</tr>
<tr>
<td>металллокерамический</td>
<td></td>
</tr>
<tr>
<td>литой</td>
<td></td>
</tr>
<tr>
<td>$E \cdot 10^{-8}$, МПа</td>
<td>2,76</td>
</tr>
<tr>
<td>$G \cdot 10^{-8}$, МПа</td>
<td>1,05</td>
</tr>
<tr>
<td>μ</td>
<td>0,31</td>
</tr>
<tr>
<td>Тантал</td>
<td></td>
</tr>
<tr>
<td>$E \cdot 10^{-8}$, МПа</td>
<td>1,63</td>
</tr>
<tr>
<td>$G \cdot 10^{-8}$, МПа</td>
<td>0,66</td>
</tr>
<tr>
<td>μ</td>
<td>0,24</td>
</tr>
</tbody>
</table>

169
<table>
<thead>
<tr>
<th>Модули упругости и коэффициент Пуассона</th>
<th>Температура, К</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2073</td>
</tr>
<tr>
<td>Вольфрам</td>
<td></td>
</tr>
<tr>
<td>литой</td>
<td></td>
</tr>
<tr>
<td>$E \cdot 10^{-5}$, МПа</td>
<td>3,28</td>
</tr>
<tr>
<td>$G \cdot 10^{-5}$, МПа</td>
<td>1,27</td>
</tr>
<tr>
<td>μ</td>
<td>0,29</td>
</tr>
<tr>
<td>металлокерамический</td>
<td></td>
</tr>
<tr>
<td>Молибден</td>
<td></td>
</tr>
<tr>
<td>литой</td>
<td></td>
</tr>
<tr>
<td>$E \cdot 10^{-5}$, МПа</td>
<td>2,90</td>
</tr>
<tr>
<td>$G \cdot 10^{-5}$, МПа</td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td></td>
</tr>
<tr>
<td>металлокерамический</td>
<td></td>
</tr>
<tr>
<td>Тантал</td>
<td></td>
</tr>
<tr>
<td>$E \cdot 10^{-5}$, МПа</td>
<td>1,51</td>
</tr>
<tr>
<td>$G \cdot 10^{-5}$, МПа</td>
<td>0,61</td>
</tr>
<tr>
<td>μ</td>
<td>0,23</td>
</tr>
</tbody>
</table>

170
<table>
<thead>
<tr>
<th>Диаметр отпечатка, мм</th>
<th>HB, МПа</th>
<th>HRC</th>
<th>(\sigma_B) (МПа) для сталей</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ультрадиистой</td>
</tr>
<tr>
<td>2,34</td>
<td>6880</td>
<td>65</td>
<td>2490</td>
</tr>
<tr>
<td>2,37</td>
<td>6700</td>
<td>64</td>
<td>2410</td>
</tr>
<tr>
<td>2,39</td>
<td>6590</td>
<td>63</td>
<td>2370</td>
</tr>
<tr>
<td>2,42</td>
<td>6430</td>
<td>62</td>
<td>2310</td>
</tr>
<tr>
<td>2,45</td>
<td>6270</td>
<td>61</td>
<td>2260</td>
</tr>
<tr>
<td>2,48</td>
<td>6110</td>
<td>60</td>
<td>2200</td>
</tr>
<tr>
<td>2,51</td>
<td>5970</td>
<td>59</td>
<td>2140</td>
</tr>
<tr>
<td>2,54</td>
<td>5820</td>
<td>58</td>
<td>2080</td>
</tr>
<tr>
<td>2,57</td>
<td>5690</td>
<td>57</td>
<td>2050</td>
</tr>
<tr>
<td>2,62</td>
<td>5470</td>
<td>55</td>
<td>1960</td>
</tr>
<tr>
<td>2,71</td>
<td>5100</td>
<td>52</td>
<td>1830</td>
</tr>
<tr>
<td>2,78</td>
<td>4850</td>
<td>50</td>
<td>1750</td>
</tr>
<tr>
<td>2,85</td>
<td>4610</td>
<td>48</td>
<td>1650</td>
</tr>
<tr>
<td>2,91</td>
<td>4410</td>
<td>46</td>
<td>1590</td>
</tr>
<tr>
<td>2,98</td>
<td>4200</td>
<td>44</td>
<td>1510</td>
</tr>
<tr>
<td>3,08</td>
<td>3930</td>
<td>42</td>
<td>1410</td>
</tr>
<tr>
<td>3,14</td>
<td>3780</td>
<td>40</td>
<td>1360</td>
</tr>
<tr>
<td>3,24</td>
<td>3540</td>
<td>38</td>
<td>1280</td>
</tr>
<tr>
<td>3,34</td>
<td>3330</td>
<td>36</td>
<td>1200</td>
</tr>
<tr>
<td>3,44</td>
<td>3130</td>
<td>34</td>
<td>1120</td>
</tr>
<tr>
<td>3,52</td>
<td>2980</td>
<td>32</td>
<td>1070</td>
</tr>
<tr>
<td>3,62</td>
<td>2820</td>
<td>30</td>
<td>1020</td>
</tr>
<tr>
<td>3,70</td>
<td>2690</td>
<td>28</td>
<td>980</td>
</tr>
<tr>
<td>3,80</td>
<td>2550</td>
<td>26</td>
<td>920</td>
</tr>
<tr>
<td>3,90</td>
<td>2410</td>
<td>24</td>
<td>870</td>
</tr>
<tr>
<td>4,00</td>
<td>2290</td>
<td>22</td>
<td>820</td>
</tr>
<tr>
<td>4,10</td>
<td>2170</td>
<td>20</td>
<td>780</td>
</tr>
<tr>
<td>4,20</td>
<td>2070</td>
<td>18</td>
<td>740</td>
</tr>
<tr>
<td>4,26</td>
<td>2000</td>
<td>18</td>
<td>720</td>
</tr>
<tr>
<td>4,37</td>
<td>1900</td>
<td>16</td>
<td>680</td>
</tr>
<tr>
<td>4,48</td>
<td>1800</td>
<td>14</td>
<td>650</td>
</tr>
<tr>
<td>4,60</td>
<td>1700</td>
<td>12</td>
<td>610</td>
</tr>
<tr>
<td>4,74</td>
<td>1600</td>
<td>10</td>
<td>580</td>
</tr>
<tr>
<td>4,88</td>
<td>1500</td>
<td>8</td>
<td>540</td>
</tr>
<tr>
<td>5,05</td>
<td>1400</td>
<td>6</td>
<td>500</td>
</tr>
<tr>
<td>5,21</td>
<td>1300</td>
<td>4</td>
<td>470</td>
</tr>
<tr>
<td>5,42</td>
<td>1200</td>
<td>2</td>
<td>430</td>
</tr>
<tr>
<td>5,63</td>
<td>1100</td>
<td>1</td>
<td>400</td>
</tr>
<tr>
<td>5,83</td>
<td>1020</td>
<td>0</td>
<td>370</td>
</tr>
<tr>
<td>Материал</td>
<td>Температура, K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>473</td>
<td>673</td>
</tr>
<tr>
<td>Вольфрам</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>отожженный</td>
<td>3500</td>
<td>1600</td>
<td>1200</td>
</tr>
<tr>
<td>наклепанный</td>
<td>4500</td>
<td>2400</td>
<td>1610</td>
</tr>
<tr>
<td>Молибден</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>отожженный</td>
<td>1600</td>
<td>800</td>
<td>700</td>
</tr>
<tr>
<td>наклепанный</td>
<td>2400</td>
<td>1600</td>
<td>1400</td>
</tr>
<tr>
<td>Сплавы ниобия</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb + 5 % Mo</td>
<td>1600</td>
<td>1350</td>
<td>1300</td>
</tr>
<tr>
<td>Nb + 12 % W</td>
<td>1900</td>
<td>1700</td>
<td>1610</td>
</tr>
<tr>
<td>Nb + 25 % Zr</td>
<td>2800</td>
<td>2800</td>
<td>2420</td>
</tr>
<tr>
<td>Тантал</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сплав тантала</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ta + 10 % W</td>
<td>1400</td>
<td>1200</td>
<td>1300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Материал</th>
<th>Температура, K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1473</td>
</tr>
<tr>
<td>Вольфрам</td>
<td></td>
</tr>
<tr>
<td>отожженный</td>
<td>600</td>
</tr>
<tr>
<td>наклепанный</td>
<td>1100</td>
</tr>
<tr>
<td>Молибден</td>
<td></td>
</tr>
<tr>
<td>отожженный</td>
<td>300</td>
</tr>
<tr>
<td>наклепанный</td>
<td>600</td>
</tr>
<tr>
<td>Сплавы ниобия</td>
<td></td>
</tr>
<tr>
<td>Nb + 5 % Mo</td>
<td>300</td>
</tr>
<tr>
<td>Nb + 12 % W</td>
<td>400</td>
</tr>
<tr>
<td>Nb + 25 % Zr</td>
<td>400</td>
</tr>
<tr>
<td>Тантал</td>
<td></td>
</tr>
<tr>
<td>Сплав тантала</td>
<td></td>
</tr>
<tr>
<td>Ta + 10 % W</td>
<td>300</td>
</tr>
<tr>
<td>Марка стали или сплава</td>
<td>Температура испытания, °C</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2Х13</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>573</td>
</tr>
<tr>
<td></td>
<td>673</td>
</tr>
<tr>
<td></td>
<td>723</td>
</tr>
<tr>
<td></td>
<td>773</td>
</tr>
<tr>
<td></td>
<td>823</td>
</tr>
<tr>
<td>12Х18Н9Т</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>673</td>
</tr>
<tr>
<td></td>
<td>773</td>
</tr>
<tr>
<td></td>
<td>873</td>
</tr>
<tr>
<td></td>
<td>973</td>
</tr>
<tr>
<td></td>
<td>1073</td>
</tr>
<tr>
<td>40Х10С2M</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>673</td>
</tr>
<tr>
<td></td>
<td>773</td>
</tr>
<tr>
<td></td>
<td>823</td>
</tr>
<tr>
<td></td>
<td>873</td>
</tr>
<tr>
<td>XH35VT</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>773</td>
</tr>
<tr>
<td></td>
<td>873</td>
</tr>
<tr>
<td></td>
<td>923</td>
</tr>
<tr>
<td></td>
<td>973</td>
</tr>
<tr>
<td>37Х12Н8Г6МВФ</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>723</td>
</tr>
<tr>
<td></td>
<td>873</td>
</tr>
<tr>
<td></td>
<td>923</td>
</tr>
<tr>
<td></td>
<td>973</td>
</tr>
<tr>
<td></td>
<td>1023</td>
</tr>
<tr>
<td>XH70МФЮМБ</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>873</td>
</tr>
<tr>
<td></td>
<td>973</td>
</tr>
<tr>
<td></td>
<td>1073</td>
</tr>
<tr>
<td></td>
<td>1173</td>
</tr>
<tr>
<td>XH77ЮМ</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>773</td>
</tr>
<tr>
<td></td>
<td>873</td>
</tr>
<tr>
<td></td>
<td>973</td>
</tr>
<tr>
<td></td>
<td>1073</td>
</tr>
<tr>
<td>Марка стали или сплава</td>
<td>Температура испытания, К</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>83</td>
<td>873</td>
</tr>
<tr>
<td>82</td>
<td>873</td>
</tr>
<tr>
<td>87</td>
<td>873</td>
</tr>
<tr>
<td>83</td>
<td>873</td>
</tr>
<tr>
<td>82</td>
<td>873</td>
</tr>
<tr>
<td>87</td>
<td>873</td>
</tr>
<tr>
<td>83</td>
<td>873</td>
</tr>
<tr>
<td>82</td>
<td>873</td>
</tr>
<tr>
<td>87</td>
<td>873</td>
</tr>
<tr>
<td>Материал</td>
<td>Температура, К</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>Молибден</td>
<td>1673</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Сплав молибдена ВМ-1</td>
<td>1873</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Сплавы ниобия Nb + 9 % Mo</td>
<td>1273</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1373</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1473</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1573</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1673</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb + 9,8 % Mo</td>
<td>1273</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1373</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Материал</td>
<td>Температура, K</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>1473</td>
<td>41,0</td>
</tr>
<tr>
<td></td>
<td>46,0</td>
</tr>
<tr>
<td></td>
<td>51,0</td>
</tr>
<tr>
<td></td>
<td>51,0</td>
</tr>
<tr>
<td></td>
<td>55,0</td>
</tr>
<tr>
<td></td>
<td>65,0</td>
</tr>
<tr>
<td></td>
<td>79,0</td>
</tr>
<tr>
<td></td>
<td>96,0</td>
</tr>
<tr>
<td>1573</td>
<td>26,5</td>
</tr>
<tr>
<td></td>
<td>30,6</td>
</tr>
<tr>
<td></td>
<td>34,6</td>
</tr>
<tr>
<td></td>
<td>81,0</td>
</tr>
<tr>
<td>1673</td>
<td>15,0</td>
</tr>
<tr>
<td></td>
<td>16,3</td>
</tr>
<tr>
<td></td>
<td>20,2</td>
</tr>
<tr>
<td></td>
<td>24,5</td>
</tr>
<tr>
<td></td>
<td>25,0</td>
</tr>
<tr>
<td></td>
<td>54,0</td>
</tr>
<tr>
<td></td>
<td>69,5</td>
</tr>
<tr>
<td>ВН-2</td>
<td></td>
</tr>
<tr>
<td>1273</td>
<td>116,0</td>
</tr>
<tr>
<td></td>
<td>131,0</td>
</tr>
<tr>
<td></td>
<td>138,0</td>
</tr>
<tr>
<td></td>
<td>146,0</td>
</tr>
<tr>
<td></td>
<td>180,0</td>
</tr>
<tr>
<td></td>
<td>200,0</td>
</tr>
<tr>
<td></td>
<td>282,0</td>
</tr>
<tr>
<td>1373</td>
<td>65,0</td>
</tr>
<tr>
<td></td>
<td>68,0</td>
</tr>
<tr>
<td></td>
<td>75,5</td>
</tr>
<tr>
<td></td>
<td>81,0</td>
</tr>
<tr>
<td></td>
<td>84,0</td>
</tr>
<tr>
<td></td>
<td>120,0</td>
</tr>
<tr>
<td></td>
<td>170,0</td>
</tr>
<tr>
<td>1473</td>
<td>37,5</td>
</tr>
<tr>
<td></td>
<td>45,0</td>
</tr>
<tr>
<td></td>
<td>51,0</td>
</tr>
<tr>
<td></td>
<td>54,0</td>
</tr>
<tr>
<td></td>
<td>57,0</td>
</tr>
<tr>
<td></td>
<td>70,0</td>
</tr>
<tr>
<td></td>
<td>75,0</td>
</tr>
<tr>
<td></td>
<td>116,0</td>
</tr>
<tr>
<td>1573</td>
<td>22,2</td>
</tr>
<tr>
<td></td>
<td>26,3</td>
</tr>
<tr>
<td></td>
<td>30,0</td>
</tr>
<tr>
<td></td>
<td>86,0</td>
</tr>
<tr>
<td>Материал</td>
<td>Температура, К</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>1673</td>
<td>10,2</td>
</tr>
<tr>
<td>14,2</td>
<td>200,0</td>
</tr>
<tr>
<td>17,2</td>
<td>100,0</td>
</tr>
<tr>
<td>18,5</td>
<td>—</td>
</tr>
<tr>
<td>24,0</td>
<td>—</td>
</tr>
<tr>
<td>27,0</td>
<td>—</td>
</tr>
<tr>
<td>63,0</td>
<td>—</td>
</tr>
<tr>
<td>ВН-3</td>
<td></td>
</tr>
<tr>
<td>отжиг при 1873 К, 10 мин</td>
<td>1327</td>
</tr>
<tr>
<td></td>
<td>90,0</td>
</tr>
<tr>
<td></td>
<td>130,0</td>
</tr>
<tr>
<td></td>
<td>195,0</td>
</tr>
<tr>
<td>1427</td>
<td>33,0</td>
</tr>
<tr>
<td></td>
<td>52,0</td>
</tr>
<tr>
<td></td>
<td>80,0</td>
</tr>
<tr>
<td></td>
<td>125,0</td>
</tr>
<tr>
<td>1627</td>
<td>11,0</td>
</tr>
<tr>
<td></td>
<td>20,0</td>
</tr>
<tr>
<td></td>
<td>36,0</td>
</tr>
<tr>
<td></td>
<td>65,0</td>
</tr>
<tr>
<td>1727</td>
<td>11,0</td>
</tr>
<tr>
<td></td>
<td>25,0</td>
</tr>
<tr>
<td></td>
<td>42,0</td>
</tr>
<tr>
<td>отжиг при 1373 К, 3 ч</td>
<td>1373</td>
</tr>
<tr>
<td></td>
<td>83,0</td>
</tr>
<tr>
<td></td>
<td>170,0</td>
</tr>
<tr>
<td>1473</td>
<td>42,0</td>
</tr>
<tr>
<td></td>
<td>48,0</td>
</tr>
<tr>
<td></td>
<td>105,0</td>
</tr>
<tr>
<td>1673</td>
<td>22,0</td>
</tr>
<tr>
<td></td>
<td>25,0</td>
</tr>
<tr>
<td></td>
<td>58,0</td>
</tr>
<tr>
<td>Тантал</td>
<td></td>
</tr>
<tr>
<td>1073</td>
<td>110,0</td>
</tr>
<tr>
<td></td>
<td>120,0</td>
</tr>
<tr>
<td>1173</td>
<td>80,0</td>
</tr>
<tr>
<td></td>
<td>85,0</td>
</tr>
<tr>
<td></td>
<td>95,0</td>
</tr>
<tr>
<td>Сплав тантала Ta + 10 % W</td>
<td>1173</td>
</tr>
<tr>
<td></td>
<td>280,0</td>
</tr>
<tr>
<td>1573</td>
<td>70,0</td>
</tr>
<tr>
<td></td>
<td>84,0</td>
</tr>
<tr>
<td></td>
<td>101,0</td>
</tr>
<tr>
<td>2073</td>
<td>23,0</td>
</tr>
<tr>
<td></td>
<td>30,0</td>
</tr>
<tr>
<td></td>
<td>40,0</td>
</tr>
</tbody>
</table>
Таблица 17. Механические характеристики некоторых конструкционных материалов при низких температурах

<table>
<thead>
<tr>
<th>Материал</th>
<th>Температура, К</th>
<th>Предел прочности, МПа</th>
<th>Предел пропорциональности, МПа</th>
<th>Предел текучести, МПа</th>
<th>Предел выносливости, МПа</th>
<th>Напряжение в момент разрыва, МПа</th>
<th>Относительное удлинение, %</th>
<th>Относительное сужение, %</th>
<th>Истинное относительное удлинение, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ст3</td>
<td>293</td>
<td>417</td>
<td>—</td>
<td>253</td>
<td>230</td>
<td>—</td>
<td>26,7</td>
<td>48,5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>193</td>
<td>519</td>
<td>—</td>
<td>461</td>
<td>—</td>
<td>—</td>
<td>25,0</td>
<td>50,5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>133</td>
<td>666</td>
<td>—</td>
<td>637</td>
<td>—</td>
<td>—</td>
<td>17,5</td>
<td>43,0</td>
<td>—</td>
</tr>
<tr>
<td>Сталь 20</td>
<td>293</td>
<td>468</td>
<td>—</td>
<td>305,7</td>
<td>—</td>
<td>—</td>
<td>28,7</td>
<td>50,0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>193</td>
<td>568</td>
<td>—</td>
<td>470</td>
<td>—</td>
<td>—</td>
<td>27,0</td>
<td>50,5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>133</td>
<td>691</td>
<td>—</td>
<td>657</td>
<td>—</td>
<td>—</td>
<td>21,0</td>
<td>47,5</td>
<td>—</td>
</tr>
<tr>
<td>15Г2АФД, листы</td>
<td>293</td>
<td>519</td>
<td>—</td>
<td>420</td>
<td>—</td>
<td>—</td>
<td>28,5</td>
<td>42,0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>253</td>
<td>519</td>
<td>—</td>
<td>421</td>
<td>—</td>
<td>—</td>
<td>25,5</td>
<td>44,5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>213</td>
<td>598</td>
<td>—</td>
<td>490</td>
<td>—</td>
<td>—</td>
<td>29,0</td>
<td>47,5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>173</td>
<td>637</td>
<td>—</td>
<td>519</td>
<td>—</td>
<td>—</td>
<td>25,0</td>
<td>56,0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>133</td>
<td>691</td>
<td>—</td>
<td>696</td>
<td>—</td>
<td>—</td>
<td>25,5</td>
<td>64,5</td>
<td>—</td>
</tr>
<tr>
<td>ЭП410 (Э и ИС)</td>
<td>293</td>
<td>949</td>
<td>—</td>
<td>712</td>
<td>—</td>
<td>—</td>
<td>14,6</td>
<td>65,8</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>1407</td>
<td>—</td>
<td>1145</td>
<td>—</td>
<td>—</td>
<td>14,3</td>
<td>70,6</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4,2</td>
<td>1447</td>
<td>—</td>
<td>1330</td>
<td>—</td>
<td>—</td>
<td>10,6</td>
<td>56,5</td>
<td>—</td>
</tr>
<tr>
<td>Материал</td>
<td>Свойства</td>
<td>Значения</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03X13АГ19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>листы (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>806</td>
<td>—</td>
<td>335</td>
<td>380</td>
<td>—</td>
<td>51,5</td>
<td>64,0</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>1364</td>
<td>—</td>
<td>682</td>
<td>580</td>
<td>—</td>
<td>32,0</td>
<td>22,2</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>4,2</td>
<td>1366</td>
<td>—</td>
<td>862</td>
<td>—</td>
<td>—</td>
<td>30,0</td>
<td>60,3</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>03X12H10МТ-ВД</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(З и От)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>962</td>
<td>—</td>
<td>799</td>
<td>500</td>
<td>—</td>
<td>15,0</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>1436</td>
<td>—</td>
<td>1156</td>
<td>790</td>
<td>—</td>
<td>16,7</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>4,2</td>
<td>1578</td>
<td>—</td>
<td>1441</td>
<td>—</td>
<td>—</td>
<td>8,5</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>07X16Н6 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>293</td>
<td>1332—1357</td>
<td>1000</td>
<td>1083—1105</td>
<td>—</td>
<td>2070</td>
<td>21,5</td>
<td>63,5</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>1580</td>
<td>1080</td>
<td>1153</td>
<td>—</td>
<td>2610</td>
<td>19,3</td>
<td>62,0</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>1862—1905</td>
<td>1210</td>
<td>1305—1332</td>
<td>—</td>
<td>3450</td>
<td>19,5</td>
<td>57,2</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>4,2</td>
<td>2072—2115</td>
<td>1450</td>
<td>1524—1552</td>
<td>—</td>
<td>3500</td>
<td>13,0—13,2</td>
<td>40,2—40,5</td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>12Х18Н10Т</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>293</td>
<td>658—695</td>
<td>172</td>
<td>260—285</td>
<td>295</td>
<td>2090</td>
<td>52,2—63,0</td>
<td>68,7—78,0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>1074</td>
<td>250</td>
<td>370</td>
<td>—</td>
<td>2370</td>
<td>49,0</td>
<td>70,0</td>
<td>10,6</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>1535—1680</td>
<td>300</td>
<td>420—646</td>
<td>410</td>
<td>2730</td>
<td>42,0—54,2</td>
<td>56,0—61,1</td>
<td>6,2</td>
<td></td>
</tr>
<tr>
<td>4,2</td>
<td>1730—1793</td>
<td>430</td>
<td>503—773</td>
<td>—</td>
<td>3600</td>
<td>34,0—39,3</td>
<td>49,0—60,5</td>
<td>6,5</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>03Х16Н16АГ6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>листы (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>726—742</td>
<td>325</td>
<td>380—408</td>
<td>265</td>
<td>1660</td>
<td>49,7—50,2</td>
<td>59,8—70,5</td>
<td>7,9</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>710</td>
<td>465</td>
<td>480</td>
<td>—</td>
<td>1950</td>
<td>49,1</td>
<td>69,5</td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>1360—1459</td>
<td>750</td>
<td>800—908</td>
<td>540</td>
<td>2720</td>
<td>48,5—52,8</td>
<td>52,4—54,5</td>
<td>8,0</td>
<td></td>
</tr>
<tr>
<td>4,2</td>
<td>1608—1744</td>
<td>1060</td>
<td>1740—1150</td>
<td>—</td>
<td>3230</td>
<td>29,2—42,9</td>
<td>39,7—50,5</td>
<td>6,7</td>
<td></td>
</tr>
</tbody>
</table>

* Значения характеристик получены при постоянной скорости деформирования 0,5 см/мин.
<table>
<thead>
<tr>
<th>Материал</th>
<th>Температура, К</th>
<th>Предел прочности, МПа</th>
<th>Предел пропорциональности, МПа</th>
<th>Предел текучести, МПа</th>
<th>Предел выносливости, МПа</th>
<th>Напряжение в момент разрыва, МПа</th>
<th>Относительное удлинение, %</th>
<th>Относительное сужение, %</th>
<th>Истиное относительное удлинение, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Д20, листы (3 и ИС)</td>
<td>293</td>
<td>410-426</td>
<td>315</td>
<td>299-309</td>
<td>670</td>
<td>11,5-14,7</td>
<td>23,5-45,5</td>
<td>4,7</td>
<td>4,8</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>443</td>
<td>335</td>
<td>324</td>
<td>715</td>
<td>15,2</td>
<td>41,2</td>
<td>4,7</td>
<td>4,8</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>523-549</td>
<td>375</td>
<td>388-417</td>
<td>825</td>
<td>11,2-15,2</td>
<td>26,0-33,3</td>
<td>6,7</td>
<td>6,7</td>
</tr>
<tr>
<td></td>
<td>4,2</td>
<td>653-675</td>
<td>400</td>
<td>427-440</td>
<td>1000</td>
<td>11,7-16,2</td>
<td>20,6-26,3</td>
<td>4,1</td>
<td>4,1</td>
</tr>
<tr>
<td>120К (3)</td>
<td>293</td>
<td>402</td>
<td>—</td>
<td>283</td>
<td>—</td>
<td>14,7</td>
<td>45,5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>517</td>
<td>—</td>
<td>380</td>
<td>—</td>
<td>15,2</td>
<td>33,3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4,2</td>
<td>662</td>
<td>—</td>
<td>418</td>
<td>—</td>
<td>16,2</td>
<td>26,3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AMт5, листы</td>
<td>293</td>
<td>283</td>
<td>—</td>
<td>118</td>
<td>—</td>
<td>28,8</td>
<td>33,6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>411</td>
<td>—</td>
<td>145</td>
<td>—</td>
<td>43,7</td>
<td>38,6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4,2</td>
<td>540</td>
<td>—</td>
<td>170</td>
<td>—</td>
<td>41,6</td>
<td>28,3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AMт6, листы</td>
<td>293</td>
<td>314-323</td>
<td>145</td>
<td>132-160</td>
<td>490</td>
<td>28,2</td>
<td>33,0-46,0</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>333</td>
<td>166</td>
<td>165</td>
<td>525</td>
<td>24,9</td>
<td>44,0</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>441-471</td>
<td>185</td>
<td>129-185</td>
<td>730</td>
<td>38,8-41</td>
<td>36,1-36,6</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>4,2</td>
<td>547-680</td>
<td>190</td>
<td>135-254</td>
<td>895</td>
<td>24,2-34,2</td>
<td>15,3-24,8</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>AMдС, листы</td>
<td>293</td>
<td>137</td>
<td>—</td>
<td>86</td>
<td>120</td>
<td>27,8</td>
<td>50,6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>300</td>
<td>—</td>
<td>123</td>
<td>200</td>
<td>39,4</td>
<td>42,1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4,2</td>
<td>425</td>
<td>—</td>
<td>147</td>
<td>—</td>
<td>28,7</td>
<td>26,8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Материал</td>
<td>293</td>
<td>397</td>
<td>505</td>
<td>400</td>
<td>27.4</td>
<td>69.0</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>77</td>
<td>841</td>
<td>619</td>
<td>25.7</td>
<td>23.5</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>4.2</td>
<td>970</td>
<td>1027</td>
<td>8.9</td>
<td>23.7</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>293</td>
<td>764—835</td>
<td>765</td>
<td>706—770</td>
<td>877</td>
<td>13.2—14.0</td>
<td>26.4—41.0</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>200</td>
<td>985</td>
<td>950</td>
<td>1230—1235</td>
<td>1430</td>
<td>12.7—14.3</td>
<td>21.6—33.5</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>77</td>
<td>1332—1325</td>
<td>1320</td>
<td>1365—1367</td>
<td>1608</td>
<td>3.4—7.0</td>
<td>5.0—16.1</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>4.2</td>
<td>1382—1460</td>
<td>1320</td>
<td>1365—1367</td>
<td>1608</td>
<td>3.4—7.0</td>
<td>5.0—16.1</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>293</td>
<td>970</td>
<td>907</td>
<td>11.7</td>
<td>40.0</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>77</td>
<td>1514</td>
<td>1441</td>
<td>11.7</td>
<td>15.0</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>4.2</td>
<td>1558</td>
<td>1558</td>
<td>2.7</td>
<td>9.5</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>293</td>
<td>660—823</td>
<td>560</td>
<td>570—779</td>
<td>1350</td>
<td>13.3—20.3</td>
<td>53.5—62.2</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>200</td>
<td>775</td>
<td>700</td>
<td>700</td>
<td>19.7</td>
<td>60.0</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>77</td>
<td>1077—1254</td>
<td>870</td>
<td>940—1215</td>
<td>1580</td>
<td>12.7—23.2</td>
<td>24.5</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>4.2</td>
<td>1272—1411</td>
<td>1150</td>
<td>1180—1411</td>
<td>1700</td>
<td>9.0—14.0</td>
<td>25.5—53.1</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>293</td>
<td>718</td>
<td>606</td>
<td>9.8</td>
<td>25.0</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>77</td>
<td>1215</td>
<td>913</td>
<td>9.6</td>
<td>22.9</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>————</td>
<td>———-</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td></td>
</tr>
<tr>
<td>Материалы</td>
<td>4.2</td>
<td>1235</td>
<td>966</td>
<td>6.3</td>
<td>19.1</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Материал</td>
<td>Температура, К</td>
<td>Предел прочности, МПа</td>
<td>Предел пропорциональности, МПа</td>
<td>Предел текучести, МПа</td>
<td>Предел выносливости, МПа</td>
<td>Напряжение в момент разрыва, МПа</td>
<td>Относительное удлинение, %</td>
<td>Относительное сужение, %</td>
<td>Истиное относительное продольное удлинение, %</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>--------------------------</td>
<td>--------------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>М1</td>
<td>293</td>
<td>309</td>
<td>—</td>
<td>184</td>
<td>—</td>
<td>—</td>
<td>12,8</td>
<td>67,7</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>448</td>
<td>—</td>
<td>238</td>
<td>—</td>
<td>—</td>
<td>21,0</td>
<td>72,1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4,2</td>
<td>499</td>
<td>—</td>
<td>350</td>
<td>—</td>
<td>—</td>
<td>37,5</td>
<td>68,9</td>
<td>—</td>
</tr>
<tr>
<td>Бр. X08 (О)</td>
<td>293</td>
<td>231</td>
<td>—</td>
<td>148</td>
<td>—</td>
<td>—</td>
<td>34,0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>380</td>
<td>—</td>
<td>156</td>
<td>—</td>
<td>—</td>
<td>44,0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4,2</td>
<td>468</td>
<td>—</td>
<td>178</td>
<td>—</td>
<td>—</td>
<td>56,5</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Состояния материала: З — закаленный; ИС — искусственно состаренный; О — отожженный; От — отпущеный.
<table>
<thead>
<tr>
<th>Материал</th>
<th>Допускаемые напряжения, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>на растяжение</td>
</tr>
<tr>
<td>Чугун серый (в отливках)</td>
<td>28—80</td>
</tr>
<tr>
<td>Стали ОС и Ст2</td>
<td>140</td>
</tr>
<tr>
<td>Стали Ст3</td>
<td>160</td>
</tr>
<tr>
<td>Стали Ст3 (в мостах)</td>
<td>140</td>
</tr>
<tr>
<td>Стали углеродистая конструкционная (в машиностроении)</td>
<td>60—250</td>
</tr>
<tr>
<td>Стали легированные конструкционная (в машинностроении)</td>
<td>100—400 и выше</td>
</tr>
<tr>
<td>Медь</td>
<td>30—120</td>
</tr>
<tr>
<td>Латунь</td>
<td>70—140</td>
</tr>
<tr>
<td>Бронза</td>
<td>60—120</td>
</tr>
<tr>
<td>Алюминий</td>
<td>30—80</td>
</tr>
<tr>
<td>Алюминиевая бронза</td>
<td>80—120</td>
</tr>
<tr>
<td>Дюралюминий</td>
<td>80—150</td>
</tr>
<tr>
<td>Текстолит</td>
<td>30—40</td>
</tr>
<tr>
<td>Гетинакс</td>
<td>50—70</td>
</tr>
<tr>
<td>Бакелированная фанера</td>
<td>40—50</td>
</tr>
<tr>
<td>Сосна вдоль волокон</td>
<td>7—10</td>
</tr>
<tr>
<td>Сосна поперек волокон</td>
<td>—</td>
</tr>
<tr>
<td>Дуб вдоль волокон</td>
<td>9—13</td>
</tr>
<tr>
<td>Дуб поперек волокон</td>
<td>—</td>
</tr>
<tr>
<td>Каменная кладка</td>
<td>до 0,3</td>
</tr>
<tr>
<td>Кирпичная кладка</td>
<td>до 0,2</td>
</tr>
<tr>
<td>Бетон</td>
<td>0,1—0,7</td>
</tr>
</tbody>
</table>
Глава 5

Напряженное и деформированное состояние

3. Напряжения в точке. Главные площадки и главные напряжения

Напряжения являются результатом взаимодействия частиц тела, появляющегося при наружении его внешними силами. Действительно внешних сил, стремящихся изменить расположение частиц тела или вызывать их смещение, препятствуют возникающие при этом в теле напряжения.

![Рис. 97](image1)

![Рис. 98](image2)

Они ограничивают это смещение некоторой малой величиной. В одной и той же точке напряжения в разных направлениях, как правило, будут различными и только в отдельных случаях наружения они могут быть одинаковыми.

Рассматривая напряжение в точке A наруженного тела, отнесенной к малым площадкам (рис. 97), принадлежащих двум разным частям тела, разделенному сечением $1-1$, проведенным через эту точку, легко убедиться, что если под действием внешних нагрузок площадки стремятся отойти одна от другой или сблизиться, то между ними возникают соответственно растягивающие или сжимающие нормальные напряжения σ; если площадки стремятся сдвинуться одна относительно другой, то в них возникают касательные напряжения τ; если же одна площадка стремится отойти от другой, оставаясь ей параллельной в каком-нибудь произвольном направлении, то в такой площадке одновременно возникают и нормальные σ и касательные τ напряжения, а их результирующей является полное напряжение p, вектор которого совпадает с этим направлением. Перемещение площадки в этом случае может быть геометрически разложено на два перемещения: взаимное удаление и сдвиг.

В общем случае, выделив в окрестности рассматриваемой в наружном теле точки элементарный объем материала в виде бесконечно малого параллелепипеда (рис. 98). На его границах влияние удаленной части тела должно быть заменено соответствующими напряжениями или их составляющими (нормальными и касательными напряжениями), как показано на рисунке.
При изменении ориентации граней выделенного элементарного параллелепипеда напряжения на его гранях также будут изменяться. Всегда можно найти такую ориентацию элемента, при которой в его гранях касательные составляющие напряжений будут отсутствовать.

Те площадки, по которым не действуют касательные напряжения, называются главными площадками, а нормальные напряжения на этих площадках — главными напряжениями. Можно доказать, что в каждой точке любым образом нагруженного тела всегда имеется по крайней мере три главные взаимно перпендикулярные площадки, т. е. площадки, в которых отсутствуют касательные напряжения. Направления, параллельные главным напряжениям, называются главными направлениями в данной точке. Главные напряжения принято обозначать \(\sigma_1, \sigma_2, \sigma_3 \), при этом полагают, что между указанными напряжениями существует следующее соотношение (понимая его в алгебраическом смысле):

\[
\sigma_1 > \sigma_2 > \sigma_3
\]

Рис. 99

Напряженное состояние, в котором только одно из главных напряжений (любое из трех) не равно нулю, а два других равны нулю, называется однозначным или линейным (рис. 99, а). Если два главных напряжения отличны от нуля, а одно равно нулю, то такое напряженное состояние называется двухосным или плоским (рис. 99, б). Случай напряженного состояния, при котором все три главные напряжения отличны от нуля, называется трехосным или объемным (рис. 99, в).

Кроме того, различают однородное напряженное состояние тела, при котором в каждой точке какого-либо сечения и всех параллельных ему сечений напряжения одинаковы, и неоднородное напряженное состояние, при котором в разных точках любого сечения рассматриваемого тела или других параллельных ему сечений напряжения различны.

5.2. Линейное напряженное состояние

С линейным напряженным состоянием мы встречаемся, главным образом, в стержнях, испытывающих растяжение или сжатие, хотя некоторые элементы испытывают линейное напряжение и в стержнях, подвергающихся изгибу или сложному нагружению.

При растяжении стержня (рис. 100, а) нормальное напряжение в площадке \(F \) определяется формулой

\[
\sigma = \frac{N}{F} = \frac{P}{F}.
\]

185
Касательные напряжения в этой площадке равны нулю. В любой площадке F_α (рис. 100, б), внешняя нормаль к которой n_α образует с направлением σ угол α, полное напряжение

$$p_\alpha = \frac{N}{F_\alpha} = \frac{N}{F} \cos \alpha = \sigma \cos \alpha.$$

Нормальные и касательные напряжения в площадке F_α будут

$$\sigma_\alpha = p_\alpha \cos \alpha = \sigma \cos^2 \alpha; \quad (5.1)$$

$$\tau_\alpha = p_\alpha \sin \alpha = \frac{\sigma}{2} \sin 2\alpha. \quad (5.2)$$

Нормальные напряжения σ_α положительны, если они растягивающие; касательные напряжения τ_α положительны, если они стремятся повернуть рассматриваемую часть элемента относительно любой точки, взятой внутри ее, по часовой стрелке (σ_α и τ_α на рис. 100, б положительны).

Согласно формулам (5.1) и (5.2) при $\alpha = 0$ (площадка I на рис. 100, a) $\tau_\alpha = 0$; $\sigma_\alpha = \sigma$, а при $\alpha = \pi/2$ (площадка II) $\tau_\alpha = \sigma_\alpha = 0$. Следовательно, площадки I и II являются главными; главные напряжения будут

$$\sigma_1 = \sigma; \quad \sigma_2 = \sigma_3 = 0. \quad (5.3)$$

При сжатии $\sigma_1 = \sigma_2 = 0$; $\sigma_3 = -\sigma$.

Касательные напряжения согласно формуле (5.2) достигают своей наибольшей величины при $\alpha = \pm 45^\circ$ и определяются формулой

$$\tau_{\alpha \text{ max}} = \frac{\sigma}{2}. \quad (5.4)$$

На основании формул (5.1) и (5.2) легко убедиться, что нормальные и касательные напряжения в площадке F_β, перпендикулярной к площадке F_α, т. е. в площадке, внешняя нормаль к которой образует угол $\beta = \alpha + 90^\circ$ с направлением напряжения σ, будут

$$\sigma_\beta = \sigma \cos^2 \beta = \sigma \cos^2 (\alpha + 90^\circ) = \sigma \sin^2 \alpha; \quad (5.5)$$

$$\tau_\beta = \frac{\sigma}{2} \sin 2\beta = \frac{\sigma}{2} \sin 2 (\alpha + 90^\circ) = -\frac{\sigma}{2} \sin 2\alpha. \quad (5.6)$$

5.3. Плоское напряженное состояние

При плоском напряженном состоянии, когда на элемент по его двум взаимно перпендикулярным граням действуют напряжения σ_1 и σ_2 (рис. 101), нормальные и касательные напряжения, действующие на площадке (α), внешняя нормаль к которой n_α образует с направлением напряжения σ_1 угол α, определяются соответственно по формулам

$$\sigma_\alpha = \sigma_1 \cos^2 \alpha + \sigma_2 \sin^2 \alpha; \quad (5.7)$$

$$\tau_\alpha = \frac{\sigma_1 - \sigma_2}{2} \sin 2\alpha. \quad (5.8)$$
Из этих формул могут быть получены выражения для определения нормальных и касательных напряжений в площадке (β), перпендикулярной к площадке (α), т. е. в площадке, внешняя нормаль к которой образует угол $\beta = -(90^\circ - \alpha)$ с направлением σ:

$$\sigma_\beta = \sigma_1 \sin^2 \alpha + \sigma_2 \cos^2 \alpha;$$

$$\tau_\beta = -\frac{\sigma_1 - \sigma_2}{2} \sin 2\alpha.$$ \hspace{2cm} (5.7)

Складывая левые и правые части уравнений (5.5) и (5.7), находим

$$\sigma_\alpha + \sigma_\beta = \sigma_1 + \sigma_2,$$ \hspace{2cm} (5.9)

т. е. сумма нормальных напряжений, действующих по двум взаимно перпендикулярным площадкам, инвариантна по отношению к наклону этих площадок и равна сумме главных напряжений.

Из формул (5.6) и (5.8) следует, что как и при одноосном напряжении состоянии, касательные напряжения достигают наибольшей величины при $\alpha = \pm 45^\circ$, т. е. по площадкам, наклоненным под углом 45° к главным площадкам, они определяются формулой

$$\tau_{\text{max}} = \frac{\sigma_1 - \sigma_2}{2}.$$ \hspace{2cm} (5.10)

Сравнивая формулы (5.6) и (5.8), находим

$$\tau_\beta = -\tau_\alpha.$$ \hspace{2cm} (5.11)

Это равенство выражает закон парности касательных напряжений, который может быть сформулирован так: если по какой-либо площадке действует некоторое касательное напряжение, то по перпендикулярной к ней площадке непременно будет действовать касательное напряжение, равное по величине и противоположное по знаку.

Экстремальными значениями для нормальных напряжений являются величины главных напряжений.

На всех наклонных площадках нормальные напряжения имеют промежуточные между σ_1 и σ_2 значения.

Одно и то же напряженное состояние элемента может быть представлено главными напряжениями σ_1 и σ_2 (элемент $ABCD$, рис. 101 и 102, a) или напряжениями в наклонных площадках σ_α, τ_α, σ_β, τ_β (элементы $abcd$ на рис. 101 и 102, b).

В теории напряженного состояния различают две основные задачи.

П Р Я М А Я ЗАДАЧА. По известным в точке главным площадкам и действующим в них главным напряжениям требуется определить нормальные и касательные напряжения по площадкам, наклоненным под заданным углом к главным площадкам, т. е. по напряжениям, действующим на границах элемента $ABCD$ (рис. 103), определить напряжения в граничных элементе $abcd$.

О Б Р А Т Н АЯ ЗАДАЧА. По известным нормальным и касательным напряжениям, действующим в двух взаимно перпендикулярных площадках, проходящих через данную точку, требуется найти главные
направления и главные напряжения. Иначе говоря, дан элемент $abcd$ (рис. 103) с действующими по его граням нормальным и касательным напряжениями; требуется определить положение элемента $ABCD$, т. е. угол α_0, и найти главные напряжения.

Очевы задачи могут решаться как аналитически, так и графически.

Рис. 102

Рис. 103

5.4. Прямая задача при плоском напряженном состоянии.
Круг напряжений

Аналитическое решение прямой задачи дается формулами (5.5) — (5.8).
Графически σ_α, τ_α, σ_β, τ_β можно определить по известным главным напряжениям σ_1 и σ_2 (рис. 104, a) с помощью так называемого

Рис. 104

круга напряжений (круга Мора), построенного в координатах σ, τ на отрезке AB как на диаметре, равном разности главных напряжений $\sigma_1 - \sigma_2$ (рис. 104, b). Действительно, проведя от центра круга напряжений (точки C) луч CD под углом 2α до пересечения с окружностью, получим точку D_α, координаты которой будут характеризовать соответственно напряжение σ_α и τ_α:

$$
\overline{OK}_\alpha = \overline{OC} + \overline{CD}_\alpha \cos 2\alpha = \frac{\sigma_1 + \sigma_2}{2} + \frac{\sigma_1 - \sigma_2}{2} \cos 2\alpha = \sigma_1 \cos^2 \alpha + \sigma_2 \sin^2 \alpha = \sigma_\alpha;
$$

$$
\overline{KD}_\alpha = \overline{CD}_\alpha \sin 2\alpha = \frac{\sigma_1 - \sigma_2}{2} \sin 2\alpha = \tau_\alpha.
$$
Легко показать, что точка D_β характеризует напряжения σ_1, τ_β в площадке (\(\beta\)), перпендикулярной к площадке (\(\alpha\)),

$$
\Delta K_\beta = \Delta C - \Delta K_\beta = \frac{\sigma_1 + \sigma_2}{2} - \frac{\sigma_1 - \sigma_2}{2} \cos 2\alpha =
$$
$$
= \sigma_1 \sin^2 \alpha + \sigma_2 \cos^2 \alpha = \sigma_\beta;
$$

$$
\frac{D_\beta K_\beta}{\Delta C} = -\tau_\alpha = \tau_\beta.
$$

Точки D_α и D_β, характеризующие напряжения на двух взаимно перпендикулярных площадках (\(\alpha\)) и (\(\beta\)), всегда лежат на концах одного диаметра.

Построенный круг Мора полностью описывает напряженное состояние элемента, изображенного на рис. 104, а. Если менять угол α в пределах от -90° до $+90^\circ$, то наклонные площадки (\(\alpha\)) и (\(\beta\)) займут последовательно все возможные положения, а точки D_α и D_β описут полный круг. В частности, при $\alpha = 0$, когда грани ef и em станут главными площадками и по ним будут действовать те же напряжения, что и в граниях элемента abcd, точка D_α совпадает с точкой A, а точка D_β — с точкой B.

Для определения положения полюса на круге напряжений, как и в случае круга инерции, проведем из точки D_α линию, параллельную σ_α (в нашем примере горизонтальная, рис. 104, б), до пересечения с окружностью. Искомый полюс — точка M. Полюс M можно было бы найти, проведя из точки D_β линию, параллельную напряжению σ_β, т. е. проведя вертикаль. Можно доказать, что линия, соединяющая полюс M с любой точкой круга, параллельна направлению нормального напряжения на площадке, которой эта точка соответствует. Например, линия MA параллельна главному напряжению σ_1, а линия MB — главному напряжению σ_2.

5.5. Обратная задача при плоском напряженном состоянии

При практических расчетах часто приходится решать обратную задачу — определять σ_1 и σ_2 по известным σ_α, τ_α, σ_β, τ_β (рис. 105, а).

![Diagram](image.png)

Рис. 105

Пусть $\sigma_\alpha > \sigma_\beta$; $\tau_\alpha > 0$. Очевидно, круг напряжений в координатах σ, τ (рис. 106, б) легко построить, зная положение двух диаметрально противоположных точек круга D_α и D_β, координатами которых явля-
ются соответственно σ_α, τ_α и σ_β, τ_β. При этом абсциссы точек пересечения круга с осью $\sigma = 0A$ и $0B$ — дадут соответствующие величины главных напряжений σ_1 и σ_2.

Для определения положения главных площадок найдем полюс и воспользуемся его свойством. С этой целью из точки D_α проведем линию, параллельную линии действия σ_α, т. е. горизонталь Точка M пересечения этой линии с окружностью и будет полюсом. Соединив точку M с точками A и B, получим направления главных напряжений σ_1 и σ_2. Положение главных площадок, очевидно, будет перпендикулярно к направлениям главных напряжений. На рис. 105, а внутри исходного элемента выделен элемент, ограниченный главными площадками, на гранях которых показаны главные напряжения σ_1 и σ_2. Из рассмотрения круга напряжений можно получить аналитические выражения главных напряжений σ_1 и σ_2 через σ_α, τ_α, σ_β, τ_β:

$$\sigma_1 = \frac{1}{2} [\sigma_\alpha + \sigma_\beta + \sqrt{(\sigma_\alpha - \sigma_\beta)^2 + 4\tau_\alpha^2}],$$

$$\sigma_2 = \frac{1}{2} [\sigma_\alpha + \sigma_\beta - \sqrt{(\sigma_\alpha - \sigma_\beta)^2 + 4\tau_\alpha^2}].$$

Из рис. 105, б следует также, что

$$\tan \alpha = -\frac{MK_\beta}{AK_\beta} = -\frac{MK_\beta}{OA - OK_\beta} = -\frac{\tau_\alpha}{\sigma_1 - \sigma_2}.$$

Эта формула и определяет единственное значение угла α, на который нужно повернуть D_α, чтобы получить направление алгебраически большего главного напряжения. Заметим, что отрицательному значению α соответствуют углы, отложенные по часовой стрелке, и что если одно из главных напряжений, вычисленное по формулам (5.12), окажется отрицательным, то напряжения следует обозначать в σ_1 и σ_2, а σ_1 и σ_2; если же оба главных напряжения окажутся отрицательными, то они должны быть обозначены σ_1 и σ_2.

5.6. Объемное напряженное состояние

Объемное, или трехосное, напряженное состояние в сопротивлении материалов рассматривается редко. Поэтому здесь укажем лишь на некоторые основные моменты теории объемного напряженного состояния.

Рассмотрим случай объемного напряженного состояния (рис. 106), когда по граням выбранного кубика действуют все три главных напряжения

$$\sigma_1 > \sigma_2 > \sigma_3 > 0.$$

Очевидно, в площадке I, параллельной σ_1, нормальные и касательные напряжения не будут зависеть от σ_1, а только от σ_2 и σ_3 и во всех подобных площадках будут характеризоваться кругом напряжений L_1 с диаметром $\sigma_2 - \sigma_3$ (рис. 107). В площадке II, параллельной σ_2, нормальные и касательные напряжения будут характеризоваться кругом напряжений L_{11} с диаметром $\sigma_1 - \sigma_3$ и, наконец, в площадке III, параллельной σ_3, нормальные и касательные напряжения будут характеризоваться кругом напряжений L_{111} с диаметром $\sigma_1 - \sigma_2$.

190
Во всех указанных площадках метод определения σ_α, τ_α и σ_β, τ_β не будет отличаться от рассмотренного выше метода решения прямой задачи для плоского напряженного состояния.

Можно доказать, что если провести площадку, не параллельную ни одному из главных напряжений, то нормальное σ_α и касательное τ_α напряжения в этой площадке могут быть определены по формулам

$$
\sigma_\alpha = \sigma_1 \cos^2 \alpha_1 + \sigma_2 \cos^2 \alpha_2 + \sigma_3 \cos^2 \alpha_3; \\
\tau_\alpha = \sqrt{\sigma_1^2 \cos^2 \alpha_1 + \sigma_2^2 \cos^2 \alpha_2 + \sigma_3^2 \cos^2 \alpha_3 - \sigma_\alpha^2},
$$

где α_1, α_2, α_3 — углы, которые образует нормаль к рассматриваемой площадке с направлениями σ_1, σ_2, σ_3.

![Рис. 106](image1)

![Рис. 107](image2)

Доказывается также, что точка $D_\alpha(\sigma_\alpha, \tau_\alpha)$, характеризующая напряженное состояние в произвольно наклоненной площадке, всегда будет лежать в заштрихованной области (рис. 107) или на границе ее, если площадка параллельна одному из главных напряжений.

Из рассмотрения кругов напряжений (рис. 107) видно, что τ_{max}, характеризуемое точкой D на окружности L_{11} и действующее в площадке, параллельной главному напряжению σ_2, наклоненной к напряжениям σ_1 и σ_3 под углом $\alpha = 45^\circ$, равно радиусу большого круга. Следовательно, при объемном напряженном состоянии

$$
\tau_{\text{max}} = \frac{\sigma_1 - \sigma_3}{2}.
$$

В случае площадки, внешняя нормаль к которой образует с направлениями σ_1, σ_2 и σ_3 одинаковые углы $\alpha_1 = \alpha_2 = \alpha_3 = \alpha$, называемой октаэдрической площадкой (поскольку она параллельна грани октаэдра, который может быть образован из куба), тогда

$$
\cos^3 \alpha_1 + \cos^3 \alpha_2 + \cos^3 \alpha_3 = 1; \\
\cos^3 \alpha = \frac{1}{3},
$$

формулы (5.14) принимают вид

$$
\sigma_{\text{окт}} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3} = \sigma_{\text{ср}};
$$

191
\[\tau_{\text{окт}} = \frac{V}{3} \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_3 \sigma_1} = \]

\[= \frac{1}{3} V (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2. \quad (5.17) \]

Касательное напряжение, определенное по формуле (5.17), называется \textit{октаэдрическим}. Октаэдрическое нормальное напряжение представляет собой как бы среднее напряжение для данного трехосного напряженного состояния.

При оценке прочности материала в условиях сложного напряженного состояния часто используется некоторая фиктивная величина \(\sigma_i \), называемая \textit{интенсивностью напряжений} и связанная с \(\tau_{\text{окт}} \) зависимостью

\[\sigma_i = \frac{3}{\sqrt{2}} \tau_{\text{окт}}. \]

5.7. Деформации при объемном напряженном состоянии.

\textbf{Обобщенный закон Гука}

Базируясь на гипотезе о том, что материал следует закону Гука, а деформации малы, можно получить зависимости между напряжениями и деформациями в общем случае сложного напряженного состояния. При этом будем исходить из зависимостей (4.3) и (4.9), полученных ранее для линейного напряженного состояния. Рассмотрим деформацию

![Diagram](image)

Рис. 108

прямоугольного параллелепипеда с размерами \(a \times b \times c \) (рис. 108, a) под действием главных напряжений \(\sigma_1, \sigma_2, \sigma_3 \) (полагаем, что все они положительны) по трем его граням, параллельным соответственно ребрам \(a, b, c \).

Удлинения ребер соответственно будут \(\Delta a, \Delta b, \Delta c \), а относительные деформации в главных направлениях

\[\varepsilon_1 = \frac{\Delta a}{a}; \quad \varepsilon_2 = \frac{\Delta b}{b}; \quad \varepsilon_3 = \frac{\Delta c}{c}. \quad (5.18) \]

Каждое из этих относительных удлинений есть результат действия всех трех напряжений \(\sigma_1, \sigma_2 \) и \(\sigma_3 \). При этом, например,

\[\varepsilon_1 = \varepsilon'_1 + \varepsilon''_1, \quad (5.19) \]
где согласно (4.3) и (4.9)

\[\varepsilon'_1 = \frac{\sigma_1}{E}; \quad \varepsilon'_2 = -\mu \frac{\sigma_2}{E}; \quad \varepsilon'_3 = -\mu \frac{\sigma_3}{E}. \tag{5.20} \]

Учитывая (5.20), можно записать (5.19) в виде

\[\varepsilon_1 = \frac{\sigma_1}{E} - \mu \frac{\sigma_2}{E} - \mu \frac{\sigma_3}{E} = \frac{1}{E} [\sigma_1 - \mu (\sigma_2 + \sigma_3)]. \tag{5.21} \]

Аналогично могут быть записаны и выражения для \(\varepsilon_2 \) и \(\varepsilon_3 \) как \(f (\sigma_1, \sigma_2, \sigma_3) \). В результате обобщенный закон Гука для изотропного материала выразится следующими соотношениями:

\[\varepsilon_1 = \frac{1}{E} [\sigma_1 - \mu (\sigma_2 + \sigma_3)]; \]
\[\varepsilon_2 = \frac{1}{E} [\sigma_2 - \mu (\sigma_1 + \sigma_3)]; \quad \tag{5.22} \]
\[\varepsilon_3 = \frac{1}{E} [\sigma_3 - \mu (\sigma_1 + \sigma_2)]. \]

Заметим, что сжимающие напряжения следует в формулы (5.22) подставлять со знаком «минус». Очевидно, в случае плоского напряженного состояния, в частности при \(\sigma_2 = 0 \), обобщенный закон Гука (5.22) имеет вид

\[\varepsilon_1 = \frac{1}{E} (\sigma_1 - \mu \sigma_3); \]
\[\varepsilon_2 = -\frac{\mu}{E} (\sigma_1 + \sigma_3); \]
\[\varepsilon_3 = \frac{1}{E} (\sigma_3 - \mu \sigma_1). \]

Закон Гука справедлив не только для главных деформаций, но и для вычисления относительных деформаций по любым трем взаимно перпендикулярным направлениям, поскольку при малых деформациях влиянием сдвига на линейную деформацию из-за его малости можно пренебречь. Поэтому относительные удлинения в направлении действия напряжений \(\sigma'_\alpha, \sigma'_\beta \) (рис. 108, б) определяются так:

\[\varepsilon'_\alpha = \frac{1}{E} (\sigma'_\alpha - \mu \sigma'_\beta); \quad \varepsilon'_\beta = \frac{1}{E} (\sigma'_\beta - \mu \sigma'_\alpha). \]

Объемная деформация \(\varepsilon_0 \), представляющая собой относительное изменение объема \(V_0 = abc \), после приложения к нему напряжений \(\sigma_1, \sigma_2, \sigma_3 \) определяется с точностью величин второго порядка малости формулой

\[\varepsilon_0 = \frac{v - v_0}{v_0} = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 \tag{5.23} \]

или через напряжения с учетом (5.22) формулой

\[\varepsilon_0 = \frac{1 - 2\mu}{E} (\sigma_1 + \sigma_2 + \sigma_3). \tag{5.24} \]
В частности, при равномерном всестороннем сжатии, когда \(\sigma_1 = \sigma_2 = \sigma_3 = -\sigma \),

\[
e_0 = -\frac{\sigma}{K},
\]

где

\[
K = \frac{E}{3(1 - 2\mu)}.
\]

Величина \(K \) называется модулем объемной деформации. Из формулы (5.24) видно, что при деформации тела, материал которого имеет коэффициент Пуассона \(\mu = 0.5 \) (например, резины), объем тела не изменяется.

5.8. Потенциальная энергия деформации

Потенциальной энергией деформации называется энергия, которая накапливается в теле при его упругой деформации. Когда под действием внешней статической нагрузки тело деформируется, точки приложения внешних сил перемещаются и потенциальная энергия нагрузки убывает на величину, которая численно равна работе, совершаемой внешними силами. Энергия, потерянная внешними силами, не исчезает, а превращается, в основном, в потенциальную энергию деформации тела (незначительной частью энергии, рассеиваемой в процессе деформации главным образом в виде теплоты, при этом пренебрегают).

Приращение потенциальной энергии \(U \) деформируемого тела равно уменьшению потенциальной энергии нагрузки \(U_0 \) и численно равно работе \(A_p \), совершенной внешними силами, т. е.

\[
U = A_p.
\]

Рис. 109 Таким образом, потенциальная энергия деформации численно равна работе внешних сил, затраченной при упругой деформации тела.

В случае простого растяжения (рис. 109)

\[
U = \frac{P\Delta l}{2}
\]

удельная потенциальная энергия

\[
u = \frac{U}{\Delta l} = \frac{P\Delta l}{2F} = \frac{\sigma e}{2},
\]

где \(e \) — объем тела; \(F \) — площадь поперечного сечения.

Учитывая, что \(e = \sigma/E \), получаем

\[
u = \frac{\sigma^2}{2E}.
\]

В случае объемного напряженного состояния, когда потенциальная энергия деформации определяется суммой работ от главных напряжений \(\sigma_1, \sigma_2, \sigma_3 \) на соответствующих перемещениях, равных от-
носительным деформациям \(e_1, e_2, e_3 \) (рис. 110), на основании (5.28) удельная потенциальная энергия выражается формулой

\[
u = \frac{\sigma_1 e_1}{2} + \frac{\sigma_2 e_2 + \sigma_3 e_3}{2}.
\]

Воспользовавшись обобщенным законом Гука, можем исключить деформации. Получим

\[
u = \frac{1}{2E} [\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2\mu (\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_1)]. \quad (5.29)
\]

При деформации упругого тела (рис. 110) изменяется, вообще говоря, не только его объем, но и форма (например, кубик превращается в параллелепипед). Поэтому полную удельную потенциальную энергию деформации \(\nu \) можно представить в виде двух слагаемых:

\[
u = \nu_v + \nu_\phi,
\]

где \(\nu_v \) — удельная потенциальная энергия изменения объема; \(\nu_\phi \) — удельная потенциальная энергия изменения формы.

Можно показать, что

\[
u_v = \frac{1 - 2\mu}{6E} (\sigma_1 + \sigma_2 + \sigma_3)^2, \quad (5.30)
\]

\[
u_\phi = \frac{1 + \mu}{3E} [\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - (\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_1)] = \\
= \frac{1 + \mu}{6E} [(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]. \quad (5.31)
\]
6.1. Основные теории прочности

Важнейшей задачей инженерного расчета является оценка прочности детали по известному напряженному состоянию, т. е. по известным главным напряжениям в точках тела. Наиболее просто эта задача решается при простых видах деформации, в частности при одноосном напряженном состоянии, так как в этом случае значения предельных (опасных) напряжений легко установить экспериментально. Напомним, что опасным напряжением для пластичных материалов является предел текучести, а для хрупких — временное сопротивление.

Рис. 111 Рис. 112

Таким образом, условие прочности при одноосном напряженном состоянии (рис. 111, a) принимает вид

$$\sigma_1 \leq [\sigma_1]; \sigma_2 \leq [\sigma_2]; \sigma_3 \leq [\sigma_3], \quad (6.1)$$

где $[\sigma_1]$ и $[\sigma_2]$ — допускаемые напряжения соответственно при растяжении и сжатии.

В случае сложного напряженного состояния, когда два или все три главных напряжения $\sigma_1, \sigma_2, \sigma_3$ не равны нулю (рис. 111, b), предельное (опасное) состояние для одного и того же материала может иметь место при различных предельных значениях главных напряжений в зависимости от соотношения между ними. Поэтому экспериментальная проверка опасного состояния из-за бесчисленного множества возможных соотношений между $\sigma_1, \sigma_2, \sigma_3$ и трудности осуществления таких экспериментов практически исключается.

Другой путь решения поставленной задачи заключается в выборе критерия прочности (критерия предельного напряженно-деформированного состояния). Для этого вводится гипотеза о преимущественном влиянии на прочность материала того или иного фактора. При этом предусматривается возможность проверки выбранного критерия прочности сопоставлением данного сложного напряженного состояния с простым, например с одноосным растяжением (рис. 112, a, b), и устанновления такого эквивалентного напряжения, которое в обоих случаях дает одинаковый коэффициент запаса прочности. Под последним
в общем случае напряженного состояния понимают число n, показывающее, во сколько раз нужно одновременно увеличить все компоненты напряженного состояния (σ_1, σ_2, σ_3), чтобы оно стало предельным:

$$
\sigma_1^0 = n\sigma_1; \quad \sigma_2^0 = n\sigma_2; \quad \sigma_3^0 = n\sigma_3.
$$

Выбранные таким образом гипотезы называют механическими теориями прочности. Ниже рассмотрены основные критерии (теории прочности).

Критерий наибольших нормальных напряжений (первая теория прочности). Предполагается, что опасное состояние тела, находящегося в условиях сложного напряженного состояния, определяется уровнем наибольшего нормального напряжения

$$
\sigma_1 = \sigma_2^0 \quad \text{или} \quad \sigma_3 = \sigma_3^0.
$$

Условие прочности с коэффициентом запаса n имеет вид

$$
\sigma_1 \ll [\sigma], \quad \sigma_3 \ll [\sigma],
$$

где

$$
[\sigma] = \frac{\sigma_0}{n}.
$$

Эта теория подтверждается на практике только для весьма хрупких и достаточно однородных материалов (стекло, гипс, некоторые виды керамики).

Критерий наибольших относительных линейных деформаций (вторая теория прочности). За критерий предельного состояния принимают наибольшую по абсолютной величине линейную деформацию, т. е. условие разрушения:

$$
|\varepsilon_{\text{max}}| = \varepsilon_0.
$$

Условие прочности имеет вид

$$
\varepsilon_{\text{max}} = \varepsilon_1 \ll [\varepsilon] = \frac{\varepsilon_0}{n}.
$$

Учитывая, что $[\varepsilon] = [\sigma]/E$, а также, что

$$
\varepsilon_1 = \frac{1}{E} [\sigma_1 - \mu (\sigma_2 + \sigma_3)],
$$

условие прочности (6.5) можно представить в виде

$$
\sigma_1 = \mu (\sigma_2 + \sigma_3) \ll [\sigma].
$$

Как видно из (6.6), с допускаемым напряжением нужно сравнивать не то или иное главное напряжение, а их комбинацию. Эквивалентное напряжение в этом случае будет

$$
\sigma_{\text{экв}} = \sigma_1 - \mu (\sigma_2 + \sigma_3).
$$

Эта теория имела довольно широкое распространение, однако ввиду малой достоверности в настоящее время в расчетной практике не рекомендуется.
Критерий наибольших касательных напряжений (третья теория прочности). Предполагается, что опасное состояние нагруженного тела определяется уровнем максимального касательного напряжения. Условия разрушения и прочности соответственно имеют вид

\[\tau_{\text{max}} = \tau^0; \quad (6.8) \]
\[\tau_{\text{max}} \leq [\tau] = \tau^0 / n. \quad (6.9) \]

Так как

\[\tau_{\text{max}} = \frac{\sigma_1 - \sigma_2}{2}, \quad \tau^0 = \frac{\sigma^0}{2}, \quad a [\tau] = \frac{[\sigma]}{2}, \]

условие прочности (6.9) через главные напряжения записывается так:

\[\sigma_1 - \sigma_3 < [\sigma], \quad (6.10) \]

а эквивалентное напряжение по третьей теории прочности определяется формулой

\[\sigma_{\text{экв}} = \sigma_1 - \sigma_3. \quad (6.11) \]

Эта теория дает хорошие результаты для материалов, одинаково сопротивляющихся растяжению и сжатию. Недостатком третьей теории является то, что она не учитывает среднего по величине главного напряжения \(\sigma_3 \), которое оказывает определенное, хотя в большинстве случаев незначительное, влияние на прочность материала. Считая предельным состоянием для пластиничатых материалов предел текучести, условие (6.8) можно представить в виде

\[\sigma_1 - \sigma_3 = \sigma_\tau. \quad (6.12) \]

Это условие удовлетворительно описывает начало пластической деформации разрушающихся материалов, для которых характерна ее локализация.

Критерий удельной потенциальной энергии формоизменения (четвертая теория прочности). Предполагается, что опасное (предельное) состояние нагруженного тела определяется предельной величиной накопленной удельной энергии формоизменения. Последнюю можно определить при простом растяжении в момент начала текучести

\[u_{\phi_{\text{max}}} = u_{\phi}^0 = u_{\phi_{\text{t}}}. \quad (6.13) \]

Условие прочности будет

\[u_{\phi_{\text{max}}} < [u_{\phi}]. \quad (6.14) \]

Полагая, что материал следует закону Гука вплоть до наступления предельного состояния, на основании (5.31) при простом растяжении в момент начала текучести \(\sigma_1 = \sigma_\tau; \quad \sigma_2 = \sigma_3 = 0 \) получаем

\[u_{\phi_{\text{t}}} = \frac{1 + \mu}{3E} \sigma_\tau^2. \]

Условие (6.13) после подстановки (5.31) и значения \(u_{\phi_{\text{t}}} \) из последнего равенства принимает вид

\[\sqrt[3]{\sigma_1^3 + \sigma_2^3 + \sigma_3^3 - (\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_1) \sigma_\tau}, \]

\[\sqrt[2]{\frac{1}{2} [(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]} = \sigma_\tau. \quad (6.15) \]
Условие прочности (6.14) будет таким:

\[
\sqrt{\frac{1}{2} [(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]} \leq \frac{\sigma_n}{n} = [\sigma].
\] (6.16)

Эквивалентное (расчетное) напряжение по четвертой теории прочности определяется формулой

\[
\sigma_{экв} = \sqrt{\frac{1}{2} [(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]}.
\] (6.17)

Расчетное уравнение четвертой теории прочности можно получить исходя из критерия постоянства октаздрических касательных напряжений

\[
\tau_{октмакс} \leq [\tau_{окт}].
\]

Такая трактовка освобождает рассматриваемую теорию прочности от ограничений, связанных с областью применимости закона Гука, и дает возможность установить начало не только пластической деформации, но и разрушения. Четвертая теория прочности применима для пластических материалов, однородных (сопротивляющихся растяжению и сжатию).

Критерий Кулона — Мора. Этот критерий основан на предположении, что прочность материала в общем случае напряженного состояния зависит главным образом от величины и знака наибольшего \(\sigma_1 \) и наименьшего \(\sigma_3 \) главных напряжений (погрешность, связанная с тем, что не учитывается \(\sigma_2 \), обычно не превышает 12—15%). Исходя из этого предположения любое напряженное состояние можно представить одним кругом Мора, построенным на главных напряжениях \(\sigma_1 \) и \(\sigma_3 \).

Если при данных \(\sigma_1 \) и \(\sigma_3 \) нарушается прочность материала, то круг, построенный из этих напряжениях, называется предельным. Изменение соотношения между \(\sigma_1 \) и \(\sigma_3 \), получаемое для данного материала, семейство предельных окружностей (рис. 113). Огибающую ABCDE семейства предельных кругов можно с достаточной степенью точности заменить прямой, касательными к кругам Мора, построенным для растяжения, с диаметром, равным временем сопротивлению при растяжении \(\sigma_3 \), и для сжатия — с диаметром, равным временем сопротивлению материала при сжатии \(\sigma_{в,сж} \) (рис. 114).

Очевидно, рис. 114 может быть перерисован в масштабе допускаемых напряжений (рис. 115). Диаметр круга для растяжения равен \([\sigma_1] = \sigma_1 / n \), а для сжатия — \([\sigma_2] = \sigma_{2,сж} / n \).

Из рассмотрения подобия треугольников \(O_1O_2O \) и \(O_1O_3O \) находим условие прочности

\[
\sigma_1 \leq \frac{[\sigma_2]}{[\sigma_3]} \sigma_3 \leq [\sigma_1].
\] (6.18)

Эквивалентное напряжение по рассмотренной теории Мора

\[
\sigma_{экв} = \sigma_1 \leq \frac{[\sigma_2]}{[\sigma_3]} \sigma_3.
\] (6.19)
Теория прочности Кулона — Мора позволяет установить сопротивление разрушению материалов, обладающих разным сопротивлением растяжению и сжатию (хрупких материалов), и имеет существенное преимущество перед первой и второй теориями. Следует подчеркнуть, что хрупкое или пластичное состояние материала определяется не только его свойствами, но и видом напряженного состояния, температурой и скоростью нагружения. Как показывают опыты, пластичные материалы при определенных условиях нагружения и температуре ведут себя как хрупкие, а хрупкие материалы при определенных напряженных состояниях могут вести себя как пластичные.

Рис. 114
Рис. 115

6.2. Понятие о некоторых новых теориях прочности

Условное перехода материала в предельное состояние можно выразить в виде некоторого уравнения

\[F (\sigma_1, \sigma_2, \sigma_3) = 0, \]
(6.20)

которое может быть представлено предельной поверхностью в трехмерном пространстве, где по осям декартовой системы координат откладываются главные напряжения.

Так, предельная поверхность, соответствующая условию появления массовых пластических деформаций, по теории удельной потенциальной энергии формоизменения (6.15) имеет вид

\[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 - 2\sigma_1^2 = 0. \]
(6.21)

Пределная поверхность (6.21) представляет собой круговой цилиндр с осью, равнинаклоненной к координатным осям (рис. 116, а), и радиусом \(r = \sqrt[2]{3}\sigma_1 \).

Для плоского напряженного состояния, когда одно из главных напряжений равно нулю, условие (6.21) дает эллиптическую предельную кривую (рис. 116, б).

Критерию наибольших касательных напряжений соответствует предельная поверхность в виде правильной шестигранной призмы, вписанной в цилиндр. Критерию наибольших нормальных напряжений соответствует куб с ребрами, равными 0. Заметим, что все точки, распо
ложенных внутри области, ограниченной предельной поверхностью, соответствуют напряженным состояниям с коэффициентом запаса прочности \(n > 1 \), а напряженные состояния, представленные точками, лежащими вне области, ограниченной предельной поверхностью, имеют коэффициент запаса прочности \(n < 1 \).

Новейшие теории и основываются на выборе различных вариантов формы предельной поверхности, при которой можно наиболее полно учесть особенности сопротивления данного класса материалов в условиях сложного напряженного состояния.

Критерий прочности Ягна — Бужинского. Предельная поверхность (6.20) принимается в виде полинома второй степени, симметричного ко всем трем главным напряжениям:

\[
(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 + a (\sigma_1 + \sigma_2 + \sigma_3)^2 + \\
+ b (\sigma_1 + \sigma_2 + \sigma_3) = c,
\]

где

\[
a = \frac{6 [\tau]^2 - 2 [\sigma_+] [\sigma_-]}{[\sigma_+] [\sigma_-]}; \quad b = \frac{6 [\tau]^2 ([\sigma_-] - [\sigma_+])}{[\sigma_+] [\sigma_-]}; \quad c = 6 [\tau]^2.
\]

При этом \([\sigma_+], [\sigma_-], [\tau]\) определяются из опыта для данного материала при испытании соответственно на одноосное растяжение, сжатие и чистый сдвиг.

Очевидно, теория прочности Ягна — Бужинского позволяет учесть не только различие в сопротивлении материала растяжению и сжатию, но также и сопротивление свидту.

Критерий прочности Писаренко — Лебедева. К числу новых теорий следует отнести теорию, предложенную Г. С. Писаренко и А. А. Лебедевым, которая основана на предположении о том, что наступление предельного состояния обусловлено способностью материала оказывать сопротивление как касательным, так и нормальным напряжениям. Критерий прочности предлагается искать в виде инвариантных к напряженному состоянию функций касательных напряжений, например октаэдрических касательных напряжений, и максимального нормального напряжения.

При этом критерий прочности может быть записан в виде

\[
\tau_{\text{oct}} + m_1 \sigma_1 < m_2.
\]

Выражая константы \(m_1\) и \(m_2\) через предельные напряжения при одноосном растяжении \(\sigma_+^0\) и сжатии \(\sigma_-^0\) (в частности, через \(\sigma_\nu\) и \(\sigma_\nu\)), условие (6.23) приводим к виду

\[
\frac{3}{\sqrt{2}} \chi \tau_{\text{oct}} + (1 - \chi) \sigma_1 < \sigma_+^0
\]

и, переходя к интенсивности напряжений,

\[
\chi \sigma_1 + (1 - \chi) \sigma_1 < \sigma_+^0,
\]

где

\[
\chi = \frac{\sigma_+^0}{\sigma_-^0}.
\]

Для материала, находящегося в пластичном состоянии, когда \(\sigma_+^0 = \sigma_-^0\); \(\chi = 1\), выражение (6.24) преобразуется в критерий прочности, соответствующий теории формоизменения; для хрупких материалов, когда \(\chi = 0\), выражение (6.24) преобразуется в первую теорию
прочности. При \(0 < \chi < 1\), что соответствует большинству реальных конструкционных материалов, предельная поверхность по уравнению (6.24) будет представлять собой равноконусную к главным осям фигуру, в которую вписана шестигранная пирамида, соответствующая теории Кулона — Мора, и выражаемая формулой (6.19).

Теория, представленная критерием (6.24), хорошо согласуется с данными эксперимента для широкого класса достаточно однородных конструкционных материалов.

Для материалов, обладающих существенной структурной неоднородностью (отдельные виды металлокерамики, графиты, пенопласты, каменное литье и т. п.), предложено условие

\[
\chi \sigma_t + (1 - \chi) A_1 - J = \sigma_0^0,
\]

(6.25)

где \(J = \frac{\sigma_1 + \sigma_2 + \sigma_3}{\sigma_t}\) — параметр напряженного состояния; \(A_1\) — параметр структуры материала, среднестатистическое значение которого для указанного класса материалов составляет 0,7 — 0,8.

Уточненное значение параметра \(A_1\) можно определить, используя данные испытания на крушение:

\[
A = \frac{\varphi - \sqrt{3} \chi}{1 - \chi},
\]

Рис. 117

где \(\varphi = \sigma_0^0 / \tau_k\); \(\tau_k\) — предельное напряжение при кручине.

Критерий прочности Давиенкова — Фридмана. Этот критерий базируется на рассмотрении диаграмм механического состояния, которые строят исходя из того, что в зависимости от типа напряженного состояния материалы могут разрушаться от растягивающих напряжений (путем отрыва) и касательных напряжений (путем среза). Соответствен но этому различают две характеристики прочности — сопротивление отрыву \(S_{от}^0\), представляющее собой величину нормальных напряжений на поверхности разрушения, и сопротивление срезу \(t_k\), представляющее собой величину касательных напряжений. Обе характеристики прочности \(S_{от}^0\) и \(t_k\), а также кривые деформации не зависят от напряженного состояния.

Нарушение прочности путем отрыва описывается второй теорией прочности

\[
\sigma_{экв\,1} = \sigma_1 - \mu (\sigma_2 + \sigma_3) = S_{от}^0,
\]

(6.26)

а нарушение прочности второго вида — третьей теорией прочности

\[
\tau_{max} = \frac{\sigma_1 - \sigma_3}{2} = t_k,
\]

(6.27)

Диаграмма механического состояния состоит из двух диаграмм (рис. 117) — диаграммы в координатах \(\tau_{max}, \sigma_{экв\,1} = S_{от}^0\) и диаграммы \(\tau_{max}, \tau_{max}\). На диаграмму наносят предельные линии, соответствующие пределу текучести при сдвиге \(\tau_t\), сопротивлению срезу \(t_k\) и со-
противлению отрыву S_{α}. Отклонение линии сопротивления отрыву
вправо выше предела текучести соответствует возрастанию сопротивле-
нию отрыву с похвальным остаточным деформацией.

Для характеристики типа напряженного состояния вводится ко-
эффicients коэффициент мягкости

$$\alpha = \frac{\tau_{\text{max}}}{\sigma_{\text{экв}}}, \quad (6.28)$$

Различные напряженные состояния изображаются на диаграмме
лучами, тангенсы углов наклона которых равны α.

При всестороннем растяжении ($\sigma_1 = \sigma_2 = \sigma_3$)

$$\tau_{\text{max}} = 0; \quad \alpha = 0,$$

и луч совпадает с осью абсцисс. При простом растяжении ($\sigma_1 = \sigma; \quad \sigma_2 = \sigma_3 = 0$)

$$\tau_{\text{max}} = \frac{\sigma}{2}; \quad \sigma_{\text{экв}} = \sigma; \quad \alpha = 0,5.$$

При простом сжатии ($\sigma_1 = \sigma = 0; \quad \sigma_3 = -\sigma$)

$$\tau_{\text{max}} = \frac{\sigma}{2}; \quad \sigma_{\text{экв}} = \mu\sigma; \quad \alpha = \frac{1}{2\mu}.$$

Принимая $\mu = 0,25$, находим $\alpha = 2$.

Рассматривая лучи, отвечающие различным типам напряженного
состояния материала, можем приближенно установить вид разруше-
ния и выбрать, следовательно, подходящую теорию прочности.

Из рассмотрения на диаграмме луча 1 видим, что он раньше всего
пересекает линию сопротивления отрыву. Следовательно, материал
разрушается путем отрыва без предшествующей пластической деформа-
ции. Луч 2 пересекает сначала линию текучести, а затем линию сопро-
тивления отрыву. Следовательно, при данном напряженном состоя-
нии разрушению путем отрыва предшествует пластическая деформа-
ция. Для напряженного состояния, характеризуемого лучом 3, разру-
шение происходит после пластической деформации путем среза.

В случае, когда луч сначала пересекает линию сопротивления от-
рыву, следует пользоваться теорией Кулона — Мора, первой или во-
торой теорией прочности. Если же сначала пересекается линия предела
текучести, то расчет прочности должен производиться по третьей или
четвертой теории прочности.

Таким образом, диаграммы механического состояния с известным
приближением отражают тип разрушения в зависимости от вида напря-
женного состояния.

Заметим, что лучи, изображающие напряженное состояние, явля-
ются прямыми лишь до достижения предела текучести.

В заключении настоящей главы приведем в виде таблицы сводку
рассмотренных и других теорий прочности, встречающихся в сопро-
тивлении материалов (табл. 19).
Таблица 19. Критерии предельного состояния изотропных материалов (при статическом нагружении)

<table>
<thead>
<tr>
<th>Критерий</th>
<th>Выражение для эквивалентного напряжения $\sigma_{экв}$</th>
<th>Геометрическая интерпретация критерия в пространстве напряжений</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Критерий наибольших нормальных напряжений (Галилея — Лейбница, называют также Клебша — Ренкина)</td>
<td>$\sigma_{экв} = \sigma_1$</td>
<td>Куб с центром, смещённым относительно начала координат в сторону гидростатического сжатия</td>
<td>Удовлетворительно описывает предельное состояние весьма хрупких достаточно однородных материалов, таких, как стекло, тяже, некоторые виды керамики</td>
</tr>
<tr>
<td>Критерий наименьших линейных деформаций (Мариотта — Грасгофа, называют также Сен-Венана)</td>
<td>$\sigma_{экв} = \sigma_1 - \mu (\sigma_2 + \sigma_3)$</td>
<td>Равносторонний косоугольный параллелепипед с осью симметрии, равноконечной к координатным осям</td>
<td>Ввиду малой достоверности в расчетной практике в настоящее время почти не применяется</td>
</tr>
</tbody>
</table>

$\sigma_{экв}$ — эквивалентное напряжение; σ_1, σ_2, σ_3 — главные напряжения; ε_1, ε_2, ε_3 — главные относительные деформации, определяемые по обобщенному закону Гука;

$\sigma_{ср}$ — среднее напряжение $\left(\frac{1}{3} (\sigma_1 + \sigma_2 + \sigma_3)\right);

σ_1 — интенсивность напряжения $\left(\sqrt{\frac{1}{3} [(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]}\right);

$\sigma_0^+$$\sigma_0^-$, τ_0 — предельные для данного материала напряжения соответственно при одноосном растяжении, одноосном сжатии и чистом сдвиге; $\chi = \frac{\sigma_0^+}{\sigma_0}$; $\phi = \frac{\sigma_0^-}{\tau_0}$; $\psi = \frac{\sigma_0^-}{\tau_0}$.
<p>| Критерий наиболее малых касательных напряжений (Кулона) | (\sigma_{\text{экв}} = \sigma_1 - \sigma_2) | Правильная шестигранная призма, равненаклоненная к координатным осям | Удовлетворительно описывает предельное состояние пластичных малоупругих материалов (отпущеные стали), для которых характерна локализация пластических деформаций |
| Критерий октаэдрических касательных напряжений | (\sigma_{\text{экв}} = \sigma_l) | Круговой цилиндр, описанный вокруг призмы, интерпретируя критеий максимума касательных напряжений | Хорошо описывает предельное состояние широкого класса пластичных материалов (медь, никель, алюминий, углеродистые и хромоникелевые стали и т. п.) |
| Критерий Кулона - Мора | (\sigma_{\text{экв}} = \sigma_1 - \chi \sigma_3) | Шестигранная равненаклоненная к координатным осям пирамида | Применяется для установления предельного состояния достаточно однородных материалов, по разному сопротивляющихся растяжению и сжатию |
| Критерий Ягна - Бужинского | (\sigma_{\text{экв}} = 3 (1 - \chi) \sigma_{cp} + \frac{1}{\tau_0} \left[\sigma_1^2 (\eta + 3) \sigma_2 + \sigma_2 + \sigma_3 + \sigma_3 \right]) | Равненаклоненная к главным осям поверхность вращения. Однозначной геометрической интерпретации не имеет | Применяется в тех же случаях, что и критерий Кулона - Мора. При (\sigma_0^+ = \sigma_0^-) и (\tau_0 = \sigma_0), совпадает с критерием октаэдрических касательных напряжений |
| Критерий Баландина | (\sigma_{\text{экв}} = 3 (1 - \chi) \sigma_{cp} + \frac{\sigma_1^2}{\sigma_0}) | Параболоид вращения, равненаклоненный к координатным осям | Является частным случаем критерия Ягна - Бужинского (при (\tau_0 = \sqrt{\frac{\sigma_0^+ \sigma_0^-}{3}}) |</p>
<table>
<thead>
<tr>
<th>Критерий</th>
<th>Выражение для эквивалентного напряжения $\sigma_{экв}$</th>
<th>Геометрическая интерпретация критерия в пространстве напряжений</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Боткина — Миролюбова</td>
<td>$\sigma_{экв} = 3(1 - \chi) \sigma_0 + \frac{1}{2} (1 + \chi) \sigma_4$</td>
<td>Круговой конус, равнонапряженный к координатным осям</td>
<td>Применяется в тех случаях, что и критерий Кулона—Мора При $\sigma_4^2 = \sigma_0^2$ совпадает с критерием октаздрических касательных напряжений</td>
</tr>
<tr>
<td>Друкера — Прагера</td>
<td>$\sigma_{экв} = \left(\frac{1 + \chi}{1 + \sqrt[3]{\chi}}\right)^2 \sigma_0 + 6 \times \left(\frac{1 - \sqrt[3]{\chi}}{1 + \sqrt[3]{\chi}}\right) \frac{\sigma_0}{\sigma_0}$</td>
<td>Железообразный параболоид вращения, равнонапряженный к координатным осям</td>
<td>Удовлетворительно описывает предельное состояние сравнительно пластичных материалов, для которых параметр $\chi > 0.3$</td>
</tr>
<tr>
<td>Волкова</td>
<td>$\sigma_{экв} = \frac{2}{\chi^2} \left[C \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2\mu (\sigma_4 \sigma_2 + \sigma_5 \sigma_3 + \sigma_6 \sigma_1) + \beta \left(\alpha_4 + \alpha_5 + \alpha_6\right) \right]^{\frac{1}{2}}$</td>
<td>Предельная поверхность не исследована</td>
<td>Критерий получен на основе анализа модели микроскопически неоднородной среды в предположении, что критическое касательное напряжение в плоскости скольжения зависит от нормального напряжения в этой плоскости и от среднего напряжения. χ, μ, β, C — постоянные.</td>
</tr>
<tr>
<td>Критерий Писаренко — Лебедева</td>
<td>(\sigma_{екв} = \chi \sigma_i + \frac{1 - \chi}{2} \sigma_1)</td>
<td>Коническая поверхность, описанная вокруг пирамиды Кулона — Мора. В сечении октаэдрической плоскостью — равносторонний криволинейный треугольник</td>
<td>Хорошо описывает предельное состояние широкого класса достаточно однородных конструкционных материалов. При (\sigma_0^2 = \sigma_0^2) преобразуется в критерий октаэдрических сжатых напряжений. В случае, когда (\sigma_0^2 \ll \sigma_0^2) (весьма хрупкие материалы), результаты вычислений практически совпадают с данными расчета по критерию наибольших нормальных напряжений</td>
</tr>
<tr>
<td>Критерий Писаренко — Лебедева</td>
<td>(\sigma_{экв} = \chi \sigma_i + \frac{1 - \chi}{2} \sigma_1)</td>
<td>Предельная поверхность равнозначения к координатным осям. В сечении октаэдрической плоскостью — равносторонний криволинейный треугольник</td>
<td>Хорошо описывает предельное состояние неоднородных материалов (хрупкие металлокерамические композиты, графит, хрупкие термореактивные пластмассы, различные горные породы, пенопласти и т. п.). Среднестатистическое значение параметра (A) для указанных материалов составляет 0,7—0,8</td>
</tr>
</tbody>
</table>
7.1. Расчет стержней на растяжение (сжатие) с учетом собственного веса

Напряжение в любом сечении стержня постоянного сечения под действием внешней растягивающей силы (рис. 118, a) с учетом собственного веса может быть определено на основе гипотезы плоских сечений по формуле

$$\sigma = \frac{N(z)}{F}. \quad (7.1)$$

Рис. 118

Здесь

$$N(z) = P + \gamma Fz,$$

где F — площадь сечения; γ — удельный вес. Очевидно,

$$|N(z)|_{\text{max}} = P + \gamma Fl;$$

$$\sigma_{\text{max}} = \frac{|N(z)|_{\text{max}}}{F} = \frac{P + \gamma Fl}{F} = \frac{P}{F} + \gamma l.$$

Условие прочности будет

$$\sigma_{\text{max}} = \frac{P}{F} + \gamma l \leq [\sigma]$$

или

$$F \geq \frac{P}{[\sigma] - \gamma l}. \quad (7.2)$$

При $P = 0$

$$\sigma_{\text{max}} = \gamma l,$$

а условие прочности принимает вид

$$\gamma l \leq [\sigma].$$

208
Отсюда предельная длина, при которой стержень не должен разру-
шаться от действия собственного веса,

\[l_{pr} = \frac{[\sigma]}{\gamma}, \]

а критическая длина, при которой стержень будет разрушаться от соб-
ственного веса,

\[l_{kr} = \frac{\sigma_b}{\gamma}. \]

Перемещение любого сечения, находящегося на расстоянии \(z \) от свободного конца стержня, к которому приложена внешняя сила \(P \) (рис. 118, a), определяется по формуле

\[\lambda (z) = \int_0^l \frac{N(z)}{EF} dz = \int_0^l \frac{(P + \gamma Fz)}{EF} dz = \frac{P (l - z)}{EF} + \frac{\gamma l^2}{2E} (l^2 - z^2). \quad (7.3) \]

Перемещение нижнего конца стержня, очевидно, будет равно пол-
ному удлинению стержня и определяется формулой

\[\lambda (z)_{z=0} = \Delta l = \frac{Pl}{EF} + \frac{\gamma l^2}{2F}. \]

Учитывая, что вес стержня \(Q = \gamma l F \), получаем

\[\Delta l = \frac{Pl}{EF} + \frac{Ql}{2EF}. \quad (7.4) \]

Эпюры осевых сил, напряжений и перемещений показаны на
рис. 118, б, в, г.

7.2. Стержень равного сопротивления растяжению (сжатию).
Сопротивляемость стержня

Стержнем равного сопротивления растяжению (сжатию) называет-
ся такой стержень, в каждом поперечном сечении которого напряжения
однаковы и равны допускаемому. Площадь поперечного сечения та-
кого стержня (рис. 119) изменяется по закону

\[F (z) = F_0 e^{\frac{\gamma z}{[\sigma]}}, \quad (7.5) \]

где \(F_0 = P/[\sigma] \) — минимальное сечение стержня в месте приложения
нагрузки; \(\gamma \) — удельный вес; \(z \) — текущая координата; \(e \) — основание
натуральных логарифмов.

Наибольшая площадь сечения

\[F_{max} = F_0 e^{\frac{\gamma l}{[\sigma]}} = P \frac{\gamma l}{[\sigma]}. \quad (7.6) \]

Вес стержня \(Q \) определяется из условия \(P + Q = [\sigma] F_{max} \), откуда

\[Q = [\sigma] F_{max} - P, \] или с учетом (7.6) \(Q = P \left(e^{\frac{\gamma l}{[\sigma]}} - 1\right). \)
Относительное укорочение стержня равного сопротивления сжатия
\[\varepsilon = \frac{\sigma}{E}, \] а абсолютное укорочение
\[\Delta l = e l = \frac{\sigma}{E} l. \] (7.7)

Стержень равного сопротивления действительно осевая сила является оптимальным с точки зрения рационального использования материала, что существенно в случае большей длины стержня.

Ступенчатый стержень состоит из отдельных участков (ступеней) с постоянной площадью поперечного сечения в пределах каждого участка. Он занимает промежуточное положение между стержнем постоянного поперечного сечения и стержнем равного сопротивления.

Сечение любого \(n \)-го участка при длинах участков \(l_1, l_2, l_3, \ldots, l_n, \ldots, l_m \) и сечениях соответственно \(F_1, F_2, F_3, \ldots, F_n, \ldots, F_m \) (рис. 120) может быть определено по формуле

\[F_n = \frac{P |\sigma|^{n-1}}{([\sigma] - \gamma l_1) ([\sigma] - \gamma l_2) \ldots ([\sigma] - \gamma l_n)}. \] (7.8)

Если длины всех участков одинаковы:

\[l_1 = l_2 = l_3 = \ldots = l_n = \ldots = l_m = \frac{l}{m}, \]
то

\[F_n = \frac{P |\sigma|^{n-1}}{([\sigma] - \gamma \frac{l}{m})^n} = \frac{P}{[\sigma] \left(1 - \frac{\gamma l}{[\sigma] \frac{m}{m}} \right)^n}, \] (7.9)

где \(m \) — число ступеней в стержне; \(l \) — длина стержня.

7.3. Статически неопределимые конструкции

Статически неопределимыми называются конструкции, в элементах которых усилия не могут быть определены из уравнений статики. Кроме уравнений статики при решении статически неопределенных задач необходимо использовать также уравнения, учитывающие деформации элементов конструкций.
Все статически неопределенные конструкции имеют так называемые лишние связи в виде закреплений, стержней или других элементов. "Лишними" такие связи называются потому, что они не являются необходимыми для обеспечения равновесия конструкции и ее геометрической неизменяемости, а обусловливаются требованиями к прочности и жесткости конструкции. Число лишних неизвестных, или степень статической неопределенности системы, устанавливается разностью между числом неизвестных, подлежащих определению, и числом уравнений статики.

При одной лишней неизвестной система называется один раз или однажды статически неопределенной, при двух — дважды статически неопределенной и т. д. Конструкции, показанные на рис. 121, а, б, в, д, е, являются один раз статически неопределенными, а конструкция, приведенная на рис. 121, в, — дважды статически неопределенной.

Рис. 121

Решение статически неопределенных задач проводят в четыре этапа.
1. Статическая сторона задачи. Составляют уравнения равновесия отсеченных элементов конструкции, содержащие неизвестные усилия.
2. Геометрическая сторона задачи. Устанавливают связь между деформациями отдельных элементов конструкции, исходя из условий совместности деформаций. Полученные уравнения называются уравнениями совместности деформаций.
3. Физическая сторона задачи. В уравнениях совместности выражают деформации элементов конструкции на основании закона Гука через действующие в них неизвестные усилия.
4. Синтез Решают совместно полученные уравнения относительно искомых неизвестных усилий.

Ниже приведен пример расчета один раз статически неопределенной трехстержневой системы-подвески (рис. 122, а)
1. Статическая сторона задачи (рис. 122, б)

\[
\Sigma X = N_2 \sin \alpha - N_3 \sin \alpha = 0; \quad (7.10)
\]

\[
\Sigma Y = N_1 + N_2 \cos \alpha + N_3 \cos \alpha - P = 0. \quad (7.11)
\]

211
Из (7.10) находим
\[N_3 = N_3' \quad (7.12) \]
из (7.11) находим
\[N_1 + 2N_2 \cos \alpha = P. \quad (7.13) \]

2. Геометрическая сторона задачи (рис. 122, а)
\[\Delta l_3 = \Delta l_2 = \Delta l_1 \cos \alpha. \quad (7.14) \]

3. Физическая сторона задачи
\[\Delta l_1 = \frac{N_1 l_1}{E_1 F_1}; \quad \Delta l_3 = \frac{N_3 l_3}{E_3 F_3}. \quad (7.15) \]

4. Синтез. Подставляя (7.15) в (7.14), получаем
\[\frac{N_3 l_3}{E_3 F_3} = \frac{N_1 l_1}{E_1 F_1} \cos \alpha. \quad (7.16) \]

Рис. 122

Решая совместно уравнения (7.16) и (7.13), находим
\[
\begin{align*}
N_1 &= \frac{P}{1 + 2 \frac{c_2}{c_1} \cos^2 \alpha} ;
\quad (7.17) \\
N_2 &= \frac{P \frac{c_2}{c_1} \cos \alpha}{1 + 2 \frac{c_2}{c_1} \cos^2 \alpha},
\end{align*}
\]

где
\[c_1 = \frac{E_1 F_1}{l_1}; \quad c_2 = \frac{E_2 F_2}{l_2}. \]

Усилия \(N_1 \) и \(N_2 \) оказались зависящими от соотношения жесткостей стержней. Поэтому при проектировочном расчете вычислить их можно, только задавшись некоторым отношением жесткостей стержней. В этом одна из особенностей расчета статически неопределенных стержневых систем.

Расчетные формулы для определения усилий в некоторых простейших стержневых системах приведены в табл. 20.
Таблица 20. Усилия в простейших стержневых системах (E — модуль упругости материала стержня; F — площадь поперечного сечения стержня)

<table>
<thead>
<tr>
<th>Схема стержневой системы</th>
<th>Формулы для расчета продольных усилий в стержне</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$N_1 = -P \frac{\cos(\alpha_2 + \alpha_p)}{\sin(\alpha_1 + \alpha_2)}$;</td>
</tr>
<tr>
<td></td>
<td>$N_2 = P \frac{\cos(\alpha_1 - \alpha_p)}{\sin(\alpha_1 + \alpha_2)}$</td>
</tr>
<tr>
<td></td>
<td>$N_3 = P \frac{\cos(\alpha_1 - \alpha_p)}{\sin(\alpha_1 + \alpha_2)} \sin \alpha_2$</td>
</tr>
<tr>
<td></td>
<td>$N_1 = \frac{P}{E_1F_1 \cos^2 \alpha}$;</td>
</tr>
<tr>
<td></td>
<td>$N_2 = \frac{P}{1 + 2 \frac{E_1F_1}{E_2F_2} \cos^3 \alpha}$</td>
</tr>
</tbody>
</table>

213
Схема стержневой системы

Формулы для расчета продольных
усилий в стержне

\[N_1 = \frac{P}{2} \frac{\sum_{i=1}^{n} E_i F_i \cos^2 \alpha_i}{\sum_{i=1}^{n} E_i F_i \cos^3 \alpha_i} \]

\[N_2 = \frac{P}{2} \frac{a_1 a_2 \left(1 + \frac{E_2 F_2}{E_3 F_3}\right) + a_2^2}{2a_1 a_2 + a_1^2 \left(1 + \frac{E_2 F_2}{E_3 F_3}\right) + a_2^2 \left(1 + \frac{E_2 F_2}{E_1 F_1}\right) - a_1 a_2 E_2 F_2 + a_1 E_2 F_2 - a_1 a_2 E_2 F_2 + a_2 E_2 F_2 - a_1 a_2 \frac{E_2 F_2}{E_1 F_1} + a_2 \left(1 + \frac{E_2 F_2}{E_3 F_3}\right) + a_2 \left(1 + \frac{E_2 F_2}{E_2 F_2}\right) + a_1 \frac{E_2 F_2}{E_1 F_1}} \]

\[N_3 = \frac{P}{2} \frac{a_1 a_2 \left(1 + \frac{E_2 F_2}{E_3 F_3}\right) + a_2^2 \left(1 + \frac{E_2 F_2}{E_1 F_1}\right)}{2a_1 a_2 + a_1^2 \left(1 + \frac{E_2 F_2}{E_3 F_3}\right) + a_2^2 \left(1 + \frac{E_2 F_2}{E_1 F_1}\right)} \]
7.4. Расчет гибких нитей

Гибкой нитью называется стержень, способный сопротивляться только растяжению. Из шести компонентов внутренних сил для гибкой нити только осевая сила не равна нулю.

К гибким нитям относятся провода электрических и телеграфных сетей, цепи высачих мостов, тросы канатных дорог и т. п. Точки подвеса гибких нитей могут находиться как на одном, так и на разных уровнях (рис. 123, а, б).

Основной нагрузкой гибкой нити на материал с удельным весом \(\gamma \) и площадью поперечного сечения \(F \) является собственный вес провода с интенсивностью \(q_n = \gamma F \).

Однако нагрузка в гибкой нити может создаваться не только собственным весом провода, но также некоторыми другими факторами, например давлением ветра, весом льда при обледенении проводов. Эти нагрузки также предполагаются равномерно распределенными по длине нити. Интенсивности этих нагрузок обозначим соответственно \(q_n \) и \(q_L \).

Толщина корки льда в зависимости от климатического района принимается равной 0,5 — 2,5 см.

Интенсивность нагрузки от давления ветра в горизонтальной плоскости будет определяться формулой

\[
q_v = pd
\]

или

\[
q_v = k \alpha q_{ck} d, \tag{7.18}
\]

где \(p \) — давление ветра; \(d \) — диаметр провода с учетом его увеличения за счет обледенения; \(k = 1,2 \) — аэродинамический коэффициент; \(\alpha = 0,85 \) — коэффициент неравномерности ветра; \(q_{ck} \) — скорость напора.

Выражая последнюю через скорость ветра в метрах в секунду, а \(d \) в метрах, найдем интенсивность ветровой нагрузки:

\[
q_v = 624 \cdot 10^{-3} \sigma^2 d \text{[Н/м].} \tag{7.19}
\]

Суммарная интенсивность нагрузки на гибкую нить может быть определена по формуле

\[
q = \sqrt{(q_n + q_L)^2 + q_v^2}. \tag{7.20}
\]

Плоскость действия суммарной нагрузки, совпадающая с плоскостью провисания нити, не будет вертикальной.

Гибкая нить относится к классу один раз статически неопределимых систем

Приведем основные формулы, применимые при расчете гибкой нити в общем случае, когда точки подвеса нити находятся на разных уровнях (рис. 124, а).
Обычно распределяющую нагрузку \(\tilde{q} \), действующую на провод, заменяют статически эквивалентной нагрузкой \(q \), распределенной вдоль пролета длиной \(l \):

\[
q = \frac{\tilde{q}}{l} = \frac{\tilde{q}}{\cos \beta}.
\]

Полагая нить идеально гибкой, можно считать растягивающие усилия в любом сечении нити касательными к кривой привисания нити. В точках закрепления \(A \) и \(B \) усилия, действующие в нити, равны реакциям опор \(T_A \) и \(T_B \). Представляя реакции опор в виде горизонтальных \((H)\) и вертикальных \((R)\) составляющих, на рассмотрения статической стороны задачи получаем

Рис. 124

\[
\Sigma Z = -H_A + H_B = 0;
\]

\[
\Sigma Y = -R_A - R_B + ql = 0;
\]

\[
\Sigma M_B = -H_A h + R_A l - \frac{ql^2}{2} = 0,
\]

где

\[
H_A = H_B = H;
\]

\[
R_A = \frac{ql}{2} + H \frac{h}{l};
\]

\[
R_B = \frac{ql}{2} - H \frac{h}{l}.
\]

Из рассмотрения равновесия части нити (рис. 124, б) находим

\[
\Sigma Z = -H + T_z(z) = 0;
\]

\[
\Sigma Y = -R_A + qz + T_y(z) = 0,
\]

216
откуда

\[T_z(z) = H_1 \]
(7.24)

\[T_y(z) = H \frac{h}{l} + q \left(\frac{l}{2} - z \right), \]
(7.25)

где \(H \) — горизонтальная составляющая усилия, одинаковая во всех сечениях, называется напряжением нити.

Суммарное растягивающее усилие в любом сечении нити

\[T(z) = \sqrt{T_z^2(z) + T_y^2(z)} = \sqrt{H^2 + \left[H \frac{h}{l} + q \left(\frac{l}{2} - z \right)\right]^2} \]
(7.26)

и максимально при \(z = 0 \), т. е.

\[T_{\text{max}} = \sqrt{H^2 + \left(\frac{ql}{2} + H \frac{h}{l}\right)^2}. \]
(7.27)

Рис. 125

Для пологих нитей (длина которых по кривой провисания мало, не более чем на 10%, отличается от длины пролета) разница между \(T_{\text{max}} \) и \(H \) невелика. Поэтому с достаточной для практики точностью расчет нити на прочность ведут по величине напряжения \(H \).

Уравнение кривой провисания нити найдем, приравнив (на основании совершенной гибкости нити) изгибающий момент нулю:

\[M(z) = R_A z - H y - \frac{q z}{2} = 0, \]

откуда с учетом (7.22) получим

\[y = \left(\frac{ql}{2H} + \frac{h}{l}\right) z - \frac{q z^2}{2H}, \]
(7.28)

т. е. кривая провисания нити имеет аналитическое выражение параболы.

Заметим, что если задачу решать точно, считая нагрузку распределенной равномерно по длине нити, а не по пролету, то кривая провисания будет цепной линией. Правая часть уравнения (7.28) является первым членом разложения уравнения цепной линии в ряд Маклорена по степеням \(z \). Использование приближенной формулы (7.28) на практике дает вполне удовлетворительные результаты.

Положение нижней точки подвешенной нити, координаты которой обозначены \(z = a; \ y = l' \) (рис. 125, a), определим, приравняв нулю производную от правой части уравнения (7.28):

\[\frac{dy}{dz} = \frac{ql}{2H} + \frac{h}{l} - \frac{q z}{H} = 0, \]

217
откуда

\[z = a = \frac{l}{2} + \frac{Hh}{ql}. \]

(7.29)

Подставив (7.29) в (7.28), найдем наибольшее провисание нити

\[\psi_{\max} = f' = \frac{qL^2}{8H} + \frac{Hh^2}{2ql^2} + \frac{h}{2}. \]

(7.30)

Различают три характерных случая расположения низшей точки кривой провисания нити.

1. Низшая точка кривой провисания находится в пределах пролета, т. е. \(a < l \) (рис. 125, а). Согласно (7.29) это будет тогда, когда

\[H < \frac{qL^2}{2h}. \]

(7.31)

Рис. 126

2. Низшая точка кривой провисания находится вне пролета, т. е. \(a > l \) (рис. 125, б). Это будет при условии

\[H > \frac{qL^2}{2h}. \]

(7.32)

3. Низшая точка кривой провисания совпадает с нижней точкой подвеса, т. е. \(a = l \) (рис. 125, в). Для этого случая необходимо, чтобы

\[H = \frac{qL^2}{2h}. \]

(7.33)

Во всех трех случаях координаты \(a \) и \(f' \) низшей точки определяются по формулам (7.29) и (7.30).

Установим зависимость между натяжением \(H \) и стрелой провисания \(f \). Подставляя в (7.28) \(z = l/2 \) и \(y = \frac{h}{2} + f \) (рис. 126), находим

\[f = \frac{qL^2}{8H}. \]

(7.34)

или

\[H = \frac{qL^2}{8f}. \]

(7.35)

Натяжение нити, выраженное через наибольшее провисание \(f' \), найдем, решив квадратное уравнение (7.30) относительно \(H' \):

\[H = \frac{qL^2}{h^2} \left[f' - \frac{h}{2} = \sqrt{f' (f' - h)} \right]. \]

218
Если низшая точка кривой провисания находится в пределах про-лета, то перед кормом берется знак "минус", если вне проleta — знак "плюс".

Рассмотрев геометрическую сторону задачи, устанавливаем связь между длиной подвешенной нити S, пролетом l и величиной провисания f. Длину элемента нити, учитывая малое провисание, можно выразить следующей зависимостью:

$$dS = V \frac{dz^2}{dz^2} + \frac{dy^2}{dz^2} \approx \left[1 + \left(\frac{dy}{dz} \right)^2 \right]^{1/2} dz \approx \left[1 + \frac{1}{2} \left(\frac{dy}{dz} \right)^2 \right] dz.$$

Подставляя производную от выражения (7.28) dy/dz в (7.36) и интегрируя по всей длине, находим

$$S = l + \frac{q^2 I^3}{24 H^2} + \frac{h^2}{2l}$$

или, учитывая равенство (7.35), получаем

$$S = l + \frac{8}{3} \int l + \frac{h^2}{2l}.$$

Удлинение подвешенной нити от растяжения

$$\Delta S = S - L = l + \frac{q^2 I^3}{24 H^2} + \frac{h^2}{2l} - L,$$

где L — длина неподвешенной нити.

Из рассмотрения физической стороны задачи устанавливают зависимость изменения длины нити от растягивающего усилия и изменения температуры.

Принимая для пологих нитей за расчетное растягивающее усилие наложение H и заменя длину нити расстоянием между точками подвеса l_1, находим удлинение нити

$$\Delta S_H = \frac{H l_1}{E F} = \frac{H l}{E F \cos \beta}.$$

Температурное удлинение нити определяется формулой

$$\Delta S_t = \alpha l_1 (t - t_0) = \frac{\alpha l}{\cos \beta} (t - t_0),$$

где α — коэффициент линейного расширения материала нити; t_0 — температура в момент подвешивания нити; t — температура, для которой проводится расчет нити.

Суммарное изменение исходной длины нити

$$\Delta S = \Delta S_H + \Delta S_t = \frac{H l}{E F \cos \beta} + \frac{\alpha l}{\cos \beta} (t - t_0).$$

Приравнивая правые части (7.39) и (7.42), выражающие одну и ту же величину удлинения подвешенной нити, находим

$$L = l + \frac{q^2 I^3}{24 H^2} + \frac{h^2}{2l} - \frac{H l}{E F \cos \beta} - \frac{\alpha l}{\cos \beta} (t - t_0).$$
Совместное рассмотрение уравнений (7.35) и (7.43) позволяет определить натяжение нити H и стрелу ее провисания f. Определив H, по формуле (7.27) можно найти $T_{\text{м.a.c.}}$, а затем проверить прочность по формуле

$$
\sigma = \frac{q_{\text{м.a.c.}}}{F} \approx \frac{H}{F} \leq [\sigma],$$

или с учетом (7.35)

$$
\sigma = \frac{ql^2}{8fF} \leq [\sigma].$$ \tag{7.45}

Введя понятие удельной нагрузки

$$
\bar{\nu} = q/F,
$$

получим условие прочности (7.45) в виде

$$
\sigma = \frac{ql^2}{8f} \leq [\sigma].$$ \tag{7.46}

Заметим, что при расчете электрических проводов сечение провода F определяется из электрических соотношений, а затем выполняется проверочный расчет по формуле (7.46). Большой практический интерес представляет частный случай расчета нити, когда точки подвеса находятся на одном уровне, т.е. при

$$
cos \beta = cos 0 = 1; \ h = 0; \ R_A = R_B = \frac{ql}{2}.
$$

Как и в общем случае, останутся в силе формулы (7.34) и (7.35), а уравнение совместности деформаций (7.43) примет вид

$$
L = l + \frac{q^2l^3}{24H^2} - \frac{Hl}{EF} - \alpha l (t - t_0).
$$ \tag{7.47}

На практике часто приходится учитывать влияние на напряжение в стрелу провисания нити изменений температуры и нагрузки. Пусть требуется определить изменение напряжения и стрель провисания в состоянии n, характеризуемом параметрами t_n, q_n, f_n, $H_n = q_n l^2/8f_n$, по сравнению с первоначальным состоянием m в момент подвеса нити, характеризуемом параметрами t_m, q_m, f_m, $H_m = q_m l^2/8f_m$. Решение поставленной задачи можно получить, если выразить длину L нити для состояний m и n в соответствии с (7.47):

$$
L = l + \frac{q^2m^3}{24H^2_m} - \frac{H_m l}{EF} - \alpha l (t_m - t_0);
$$

$$
L = l + \frac{q^2n^3}{24H^2_n} - \frac{H_n l}{EF} - \alpha l (t_n - t_0).
$$

Приравнив правые части этих уравнений и введя замену

$$
\frac{q_m}{F} = \gamma_m; \ \frac{q_n}{F} = \gamma_n; \ \frac{H_m}{F} = \sigma_m; \ \frac{H_n}{F} = \sigma_n,
$$

220
окончательно получим

\[\sigma_n \frac{\gamma_n^2 \zeta^2 E}{24 \sigma_n^2} = \sigma_m - \frac{\gamma_m^2 \zeta^2 E}{24 \sigma_m^2} - \alpha (t_m - t_n). \] \hspace{1cm} (7.48)

Зависимость (7.48) иногда называют уравнением состояния нити. Она может быть представлена в виде

\[\sigma_n^3 - \left[\sigma_m - \frac{\gamma_m^2 \zeta^2 E}{24 \sigma_m^2} - \alpha (t_n - t_m) \right] \sigma_n^2 - \frac{\gamma_n^2 \zeta^2 E}{24} = 0, \] \hspace{1cm} (7.49)

или учитывая, что

\[\sigma_m = \frac{\gamma_m^2}{8f_m}; \quad \sigma_n = \frac{\gamma_n^2}{8f_n}, \]

в виде

\[f_n^3 - \left[f_m^2 - \frac{3}{8} \alpha \ell^2 (t_n - t_m) - \frac{3 \gamma_m^4}{64 E f_m} \right] f_n - \frac{3 \gamma_n^4}{64 E} = 0. \] \hspace{1cm} (7.50)

При различных уровнях точек подвеса уравнение состояния нити соответственно примет вид

\[f_n^3 - \left[f_m^2 + \frac{3}{8} \alpha \ell^2 \frac{t_n - t_m}{\cos \beta} - \frac{3 \gamma_m^4}{64 E f_m \cos \beta} \right] f_n - \frac{3 \gamma_n^4}{64 E \cos \beta} = 0. \] \hspace{1cm} (7.51)

Кубическое уравнение (7.50) или (7.51) относительно \(f_n \) удобно решать графически. Так, записав его в виде \(f_n^3 - af_n - b = 0 \) или \(f_n = \frac{a}{n} + b \), где \(a \) и \(b \) — известные числа, строят графики

\[y = f_n^3 \quad \text{и} \quad y = af_n + b. \]

Абсцисса точки пересечения получаемой при этом кубической параболы с прямой линией и дает значение искомого провисания \(f_n \) (рис. 127).

При расчете нити на прочность необходимо учитывать случай наиболее неблагоприятных сочетаний ветра и обледенения, вызывающих максимальные напряжения в ней.

Из уравнения состояния (7.48) следует, что в случае малых пролетов при \(l \to 0 \)

\[\sigma_n = \sigma_m + \alpha E (t_m - t_n), \]

t. e. изменение напряжений зависит главным образом от изменений температуры.

В случае больших пролетов при \(l \to \infty \)

\[\sigma_n = \frac{\gamma_n}{\gamma_m} \sigma_m, \]

t. e. напряжение в основном зависит от нагрузки.
Критической длиной нити \(l_{\text{кр}} \) называется такая длина, при которой напряжение в нити одинаково в обоих опасных состояниях (как при наибольшей нагрузке — состояние \(n \), так и при наименьшей — температуре — состояние \(m \)), т. е. когда

\[
\sigma_n = \sigma_m = [\sigma].
\]

(7.52)

Полагая, что \(t_n \) соответствует температуре обледенения (обычно \(t_{\text{об}} = -268 \) К), при которой \(\gamma_n = \gamma_{\text{max}} \), а \(t_m \) соответствует наименьшей температуре \(t_{\text{min}} \), при которой на нить действует только собственный вес \(\gamma \), т. е. \(\gamma_m = \gamma_1 \), находим критическую длину нити \(l_{\text{кр}} \) из (7.49) с учетом (7.52):

\[
l_{\text{кр}} = [\sigma] \sqrt{\frac{24 \alpha (t_{\text{об}} - t_{\text{min}})}{\gamma_{\text{max}}^2 - \gamma_1^2}}.
\]

Сопоставляя расчетный пролет \(l \) с критическим \(l_{\text{кр}} \), можно убедиться, что при \(l < l_{\text{кр}} \) наибольшие напряжения будут при наиболее низкой температуре, а в случае \(l > l_{\text{кр}} \) наибольшие напряжения в нити будут при наибольших нагрузках.
8.1. Сдвиг. Расчет на срез

Деформация сдвига характерна тем, что из шести составляющих главного вектора силы R и главного момента M отлична от нуля только одна поперечная сила Q_y (или Q_z), а все остальные равны нулю.

Примером сдвига или среза может служить деформация полосы при резке ее ножницами (рис. 128, а, б). Практически деформацию сдвига в чистом виде получить трудно, так как она обычно сопровождается другими деформациями, и чаще всего деформацией язгиба.

Рис. 128

Рис. 129

При нагрузке по схеме, показанной на рисунке, на участке bc, очевидно, поперечная сила

$$Q = P,$$ \hspace{1cm} (8.1)

а связь между касательными напряжениями τ и поперечной силой будет

$$\int_{P} \tau dF = Q.$$ \hspace{1cm} (8.2)

Принимая касательные напряжения τ по площади поперечного сечения F распределенными равномерно (рис. 129), на основании (8.2) находим

$$\tau = \frac{Q}{F},$$

или, учитывая (8.1), получаем

$$\tau = \frac{P}{F}.$$ \hspace{1cm} (8.3)

Допущение о равномерности распределения касательных напряжений по сечению является весьма условным, поскольку в силу закона парности касательные напряжения у верхней и нижней граней равны нулю. Однако принятое допущение широко используется на практике при расчете болтов, заклепочных и сварных соединений, шпонок и т. п.

223
8.2. Чистый сдвиг

Случай плоского напряженного состояния, когда по четырем граням выделенного элемента действуют только касательные напряжения (рис. 130), называется чистым сдвигом. Найдем величину главных напряжений применительно к схеме нагружения, приведенной на рис. 130, а. Для этого с учетом того, что в данном случае $\sigma_x = \sigma_y = 0; \ \tau_x = -\tau; \ \tau_y = \tau$, строим круг напряжений (рис. 130), из которого следует, что

$$\sigma_1 = -\sigma_3 = \tau. \quad (8.4)$$

Средние напряжения в главных площадках, совпадающих с фасадной гранью, $\sigma_2 = 0$. Главные площадки наклонены к граням элемента под углом 45°. Под действием касательных напряжений элемент $abcd$, имевший форму квадрата со стороной a, превратится в ромб $a'b'c'd'$. Деформация чистого сдвига заключается в изменении прямых углов. Представляя для наглядности элемент, находящийся в условиях чистого сдвига, закрепленным по одной из граней (рис. 131), находим

$$\operatorname{tg} \gamma = \frac{\Delta s}{a} .$$

Учитывая малость угла, можем принять $\operatorname{tg} \gamma \approx \gamma$, тогда относительный сдвиг

$$\gamma = \frac{\Delta s}{a} . \quad (8.5)$$

Зависимость между нагрузкой и деформацией при сдвиге видна из диаграммы сдвига (рис. 132), которая может быть получена подобно диаграмме напряжений при испытаниях на растяжение. Очевидно, в пределах линейной зависимости между γ и τ справедливо соотношение

$$\gamma = \frac{\tau}{G} \quad \text{или} \quad \tau = G \gamma, \quad (8.6)$$

где G — коэффициент пропорциональности, который называется модулем упругости при сдвиге или модулем упругости второго рода. Об
имеет размерность Н/м², кН/м², МН/м³ и измеряется соответственно в Па, кПа, МПа и т. д. Формулы (8.6) выражают закон Гука при свинге, записанный в относительных координатах. Из рис. 131 видно, что для диагонали $AC = l = a \sqrt{2}$ ее удлинение

$$\Delta l = CC_1 \cos \left(\frac{\pi}{4} - \frac{\gamma}{2} \right) \approx CC_1 \cos 45^\circ = \frac{\Delta s}{\sqrt{2}},$$

а относительное линейное удлинение (в направлении σ_1)

$$\varepsilon = \frac{\Delta l}{l} = \frac{\Delta s}{2a} = \frac{\gamma}{2},$$

или с учетом соотношения (8.6)

$$\varepsilon = \frac{\tau}{2G}.$$ \hspace{1cm} (8.7)

Рис. 131 Рис. 132

Применяя обобщенный закон Гука к чистому свингу (рис. 131), находим

$$\varepsilon = \varepsilon_1 = \frac{1 + \mu}{E} \tau.$$ \hspace{1cm} (8.8)

Из сопоставления правых частей равенств (8.7) и (8.8) получаем

$$G = \frac{E}{2 (1 + \mu)},$$ \hspace{1cm} (8.9)

При $\mu = \frac{1}{3} - \frac{1}{4}$ \quad $G = (0,375 - 0,4) E$.

Используя (8.5), выразим абсолютный свинг Δs через $Q = Ft$:

$$\Delta s = \frac{\tau a}{G} = \frac{Qa}{GF},$$

т. е.

$$\Delta s = \frac{Qa}{GF}.$$ \hspace{1cm} (8.10)

Формула (8.10) выражает закон Гука при свинге в абсолютных единицах.

Потенциальная энергия при свинге определяется формулой

$$U = \frac{\Delta sQ}{2} = \frac{Q^2a}{2GF}.$$
Удельная потенциальная энергия деформации при сдвиге

\[u = \frac{U}{V} = \frac{Q^2a}{2GFaF} = \frac{r^2}{2G}, \]
(8.11)

где \(V \) — объем элемента.

Главные напряжения при чистом сдвиге (рис. 130, a) такие:

\[\sigma_1 = \tau; \quad \sigma_2 = 0; \quad \sigma_3 = -\tau. \]

Условия прочности при чистом сдвиге записываются:

по первой теории прочности

\[\sigma_1 = \tau \leq [\sigma]; \]
(8.12)

по второй теории прочности

\[\sigma_1 - \mu \sigma_3 \leq [\sigma]. \]

Подставляя значения главных напряжений, находим

\[\tau \leq \frac{[\sigma]}{1 + \mu} = [\tau]. \]
(8.13)

Для металлов \(\mu = 0,25 - 0,42, \) поэтому \([\tau] = (0,7 - 0,8) [\sigma]. \)

По третьей теории прочности

\[\sigma_1 - \sigma_3 \leq [\sigma]. \]

Отсюда

\[\tau \leq \frac{[\sigma]}{2} = [\tau] \]
(8.14)

и допускаемое напряжение

\[[\tau] = 0,5 [\sigma]. \]

По четвертой теории прочности при сдвиге

\[\sqrt{\sigma_1^2 + \sigma_3^2 - 2\sigma_1\sigma_3} \leq [\sigma]; \]

\[\tau \leq \frac{[\sigma]}{\sqrt{3}}. \]

Следовательно,

\[[\tau] = \frac{[\sigma]}{\sqrt{3}} \approx 0,6 [\sigma]. \]

Отметим, что при расчетах деталей из пластичных материалов (болты, заклепки, шпонки и т. п.) наиболее подходящей является последняя формула.

8.3. Некоторые примеры расчета на срез

Болтовые и заклепочные соединения. При расчете болтов на срез (рис. 133, a) условно принимают распределение внешних сил, действующих на болт, и касательных напряжений в сечении среза соответствующим схеме, приведенной на рис. 133, б.

Условие прочности болта на срез может быть записано в виде

\[\tau_{\text{max}} = \frac{Q}{F} \leq [\tau] \]
или с учетом того, что \(Q = P \) (рис. 133, а), а \(F = \pi d^2/4 \),

\[
\tau_{\text{max}} = \frac{4P}{\pi d^2} \leq [\tau].
\]

Отсюда определим диаметр болта

\[
d = \sqrt{\frac{4P}{\pi [\tau]}}.
\]

(8.15)

Рис. 133

Рис. 134

При расчете болтовых или заклепочных соединений следует учи́тьвать, что нагрузка, приложенная к элементам соединения, помимо среза вызывает смя́тие контактующих поверхностей. Под смя́тием понимают пластическую деформацию, возникающую на поверхности контакта.

Расчет на смятие проводят приближенно, поскольку закон распределения давления по поверхности контакта точно не известен. Обычно принимают нелинейный закон распределения давления (рис. 134, а), счита́я, что давление пропорционально проекции \(dF \) плоскости \(dF \) цилиндрической поверхности на диаметральную плоскость:

\[
\frac{q}{q_1} = \frac{dF}{dF_1}.
\]
Максимальное напряжение смятия для цилиндрической поверхности равно

$$\sigma_{cm} = \frac{P}{F_{cm}} = \frac{P}{8d},$$

где $F_{cm} = 8d$ — площадь проекции поверхности контакта на диаметральную плоскость (рис. 134, б).

Условие прочности на смятие имеет вид

$$\sigma_{cm} = \frac{P}{8d} \leq [\sigma_{cm}].$$ (8.16)

Допускаемые напряжения на смятие устанавливаются опытным путем и принимаются равными

$$[\sigma_{cm}] = (2 — 2.5) [\sigma_\sigma].$$

На основании (8.16) можно определить необходимый диаметр болта

$$d \geq \frac{P}{8 [\sigma_{cm}]}.$$ (8.17)

Из двух значений диаметров, найденных по формулам (8.15) и (8.17), следует взять большее, округлив его до стандартного.

Так как болты и заклепки ослабляют соединяемые листы, последние проверяют на разрыв в наиболее ослабленных сечениях. В случае одного болта условие прочности принимает вид

$$\sigma = \frac{P}{F_{min}} = \frac{P}{\delta (b - d)} \leq [\sigma_\sigma],$$

где b — ширина листа.

Рассмотрим заклепочное соединение, заклепки которого подвергаются двойному срезу (рис. 135).

Положив, что растягивающая сила N равномерно распределена между заклепками и задав диаметр заклепок d и толщину листа b, найдем число заклепок i из условия прочности на срез

$$\tau = \frac{N}{2l} \leq [\tau];$$

$$i \geq \frac{2N}{\pi d^2 [\tau]};$$

или из условия прочности на смятие

$$\sigma_{cm} = \frac{N}{i8d} \leq [\sigma_{cm}];$$

$$i \geq \frac{N}{8d [\sigma_{cm}]}.$$
Соединения с помощью угловых швов применяют в случаях, когда соединяемые листы параллельны или перпендикулярны. К ним относятся соединения внахлестку, с накладками и тавровые. Если направление шва перпендикулярно к действующему усилию, то шов называется лобовым. Швы, параллельные усилию, называются фланговыми или боковыми. Применяются также косые швы (рис. 137), направленные под некоторым углом к действующей силе. На рис. 138 показано соединение листов внахлестку лобовыми швами, на рис. 139 — соединение с накладками, приваренными фланговыми швами, на рис. 140 — тавровое соединение.

Обычно при расчетах сварных швов наплавы не учитывают, а считают, что в разрезе угловой шов имеет форму прямоугольного равно-
бедренного треугольника (рис. 141, а, б). Разрушение шва будет происходить по его минимальному сечению, высота которого

\[m = \delta \cos 45^\circ \approx 0,76. \]

Расчетная площадь сечения шва длиной \(l \) составит

\[F = ml = 0,76l. \]

Расчет швов, как и заклепок, условно ведется в предположении равномерного распределения напряжений по сечению шва. Некоторые значения допускаемых напряжений при расчете сварных соединений конструкций, изготовленных из Ст3, приведены в табл. 21.

Лобовой шов. Учитывая, что сопротивление стали срезу ниже, чем растяжение, составляющая нормальных напряжений в лобовом шве пренебрегают и расчет швов производят условно на срез, предполагая, что касательные напряжения равномерно распределены по площади сечения \(ABCD \) (рис. 141). При расчете лобовых швов соединения внахлестку учитывают оба шва — верхний и нижний. Их общая площадь

\[F = 2ml = 2 \cdot 0,76l = 1,48l. \]

Условие прочности запишется в виде

\[\tau = \frac{P}{F} = \frac{P}{1,48l} \leq [\tau]. \]

Расчетная длина торцевого шва \(l_p \) определяется формулой

\[l_p = \frac{P}{1,48[\tau_3]}. \]

Расчетная длина шва \(l_p \) в связи с непрерывностью в начале и в конце шва обычно принимается из 10 мм меньше действительной \(l \):

\[l_p = l - 10 \text{ мм}. \]

Фланговые швы. Фланговые швы наиболее распространены на практике. Они менее жестки, чем лобовые, из-за большей протяженности металла в направлении действия силы. Фланговые швы всегда ставят на пары. Они работают на срез в биссектральных сечениях (рис. 142). Площадь среза двух швов

\[F = 2 \cdot 0,7 \delta (l - 10 \text{ мм}) = 1,46 (l - 10 \text{ мм}). \]
Условие прочности на срез:

$$\tau = \frac{P}{F} = \frac{P}{1,46 (l - 10 \text{ мм})} \leq \tau_s.$$

Длина шва определяется формулой

$$l = \frac{P}{1,46 [\tau_s]} + 10 \text{ мм.}$$

Врубки. К числу соединений, прочность которых определяется в основном из условия среза, относятся врубки, используемые для соединения деревянных элементов конструкций (рис. 143). Древесина является анизотропным материалом, её механические свойства зависят от направления силовых воздействий относительно ориентации волокон.

Так, для сосны предел прочности вдоль волокон равен 40 МПа, поперек волокон — 5 МПа; для дуба соответственно 50 МПа и 15 МПа.

Вследствие различной сопротивляемости древесины вдоль и поперек волокон приходится принимать разные допускаемые напряжения для различных направлений действия силы.

Некоторые данные о допускаемых напряжениях для сосны и дуба приведены в табл. 22.

В качестве примера рассмотрим расчет соединения стропильной ноги со стропильной затяжкой (рис. 143). Угол между осями стропильной ноги и затяжки обозначен α, а силу, действующую вдоль стропильной ноги, — N. Сечение стропильной ноги $F = bh$. Конец ватажки испытывает скальвание вдоль волокон под действием горизонтальной проекции силы N:

$$N_1 = N \cos \alpha.$$

Длину части ватажки x, выступающей за врубку, определяем из условия

$$\tau_{\text{max}} = \frac{N_1}{F_{\text{ск}}} = \frac{N_1}{bx} \leq \tau_s,$$

откуда

$$F_{\text{ск}} = bx \geq \frac{N_1}{\tau_s},$$

а

$$x \geq \frac{N_1}{b [\tau_s]} = \frac{N \cos \alpha}{b [\tau_s]}.$$

Необходимая площадь смятия врубки

$$F_{\text{см}} = by \geq \frac{N_1}{[\sigma_{\text{см}}]}.$$

Глубина врубки

$$y \geq \frac{N_1}{b [\sigma_{\text{см}}]} = \frac{N \cos \alpha}{b [\sigma_{\text{см}}]}.$$
Таблица 21. Допускаемые напряжения (МПа) для сварных соединений

<table>
<thead>
<tr>
<th>Вид деформации</th>
<th>Обозначение</th>
<th>Ручная сварка (электроды с тонкой обмазкой)</th>
<th>Автоматическая сварка и ручная сварка (электроды с толстой обмазкой)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Растяжение</td>
<td>$[\sigma_9^+]$</td>
<td>100</td>
<td>130</td>
</tr>
<tr>
<td>Сжатие</td>
<td>$[\sigma_9^-]$</td>
<td>110</td>
<td>145</td>
</tr>
<tr>
<td>Срез</td>
<td>$[\tau_3]$</td>
<td>80</td>
<td>110</td>
</tr>
</tbody>
</table>

Таблица 22. Допускаемые напряжения (МПа) для древесины

<table>
<thead>
<tr>
<th>Вид деформации</th>
<th>Обозначение</th>
<th>Сосна</th>
<th>Дуб</th>
</tr>
</thead>
<tbody>
<tr>
<td>Растяжение</td>
<td>$[\sigma_c]$</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Сжатие вдоль волокон и смятие торца</td>
<td>$[\sigma_c]$</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Смятие в врубках вдоль волокон</td>
<td>$[\sigma_{cm}]$</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Смятие перпендикулярно к волокнам (на длине более 10 см)</td>
<td>$[\sigma_{cm}]_{1/2}$</td>
<td>2,4</td>
<td>4,8</td>
</tr>
<tr>
<td>Скалывание в врубках вдоль волокон</td>
<td>$[\tau]$</td>
<td>0,5 — 1</td>
<td>0,8 — 1,4</td>
</tr>
<tr>
<td>Скалывание в врубках поперек волокон</td>
<td>$[\tau]_{1/2}$</td>
<td>0,6</td>
<td>0,8</td>
</tr>
<tr>
<td>Изгиб</td>
<td>$[\sigma_h]$</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Скалывание при изгибе</td>
<td>$[\tau_h]$</td>
<td>2</td>
<td>2,8</td>
</tr>
</tbody>
</table>

Примечание. При смятии (или скалывании) под углом α к направлению волокон допускаемое напряжение имеет промежуточное значение между $[\sigma_{cm}]$, $[\sigma_{cm}]_{1/2}$ или $[\tau]$ и $[\tau]_{1/2}$ и может быть определено по условной формуле

$$[\sigma_\alpha] = \frac{[\sigma_{cm}]}{1 + \left(\frac{[\sigma_{cm}]}{[\sigma_{cm}]_{1/2}} - 1\right) \sin^2 \alpha}.$$
9.1. Напряжения и деформации при кручении

Кручение характеризуется наличием в стержне единственного внутреннего силового фактора — крутящего момента $M_z = M_{kr}$ (рис. 144), т. е. момента, действующего в плоскости поперечного сечения стержня (остальные компоненты внутренних сил равны нулю):

$$Q_x = Q_y = N = 0; \quad M_x = M_y = 0.$$

Распространенным стержневым элементом конструкций машин, работающих на кручение, является вал. Экспериментально установлено, что при действии на вал двух противоположно направленных

![Рис. 144](image1)

![Рис. 145](image2)

cрутящих моментов M_k, приложенных по его концам, вал будет закручиваться, т. е. одни сечения вала будут поворачиваться относительно других, в то время как длина вала останется неизменной.

Рассматривая кручение вала, нагруженного по схеме, приведенной на рис. 145, легко заметить, что угол поворота ϕ сечения, находящегося на расстоянии z от места заделки вала, будет тем больше, чем больше z и крутящий момент M_k. Если закручивать вал вплоть до его разрушения и представить зависимость $\phi = f(M_k)$ графически, то получим диаграмму кручения, вид которой для пластичного материала приведен на рис. 146. На этой диагrame, как и на диаграмме растяжения, можно заметить ряд характерных участков и точек (1, 2, 3): M_{pu} — величина крутящего момента, при которой сохраняется линейная зависимость между ϕ и M_k; M_t — момент, соответствующий началу текучести; M_b — величина крутящего момента, вызывающего разрушение. Обычно интересуются значениями моментов и деформаций, соответствующими линейному участку диаграммы кручення, для которого справедлив закон Гука. Крутящий момент в некотором сечении вала, являющийся равнодействующим моментом касательных напря-
женный τ_p, действующих в элементарных площадках dF, расположенных на расстоянии r от центра сечения, можно выразить уравнением

$$M_{kr} = \oint r \tau_r dF.$$
(9.1)

Характер распределения касательных напряжений τ_p по сечению устанавливается на геометрической картине деформации вала при кручении, представленной на рис. 147. Опыт показывает, что расстояния между сечениями, скручиваемого вала не изменяются, а продольные линии предварительно нанесенной сетки принимают винтовую форму. При этом прямые углы сетки искажаются, как и в случае чистого сдвига. Последнее обстоятельство свидетельствует о том, что выделенный элементарный объем любого слоя материала вала находится в условиях чистого сдвига. Вследствие того, что радусы, проведенные в торце сечения, остаются прямыми, нижележащие слои по мере приближения к центру испытывают меньшую деформацию сдвига. Согласно экспериментальным данным, сечение плоское до деформации вала, остаются плоскими и после деформации, поворачиваясь одно относительно другого на некоторый угол γ. В этом смысле гипотезы плоских сечений, на основании которой строится элементарная теория кручения стержней.

Для наружного слоя выделенного элементарного участка вальдлиной dz (рис. 148) будут справедливы соотношения, полученные ранее применительно к чистому сдвигу, т. е.

$$\tan \gamma \approx \gamma = \frac{b' b}{a b'} \frac{r d\phi}{dz}.$$

Величина $d\phi/dz$ — относительный угол закручивания — имеет размерность см$^{-1}$ и обозначается обычно θ.

Связь между относительным сдвигом и относительным углом закручивания примет вид

$$\gamma = \theta r.$$
(9.1)

Выразив сдвиг γ в наружных волокнах вала через напряжение в соответствии с законом Гука при сдвиге найдем связь между кас
течными напряжениями в крайних волокнах τ_r и относительным углом закручивания θ:

$$
\tau_r = G\theta r. \tag{9.3}
$$

Учитывая, что радиусы сечений оставляются прямым, можно по аналогии с (9.3) установить связь между касательными напряжениями в сечении стержня на расстоянии r от центра и относительным углом закручивания:

$$
\tau_\rho = G\theta \rho. \tag{9.4}
$$

Подставляя (9.4) в (9.1), находим

$$
M_{kr} = G\theta \int_0^l \rho^3 d\tau = G\theta J_\rho. \tag{9.5}
$$

Отсюда получаем формулу для определения относительного угла закручивания вала

$$
\theta = \frac{d\varphi}{dz} = \frac{M_{kr}}{GJ_\rho}, \tag{9.6}
$$

где GJ_ρ — жесткость поперечного сечения стержня при кручене — имеет размерность $H \cdot \text{см}^2$ или $H \cdot \text{м}^2$.

Полный угол закручивания вала длиной l равен

$$
\varphi = \int_0^l \frac{M'}{GJ_\rho} dz = \theta l = \frac{M_{kr} l}{GJ_\rho}, \tag{9.7}
$$

где GJ_ρ/l — жесткость вала при кручене — имеет размерность $H \cdot \text{см}$ или $H \cdot \text{м}$ (размерность момента).

Подставив значение θ из (9.5) в (9.4), определим касательное напряжение τ_ρ в любой точке сечения стержня:

$$
\tau_\rho = \frac{M_{kr} \theta}{J_\rho}. \tag{9.8}
$$

Максимальное касательное напряжение, очевидно, будет

$$
\tau_{\text{max}} = \tau_r = \frac{M_{kr} r}{J_\rho},
$$

или

$$
\tau_{\text{max}} = \frac{M_{kr}}{W_p}. \tag{9.9}
$$

Здесь $W_p = J_p/r$ — полярный момент сопротивления (см. (2.38)).

Для сплошного круглого вала диаметром d полярный момент сопротивления определяется формулой (2.38) и

$$
\tau_{\text{max}} = \frac{16 M_{kr}}{\pi d^3}. \tag{9.10}
$$

Для трубчатого круглого вала W_p определяется по (2.39) и

$$
\tau_{\text{max}} = \frac{16 M_{kr}}{\pi D^2 (1 - \alpha^4)}.
$$

235
где \(\alpha = d/D \) — отношение внутреннего диаметра вала к наружному.

Условие прочности при кручении вала записывается в виде

\[
\tau_{\text{max}} = \frac{M_{\text{кр}}}{W_p} \ll [\tau] \tag{9.11}
\]

Отсюда момент сопротивления вала при кручении должен быть

\[
W_p \geq \frac{M_{\text{кр}}}{[\tau]} \tag{9.12}
\]

На основании (9.9) диаметр круглого сплошного вала определяем из условия

\[
d \geq \sqrt[3]{\frac{16 M_{\text{кр}}}{\pi [\tau]}} \tag{9.13}
\]

а на основании (9.10) наружный диаметр трубчатого вала при заданном \(\alpha \) — из условия

\[
D \geq \sqrt[3]{\frac{16 M_{\text{кр}}}{\pi (1 - \alpha^4) [\tau]}} \tag{9.14}
\]

Если кручущий момент выразить через мощность \(N \) (л. с.) и число оборотов в минуту \(n \), то получим

\[
M_{\text{кр}} = 52,68 \frac{N}{n}, \text{ МВт} \cdot \text{с} = 702352 \frac{N}{n}, \text{ Н} \cdot \text{см}, \tag{9.15}
\]

и формула (9.13) примет вид

\[
d \geq 152,8 \sqrt[3]{\frac{N}{n [\tau]}} \tag{9.16}
\]

а формула (9.14) запишется так:

\[
D \geq 152,8 \sqrt[3]{\frac{N}{n [\tau] (1 - \alpha^4)}} \tag{9.17}
\]

Если мощность \(K \) задана в киловаттах (1 л. с. = 0,736 кВт), то кручущий момент может быть выражен формулой

\[
M_{\text{кр}} = \frac{702352 K}{0,736} \frac{n}{n} = 940694 \frac{K}{n} \text{ Н} \cdot \text{см}. \tag{9.18}
\]

Помимо расчета на прочность валы рассчитывают также и на жесткость, ограничивая относительные углы закручивания некоторой допускаемой величиной [0] (условие жесткости при кручении):

\[
\theta_{\text{max}} = \frac{M_{\text{кр}}}{G J_p} \ll [\theta] \tag{9.19}
\]

откуда полярный момент инерции, обеспечивающий допускаемую жесткость, определяется формулой

\[
J_p \geq \frac{M_{\text{кр}}}{G [\theta]} \tag{9.20}
\]

236
Отсюда диаметр сплошного круглого вала должен быть

\[d \geq \sqrt[4]{\frac{32 M_{kr}}{\pi G[\theta]}}. \]

(9.21)

а наружный диаметр \(D \) трубчатого вала при заданном \(\alpha \)

\[D \geq \sqrt[4]{\frac{32 M_{kr}}{\pi (1 - \alpha^4) G[\theta]}}. \]

(9.22)

Рис. 149

Поскольку в поперечных сечениях вала действуют касательные напряжения, распределенные согласно (9.7) по линейному закону (рис. 149, а), то в силу закона парности касательных напряжений и в диаметральных сечениях вала должны возникать касательные напряжения, равные по величине, но противоположные по знаку (рис. 149, б).

По площадкам, расположенным под углом 45° к сечениям, в которых действуют максимальные касательные напряжения, действуют главные нормальные напряжения, равные по величине касательным напряжениям в данной точке сечения, как показано на рис. 150. В связи с этим характер разрушения (сдвиг или отрыв) вала при кручине будет зависеть от способности материала сопротивляться действию касательных или нормальных напряжений. Так, при кручине деревянных валов с продольным расположением волокон последние будут разрушаться от касательных напряжений, действующих вдоль волокон (трещины продольные) (рис. 151). При кручине чугунных валов разрушение наступит под действием нормальных растягивающих напряжений, максимальное значение которых имеет место в сечениях, идущих по винтовой линии и пересекающих образующие под углом 45°, как показано на рис. 152.
9.2. Кручение стержней некруглого сечения

При кручении стержней некруглого сечения (прямоугольных, треугольных, эллиптических и др.) гипотеза плоских сечений неприменима. Точные расчеты на кручение таких стержней могут быть получены методами теории упругости. Окончательные формулы для определения максимальных касательных напряжений \(\tau_{\text{max}} \), относительного угла закручивания \(\theta \) и долного угла закручивания \(\varphi \) стержня длиной \(l \) имеют вид

\[
\tau_{\text{max}} = \frac{M_{\text{kr}}}{W_k};
\]

\[
\theta = \frac{M_{\text{kr}}}{GJ_k};
\]

\[
\varphi = \frac{M_{\text{kr}}l}{GJ_k}.
\]

В этих формулах \(J_k \) и \(W_k \) — некоторые геометрические характеристики, которые условно называются моментом инерции и моментом сопротивления при кручении и размерностью которых соответственно см\(^4\) и см\(^3\) (см. табл. 1).

Распределение касательных напряжений по прямоугольному сечению стержня приведено на рис. 153. Наибольшие напряжения возникают в наружных слоях посредине длиной стороны сечения (точки С и D). Определяют они по формуле (9.23), где

\[
W_k = abh^3
\]

(\(h, b \) — длина и короткая сторона прямоугольного сечения).

Напряжения посредине короткой стороны (в точках A и B) могут быть выражены через \(\tau_{\text{max}} \):

\[
\tau = \gamma \tau_{\text{max}}^*
\]

Относительный угол закручивания определяется по формуле (9.24), где выражение для момента инерции при кручении \(J_k \) будет

\[
J_k = \beta h b^3.
\]

Коэффициенты \(\alpha, \beta, \gamma, \gamma^* \), зависящие от отношения \(h/b \), приведены ниже.

<table>
<thead>
<tr>
<th>h/b</th>
<th>1</th>
<th>1,5</th>
<th>1,75</th>
<th>2,0</th>
<th>2,5</th>
<th>3,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>0,208</td>
<td>0,231</td>
<td>0,239</td>
<td>0,246</td>
<td>0,256</td>
<td>0,267</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0,141</td>
<td>0,196</td>
<td>0,214</td>
<td>0,229</td>
<td>0,249</td>
<td>0,263</td>
</tr>
<tr>
<td>(\gamma^*)</td>
<td>1,000</td>
<td>0,859</td>
<td>0,820</td>
<td>0,795</td>
<td>0,766</td>
<td>0,753</td>
</tr>
<tr>
<td>h/b</td>
<td>4,0</td>
<td>6,0</td>
<td>8,0</td>
<td>10,0</td>
<td>(\infty)</td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0,282</td>
<td>0,299</td>
<td>0,307</td>
<td>0,313</td>
<td>0,333</td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td>0,281</td>
<td>0,299</td>
<td>0,307</td>
<td>0,313</td>
<td>0,333</td>
<td></td>
</tr>
<tr>
<td>(\gamma^*)</td>
<td>0,745</td>
<td>0,743</td>
<td>0,742</td>
<td>0,742</td>
<td>0,743</td>
<td></td>
</tr>
</tbody>
</table>

238
Условия прочности и жесткости при расчете на кручение стержня прямоугольного сечения соответственно имеют вид

\[\tau_{\text{max}} = \frac{M_{\text{кр}}}{\alpha b h^2} \ll [\tau], \]
(9.29)

\[\theta_{\text{max}} = \frac{M_{\text{кр}}}{bh b G} \ll [\theta]. \]
(9.30)

При кручении стержней, сечения которых представляют собой равнобедренную трапецию, приближенные значения \(\tau_{\text{max}} \) и \(\theta_{\text{max}} \) могут быть получены путем определения указанных величин для стержня с сечением эквивалентного прямоугольника, который строится по схеме, приведенной на рис. 154.

При кручении стержня сложного замкнутого сечения, состоящего из прямоугольных элементов (рис. 155), момент инерции

\[J_k = J_{k_1} + J_{k_2} + J_{k_3} + \cdots = \sum J_{k_n}, \]
(9.31)

где \(n = 1, 2, 3, \ldots \) — номера составных простых частей рассматриваемого сечения.

Так как угол закручивания для всего сечения и для каждой его части один и тот же:

\[\theta = \frac{M_{\text{кр}}}{G J_k} = \frac{M_{\text{кр}1}}{G J_{k_1}} = \frac{M_{\text{кр}2}}{G J_{k_2}} = \cdots = \frac{M_{\text{кр}n}}{G J_{k_n}}, \]
Рис. 154 Рис. 155

то крутящие моменты, воспринимаемые каждой частью сечения, пропорциональны их жесткости:

\[M_{\text{кр}1} = M_{\text{кр}} \frac{J_{k_1} G}{J_k G} = M_{\text{кр}} \frac{J_{k_1}}{J_k} ; M_{\text{кр}2} = M_{\text{кр}} \frac{J_{k_2}}{J_k} ; \cdots ; M_{\text{кр}n} = M_{\text{кр}} \frac{J_{k_n}}{J_k}. \]

Соответственно наибольшее касательное напряжение в каждом \(n \)-м элементе сечения будет

\[\tau_{k_n} = \frac{M_{\text{кр}n}}{W_{k_n}} = \frac{M_{\text{кр}}}{W_{k_n}} \left(\frac{J_{k_n}}{J_k} \right) = \frac{M_{\text{кр}}}{W_{k}} \left(\frac{J_{k_n}}{W_{k_n}} \right). \]

Очевидно,

\[\tau_{\text{max}} = \frac{M_{\text{кр}}}{W_{k}} \left(\frac{J_{k_n}}{W_{k_n}} \right)_{\text{max}} \ll \frac{M_{\text{кр}}}{W_{k}}, \]
(9.32)

где

\[W_{k} = \frac{J_k}{\left(\frac{J_{k_n}}{W_{k_n}} \right)_{\text{max}}}, \]
(9.33)

Для стержня эллиптического сечения (рис. 156)

\[W_{k} = \frac{\pi b^2 h}{16}, \]
(9.34)

где \(b \) и \(h \) — малая и большая оси эллипса.
Нанбольшие касательные напряжения τ_{max} возникают в наружных точках сечения, лежащих на малых полуосях, и определяются по формуле

$$
\tau_{\text{max}} = \frac{M_{\text{кр}}}{W_{\text{k}}} = \frac{16 M_{\text{кр}}}{\pi b^3 h}.
$$

(9.35)

Напряжения в наружных точках, лежащих на больших полуосях, равны

$$
\tau' = \frac{\tau_{\text{max}}}{m},
$$

где $m = h/b$.

Условный момент инерции эллипса при кручении

$$
J_{\text{k}} = \frac{\pi nb}{64} (h^2 + b^2).
$$

(9.36)

Рис. 156 Рис. 157

В табл. 23 приведены приближенные расчетные формулы для определения максимального касательного напряжения τ_{max} через относительный угол закручивания θ ряда профилей.

При кручении важнsubмых тонкостенных профилей (рис. 157), в которых стенка настолько тонка, что касательные напряжения в ее толщине можно считать одинаковыми, равными напряжениям по средине толщины стенки и направленным по касательной к срединной линии стенки, касательные напряжения можно определить по формуле Бредта

$$
\tau = \frac{M_{\text{кр}}}{2\omega \delta},
$$

(9.37)

где ω — площадь, охватываемая средней линией тонкостенного сечения; δ — толщина стенки.

Если толщина профиля по контуру неодинакова, то максимальное касательное напряжение в тонкостенном замкнутом стержне определяется по формуле

$$
\tau_{\text{max}} = \frac{M_{\text{кр}}}{2\omega \delta_{\text{min}}},
$$

(9.38)

Относительный угол закручивания тонкостенного стержня с неодинаковой толщиной стенки определяется так:

$$
\theta = \frac{M_{\text{кр}}}{4\omega^3} \int_0^s \frac{ds}{\delta},
$$

(9.39)

где s — длина замкнутого контура.

240
Полный угол закручивания стержня длиной \(l \) будет

\[
\varphi = \frac{M_{kr} l}{4G\omega^2} \int_0^l \frac{ds}{\delta}.
\] (9.40)

формула (9.39) может быть записана в виде

\[
\theta = \frac{M_{kr}}{GJ_k},
\]

где

\[
J_k = \frac{4\omega^4}{\int_0^l \frac{ds}{\delta}}.
\]

При постоянной толщине стенки по контуру формула (9.39) принимает вид

\[
\theta = \frac{M_{kr} s}{4G\omega^2 \delta}.
\] (9.41)

В частности, для круглой тонкостенной трубы с радиусом срединной линии \(R \) при \(\delta = \text{const} \)

\[
\omega = \pi R^2; \quad \int_0^l \frac{ds}{\delta} = \frac{2\pi R}{\delta}.
\]

Согласно (9.37) и (9.41)

\[
\tau = \frac{M_{kr}}{2\pi R^2 \delta}; \quad \theta = \frac{M_{kr}}{2\pi R^2 \delta^2}.
\]

При крученнии тонкостенных стержней открытого профиля (шеелера, двутавра, уголка) (рис. 158) можно воспользоваться теорией расчета на крученние стержней прямоугольного сечения. В этом случае профиль разбивают на прямоугольные элементы, толщина \(h \) которых значительно меньше их длины \(b \). Согласно данным, приведенным на стр. 238, \(h/b > 10, \alpha = \beta = 1/3 \).

Тогда для составного профиля на основании (9.31)

\[
J_k = \eta \frac{1}{3} \sum b_n^3 h_n,
\] (9.42)

где \(\eta \) — некоторый поправочный коэффициент, учитывающий схематизацию, связанную с заменой реального профиля прямоугольниками. Ниже приведены значения коэффициента \(\eta \) для типичных профилей.

<table>
<thead>
<tr>
<th>Сечение</th>
<th>(\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>угольковое</td>
<td>1,00</td>
</tr>
<tr>
<td>двутавровое</td>
<td>1,20</td>
</tr>
<tr>
<td>тавровое</td>
<td>1,15</td>
</tr>
<tr>
<td>швеллерное</td>
<td>1,12</td>
</tr>
</tbody>
</table>
В тонкостенных открытых профилях длину контура принято обозначать через s, а толщину — через δ. Тогда формула (9.42) принимает вид

$$J_k = \eta \frac{1}{3} \sum_{n} \delta_n^3 s_n. \quad (9.43)$$

Максимальные касательные напряжения в незамкнутом профиле определяются по формуле

$$\tau_{\text{max}} = \frac{M_{kr} \delta_{\text{max}}}{J_k}, \quad (9.44)$$

где

$$\delta_{\text{max}} = \left(\frac{J_k}{W_{kr}} \right)_{\text{max}}.$$

9.3. Расчет винтовых пружин

Цилиндрические винтовые пружины. Приближенные формулы для определения напряжений, возникающих в винтовой пружине с малым шагом при ее растяжении или сжатии (рис. 159), могут быть получены из рассмотрения внутренних усилий, действующих в сечении витка (рис. 160), заменяя влияние мысленно отброшенной нижней части растягиваемой пружины. Под действием поперечной силы $Q = P$ и крутящего момента, равного произведению растягивающего усилия на средний радиус R пружин $M_{kr} = PR$, в сечении витка возникают две группы касательных напряжений: напряжения от среза, которые условно примем равно пренебрежительно равными

$$\tau' = \frac{Q}{F} = \frac{4P}{\pi d^2},$$

и напряжения от кручения, максимальное значение которых

$$\tau''_{\text{max}} = \frac{M_{kr}}{W_p} = \frac{16PR}{\pi d^3},$$

где d — диаметр поперечного сечения проволоки пружины.

Характер распределения напряжений τ' и τ'', действующих в сечении витка, показан соответственно на рис. 161, а и 161, б. Из кривых распределения напряжений следует, что в наружных волокнах витка, расположенных со стороны оси пружины (точка A), напряжения τ' и τ'' совпадут по направлению. Поэтому максимальные напряжения в пружине будут

$$\tau_{\text{max}} = \tau' + \tau''_{\text{max}} = \frac{4P}{\pi d^2} + \frac{16PR}{\pi d^3},$$

или

$$\tau_{\text{max}} = \frac{16PR}{\pi d^3} \left(1 + \frac{d}{4R}\right). \quad (9.45)$$
При расчете пружин большого среднего радиуса R из тонкой проволоки, когда $d^{-}\frac{d}{4R} \ll 1$, максимальное напряжение с достаточной степенью точности можно определить по формуле

$$\tau_{\text{max}} = \frac{16PR}{\pi d^3}.$$ \hspace{1cm} (9.46)

На практике при расчете пружин в формулу (9.46) вводят поправочный коэффициент k, учитывающий как влияние перерезывающей силы, так и некоторые другие факторы (изгиб стержня пружины, продольные деформации и т. п.). В этом случае формула (9.46) принимает вид

$$\tau_{\text{max}} = k \frac{M_{\text{кр}}}{W_p} = k \frac{16PR}{\pi d^3}.$$ \hspace{1cm} (9.47)

Рис 16.

Значение поправочного коэффициента k зависит от отношения радиуса пружины R к радиусу витка r и определяется по формуле

$$k = 4m - 1 \frac{0,615}{4m - 4} \frac{m}{m},$$ \hspace{1cm} (9.48)

где $m = R/r$.

Значения коэффициента k для различных отношений R/r приведены ниже:

$\begin{array}{cccccccccc}
R/r & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
k & 1,68 & 1,40 & 1,31 & 1,25 & 1,21 & 1,18 & 1,16 & 1,14 \\
\end{array}$

Удлинение (или осадка при сжатии) пружины определяется так:

$$\lambda = \frac{64PR^3n}{Gd^4},$$ \hspace{1cm} (9.49)

где n — число витков пружины.

При расчете пружин на прочность в случае статической нагрузки допускаемые напряжения на срез следует выбирать в зависимости от диаметра проволоки, из которой изготавливается пружина. Для закаленной пружинной стали $[\tau] = 500$ МПа при диаметре проволоки $d = 6$ мм, $[\tau] = 400$ МПа при $d = 10$ мм, $[\tau] = 350$ МПа при $d = 12$ мм; для хромоникелевой стали $[\tau] = 700$ МПа при $d = 12$ —
— 16 мм; для фосфористой бронзы с $G = 4.4 \cdot 10^4$ МПа [$\tau_{l} = 130$ МПа
при $d = 16$ мм.
В случае изменяющихся нагрузок указанные значения [τ_{l}] должны
быть уменьшены примерно на 30 %, а при непрерывной работе пружи-
ны в условиях переменных нагрузок — на 60 %.
Часто при расчете амортизационных пружин (пружины для смяти-
вения резких толчков) за основу берут кинетическую энергию T, ко-
торую должна поглощать пружина (рессора) при эксплуатации.
При таком (энергетическом) подходе объем пружины при заданном
допускаемом напряжении [τ_{l}] определяется по формуле

$$V = \frac{4GT}{[\tau_{l}]^2}.$$

Конструируя пружину по найденному объему, следует выбирать ее размеры R, a и n с таким расче-
том, чтобы при проверке осадки пружины λ не было закрытия зазоров
между витками.

Конические винтовые пружины
На практике приходится встречать-
ся с коническими пружинами (в виде
усеченного конуса). Если R_1 и R_2 —
соответственно минимальный и макси-
мальный радиусы концевых витков пружины, то максимальное кони-
сательное напряжение может быть определено по формуле (9.45) или
(9.46) после замены радиуса R вели-
чиной большего радиуса R_2:

$$\tau_{max} = \frac{16PR_2}{\pi d^2}.$$

Осадка конической пружины определяется по формуле

$$\lambda = \frac{16Pn}{d^4G} (R_1^2 + R_2^2) (R_1 + R_2).$$

9.4. Концентрация напряжений при кручении
Максимальное напряжение в зоне концентраторов (надрезов, вы-
точек, отверстий, резьбы и т. п.) при кручении можно найти по фор-
mule

$$\tau_{max} = \alpha_{\tau} \tau_{n},$$

где τ_{n} — номинальное напряжение, вычисляемое методами сопротивле-
ния материалов, в частности, для круглого вала радиусом r по формулам

$$\tau_{n} = \frac{M_{kr}}{J_{p}} r;$$

α_{τ} — коэффициент, показывающий, во сколько раз в месте концентра-
тора возрастет номинальное напряжение. Коэффициент α_{τ} опреде-
ляется методами теории упругости или экспериментально на упругих
моделях и обычно называется теоретическим коэффициентом концентра-
ции.

244
На рис. 162 приведены графики зависимости \(\alpha = f(2p/d) \) для различных отношений \(D/d \) (рис. 163).

Для случая кручения трубчатых тонкостенных валов с малыми поперечными отверстиями (рис. 164, a) коэффициент концентрации около отверстия равен четырем.

Действительно, выделив вокруг отверстия главными площадками, по граням которых будут действовать нормальные напряжения \(\sigma = \tau \)

(по площадкам \(ab \) и \(ca \) — растягивающие, а по площадкам \(ad \) и \(bc \) — сжимающие), некоторый элемент (рис. 164, b) и представив картину напряженний у отверстия от растягивающих напряжений (рис. 165, a) и от сжимающих напряжений (рис. 165, b), раздельно находим в точках \(m \) (см. раздел 4.4)

\[
\sigma_{\text{max}} = 3\sigma + \sigma = 4\sigma;
\]

в точках \(n \)

\[
\sigma_{\text{min}} = -\sigma - 3\sigma = -4\sigma.
\]

Поскольку

\[
\sigma_n = \sigma = \tau = \frac{M_{\text{кр}}}{W_p},
\]

tо

\[
\sigma_{\text{max}} = 4\sigma_n = 4 \frac{M_{\text{кр}}}{W_p}.
\]

Таким образом, в рассматриваемом случае коэффициент концентрации \(\alpha = 4 \).

Более полные данные о коэффициентах концентрации при кручении приведены в Приложении 2.
Таблица 23. Приближенные расчетные формулы для определения максимального касательного напряжения τ_{max} через относительный угол закручивания Θ в стержнях некруглого сечения

<table>
<thead>
<tr>
<th>Форма поперечного сечения стержня</th>
<th>τ_{max} (в МПа) и точка, в которой оно имеет место</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{2G\Theta}{\alpha^2} \frac{a^2b}{a^2+b^2}$ в точках A</td>
<td></td>
</tr>
<tr>
<td>$G\Theta (2R - r)$ в точке A</td>
<td></td>
</tr>
</tbody>
</table>

$G\theta bh$ в середине длинных сторон

<table>
<thead>
<tr>
<th>h/b</th>
<th>1,0</th>
<th>1,2</th>
<th>1,5</th>
<th>1,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>0,6753</td>
<td>0,7587</td>
<td>0,8477</td>
<td>0,9044</td>
</tr>
<tr>
<td>h/b</td>
<td>2,0</td>
<td>2,5</td>
<td>3,0</td>
<td>4,0</td>
</tr>
<tr>
<td>k</td>
<td>0,9301</td>
<td>0,9681</td>
<td>0,9855</td>
<td>0,9970</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h/b</th>
<th>6,0</th>
<th>10</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>0,9999</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Форма поперечного сечения стержня</td>
<td>(\tau_{\text{макс}}) (в МПа) и точка, в которой оно имеет место</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,18(G \theta t) приблизительно в середине длинных сторон в точках (A). В угловой выемке в точке (B) — концентрация напряжений</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\sim 1,13G \theta t) в середине длинной стороны, в точке (A). В угловых выемках в точках (B) — концентрация напряжений</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\sim 0,267G \theta t) в точках (A); (\sim 0,26G \theta t) в точках (B). В угловых выемках — концентрация напряжений</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\sim 1,015G \theta t) в точке (A). В угловых выемках — концентрация напряжений</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Продолжение табл. 23

<table>
<thead>
<tr>
<th>Форма поперечного сечения стержня</th>
<th>(t_{\text{max}}) (в МПа) и точка, в которой оно имеет место</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(~ 1,04 G\theta t) в точках (A); (~ 1,0 G\theta t) в точках (B). В угловых выемках — концентрация напряжений</td>
</tr>
<tr>
<td></td>
<td>(~ 0,782 G\theta t) для (b/t \geq 3) и (~ 0,934 G\theta t) для (1,5 < b/t < 3) в точках (A). В угловых выемках — концентрация напряжений</td>
</tr>
<tr>
<td></td>
<td>((\gamma + 1) G\theta t) в точках (A). Во внутренних углах — концентрация напряжений</td>
</tr>
<tr>
<td></td>
<td>(\frac{1}{2} G\theta t) в серединах сторон</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b/t)</th>
<th>1,5</th>
<th>2,0</th>
<th>2,5</th>
<th>3,0</th>
<th>3,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma)</td>
<td>1,154</td>
<td>1,681</td>
<td>2,194</td>
<td>2,701</td>
<td>3,20</td>
</tr>
<tr>
<td>(b/t)</td>
<td>4,0</td>
<td>5,0</td>
<td>10,0</td>
<td>20,0</td>
<td></td>
</tr>
<tr>
<td>(\gamma)</td>
<td>3,709</td>
<td>4,713</td>
<td>9,720</td>
<td>19,723</td>
<td></td>
</tr>
</tbody>
</table>
10.1. Нормальные напряжения при плоском изгибе

Расчетные формулы для определения нормальных напряжений при изгибе обычно выводят из рассмотрения плоского чистого изгиба (рис 166, а).
Чистый изгиб характерен тем, что из шести компонентов внутренних усилий только \(M_x \) не равен нулю, а
\[
N = Q_x = Q_y = 0; \quad M_y = M_z = 0.
\]

Рис. 166

Условие равновесия, связывающее напряжения и внутренние усилия в поперечном сечении балки (рис. 166, б) (опускаем индекс \(x \) у момента), имеет вид
\[
\int \sigma y dF = M. \tag{10.1}
\]
Геометрическая сторона задачи вытекает из рассмотрения картины деформации той же балки (рис. 167).
Наблюдая за деформацией сетки, предварительно нанесенной на балку (рис. 167, а), легко заметить (рис. 167, б), что продольные линии при чистом изгибе искриваются по дуге окружности, контуры поперечных сечений остаются плоскими кривыми, пересекая продольные линии под прямыми углами. Это свидетельствует о том, что при чистом изгибе поперечные сечения остаются плоскими и, поворачиваясь, становятся нормальными к изогнутой оси балки.
В сжатой области (сверху) волокна укорачиваются, а в зоне растяжения удлиняются. Зона растяжения и зона сжатия в сечении балки разделяются нейтральным слоем с радиусом кривизны \(\rho \). Длина нейтрального слоя при изгибе остается неизменной.
Относительное удлинение некоторого волокна, находящегося на расстоянии \(y \) от нейтрального слоя (рис. 168, а), при чистом изгибе
найдем из рассмотрения деформации участка балки длиной \(dz \) (рис. 168, б):

\[
\varepsilon = \frac{(\rho + y) d\theta - dz}{dz} = \frac{(\rho + y) d\theta - \rho d\theta}{\rho d\theta} = \frac{y}{\rho}.
\]

Подставив (10.2) в физическое уравнение (закон Гука)

\[
\varepsilon = \frac{\sigma}{E},
\]

выразим нормальное напряжение \(\sigma \) через кривизну \(1/\rho \):

\[
\sigma = \frac{E}{\rho} y. \tag{10.4}
\]

Далее, подставив (10.4) в (10.1), получим

\[
\frac{1}{\rho} = \frac{M}{EJ_x} \tag{10.5}
\]

(закон Гука при изгибе), а подставив (10.5) в (10.4), найдем формулу для определения нормального напряжения в любом слое сечения балки на расстоянии \(y \) от оси \(x \):

\[
\sigma = \frac{My}{J_x}. \tag{10.6}
\]

Из анализа формулы (10.6), называемой формулой Навье, следует, что изменение напряжений по высоте сечения подчиняется линейному закону; напряжения максимальны в слоях с координатой \(y_{\max} \), а минимальны (равны нулю) при \(y = 0 \), т. е. в нейтральном слое.
Подставляя \(\sigma \) из (10.6) в условие \(N = \int \sigma dF \), находим \(\int ydF = S_x = 0 \). Отсюда следует, что нейтральная линия сечения (ось \(x \)) проходит через центр тяжести сечения.

Рис. 169

В случае прямоугольного сечения балки высотой \(h \)

\[
\sigma_{\text{max}} = \frac{My_{\text{max}}}{J_x} = \frac{M \frac{h}{2}}{J_x} = \frac{M}{W_x},
\]

где \(W_x = J_x/y_{\text{max}} = J_x/h/2 \) и называется моментом сопротивления сечения при изгибе (см. раздел 2.8).

Очевидно, для любого сечения, имеющего горизонтальную ось симметрии (рис. 169), возможен единственный момент сопротивления при изгибе в плоскости \(yz \), определяемый по формуле

\[
W_x = \frac{J_x}{y_{\text{max}}},
\]

Если сечение не имеет горизонтальной оси симметрии (рис. 170), следует различать два момента сопротивления

\[
W_x = \frac{J_x}{y_{\text{max}}} \quad \text{и} \quad W_x' = \frac{J_x}{y_{\text{max}}'}. \]

Эпюра нормальных напряжений \(\sigma \) в последнем случае не будет симметричной, как для сечений с горизонтальной осью симметрии, а будет иметь вид, показанный на рис. 170 и 171.
Формулы для определения нормальных напряжений, полученные из рассмотрения чистого изгиба, оказываются с достаточной степенью точности пригодными для определения нормальных напряжений в общем случае изгиба, когда Q не равно нулю.

10.2. Касательные напряжения при изгибе

В общем случае поперечного изгиба (рис. 172, а), когда в сечении стержня, кроме изгибающего момента M, действует также поперечная сила Q, в сечении балки возникают не только нормальные σ, но и касательные напряжения τ, равнодействующая которых равна Q.

![Diagram](image)

Рис. 172

Вывод формулы для определения касательных напряжений в сечении основан на методе сечений, дифференциальной зависимости между моментом и поперечной силой и законе парности касательных напряжений.

Рассматривая условия равновесия элемента $A_1m_1m_2A_2$ (рис. 172, а, б, в, г), выделенного сечениями A_1B_1, A_2B_2 и m_1, m_2 из балки, нагруженной сосредоточенной силой P (рис. 172, а), находим

$$ N_1 + T = N_2, $$

где

$$ T = \tau'bdz; $$

$$ N_1 = \int_{F} \sigma'dF = \int_{F} \frac{M\eta}{J_x} dF = \frac{M}{J_x} S_x(y); $$

$$ N_2 = \int_{F} \sigma''dF = \int_{F} \frac{(M + dM)\eta}{J_x} dF = \frac{M + dM}{J_x} S_x(y). $$

Подставляя (10.9) — (10.11) в (10.8) и учитывая закон парности касательных напряжений, получим формулу Журавского для определения...
дения касательных напряжений при поперечном изгибе балки произвольного сечения

\[\tau' = \tau = \frac{QS_x(y)}{b(y) J_x}, \]

(10.12)

где \(S_x(y) \) — статический момент относительно нейтральной линии той части площади \(F(y) \), которая расположена ниже или выше рассматриваемого слоя материала на расстоянии \(y \) от нейтрального слоя балки; \(b(y) \) — ширина сечения в рассматриваемом слое материала. Характер изменения касательных напряжений по высоте балки в общем случае зависит от формы сечения балки.

Поскольку в рассматриваемом сечении \(Q \) и \(J_x \) постоянны (а в случае прямоугольного сечения и ширина \(b \) постоянна), то, как видно из формулы (10.12), закон изменения касательных напряжений в сечении

будет определяться законом изменения статического момента \(S_x(y) \). В частности, рассматривая статический момент площади \(C_{1}n_1m_1A_1 \) (рис. 172, а), находим

\[S(y) = F(y) y_{n.т} = \frac{bh^2}{8} \left(1 - \frac{4y^2}{h^2} \right), \]

(10.13)

t. е. статический момент по высоте сечения изменяется по параболическому закону. Очевидно, по такому же закону по высоте балки изменяются и касательные напряжения, достигая максимума при

\[\tau_{\text{max}} = \frac{Q S_{\text{max}}}{b J_x} = \frac{Q \frac{bh^2}{8}}{b \frac{bh^3}{12}} = \frac{3Q}{2F}, \]

(10.14)

где \(F = bh \) — площадь сечения балки. В наиболее удаленных от нейтральной линии точках в наружных волокнах \(y = \pm h/2 \) и \(\tau = 0 \).

Эпора касательных напряжений для прямоугольного сечения балки, построенная на основании формулы (10.12) с учетом (10.13), приведена на рис. 173. При этом

\[\tau = \frac{3Q}{2bh} \left(1 - \frac{4y^2}{h^2} \right). \]

(10.15)

Из формулы (10.15) видно, что максимальные касательные напряжения в стержень прямоугольного сечения, действующие в нейтральном...
ном слое, отличаются от средних напряжений, которые могли бы быть получены по формуле $\tau_{cp} = Q/F$, в полтора раза, т. е.

$$\tau_{max} = 1,5 \tau_{cp}.$$ (10.16)

Для круглого сечения (рис. 174) формула Журавского для вертикальной составляющей полного касательного напряжения может быть записана в виде

$$\tau = \frac{4Q}{3\pi R^2} \left(1 - \frac{y^2}{R^2}\right).$$ (10.17)

Закон изменения τ по высоте и в данном случае оказывается параболическим. В наиболее удаленных от нейтральной линии точки A (при $y = \pm R$) $\tau = 0$. Наибольшее касательное напряжение будет в точках нейтральной линии (при $y = 0$):

$$\tau_{max} = \frac{4}{3} \frac{Q}{\pi R^3} = 1,33 \frac{Q}{F}.$$

![Diagram](image)

Рис. 175

Эпюра τ для круглого поперечного сечения, построенная на основании формулы (10.17), приведена на рис. 174.

Формулу для максимальных касательных напряжений применительно к поперечному сечению любой формы по аналогии с (10.1) можно в общем виде представить так:

$$\tau_{max} = k \frac{Q}{F},$$ (10.18)

где k — коэффициент, зависящий от формы сечения. Например, для прямоугольника $k = 1,5$, для круга $k = 1,33$.

Эпюры нормальных и касательных напряжений, построенные на основании формул Навье и Журавского для двутавровой балки № 12 ($J_x = 403$ см4; $S_{max} = 38,5$ см3) при $M = 1961$ Н·м и $Q = 9810$ Н, приведены на рис. 175. Наблюдаемые на эпюре τ перепады объясняются резким изменением ширины балки при переходе полки к стенке.

10.3. Расчет на прочность при изгибе

При изгибе балки в общем случае, когда $M \neq 0; Q \neq 0$ (рис. 176, a), из-за неоднородности распределения нормальных и касательных напряжений отдельные элементы материала находятся в условиях...
различного напряженного состояния (рис. 176, б). При этом только наружные волокна (элементы 1, 2, 12, 13, 14) находятся в условиях линейного напряженного состояния (растяжения или сжатия), все остальные выделенные по высоте балки элементы (5—11) находятся в условиях плоского напряженного состояния, причем элементы (6, 7, 8) нейтрального слоя находятся в условиях чистого сдвига. Характерно, что при деформации изгиба максимальные значения нормальных и касательных напряжений оказываются в разных точках сечения. В точках, где σ максимально (наружные волокна балки), $\tau = 0$, и, наоборот, там, где τ максимально (нейтральный слой), $\sigma = 0$.

Рис. 176

Таким образом, логично рассматривать два условия прочности, относящиеся к различным точкам балки:
а) по нормальным напряжениям
$$\sigma_{\max} = \frac{M_{\max}}{W} \leq [\sigma],$$ \hspace{1cm} (10.19)

б) по касательным напряжениям
$$\tau_{\max} = \frac{Q_{\max} S_{\max}}{bJ} \leq [\tau].$$ \hspace{1cm} (10.20)

Обычно из условия прочности по нормальным напряжениям (10.19) определяют размеры балки принятой формы поперечного сечения
$$W \gg \frac{M_{\max}}{[\sigma]},$$ \hspace{1cm} (10.21)
а потом проверяют, удовлетворяет ли выбранное сечение балки условия прочности по касательным напряжениям (10.20).

Однако такой подход к расчету балок, особенно балок с оптимальной формой сечения, обеспечивающей минимальный вес и необходимую прочность (двутавровые, тавровые, швеллерные и другие профили), еще не гарантирует прочность балки. Во многих случаях в сечениях балок имеются точки, в которых одновременно действуют большие нормальные напряжения (мало отличающиеся от максимальных) и большие касательные напряжения.

В частности, такое сочетание с и т имеет место при изгибе двутавровой балки в зоне перехода полки в стенку (рис. 175). В таких случаях возникает необходимость проверки балки на прочность по главным напряжениям.

В общем случае плоского напряженного состояния, испытываемого элементом материала балки (например, элемент 5 на рис. 176), на который действуют \(\sigma_\alpha = \sigma \), определяемое по формуле Навье, \(\tau_\alpha = \tau = \tau_\beta \), определяемые по формуле Журавского, и при \(\sigma_\beta = 0 \), главные наприжения находят по формулам (см. раздел 5.5):

\[
\begin{align*}
\sigma_1 &= \frac{1}{2} \left[\sigma + \sqrt{\sigma^2 + 4\tau^2} \right]; \\
\sigma_2 &= 0; \\
\sigma_3 &= \frac{1}{2} \left[\sigma - \sqrt{\sigma^2 + 4\tau^2} \right].
\end{align*}
\] (10.22)

Зная главные напряжения, можно по различным теориям прочности выразить эквивалентные напряжения, которые не должны превышать допускаемых.

Таким образом, условия прочности по различным теориям могут быть представлены в виде (см. раздел 6.1)

\[
\begin{align*}
\sigma_{\text{экв}I} &= \frac{1}{2} \left[\sigma + \sqrt{\sigma^2 + 4\tau^2} \right] \leq \sigma; \quad (10.2) \\
\sigma_{\text{эквII}} &= 0,35\sigma + 0,65 \sqrt{\sigma^2 + 4\tau^2} \leq \sigma \text{ (при } \mu = 0,3); \quad (10.2) \\
\sigma_{\text{эквIII}} &= \sqrt{\sigma^2 + 4\tau^2} \leq \sigma; \quad (10.2) \\
\sigma_{\text{эквIV}} &= \sqrt{\sigma^2 + 3\tau^2} \leq \sigma; \quad (10.2) \\
\sigma_{\text{эквM}} &= \frac{1 - m}{2} \sigma + \frac{1 + m}{2} \sqrt{\sigma^2 + 4\tau^2} \leq \sigma, \quad (10.2)
\end{align*}
\]

где

\[
m = \frac{[\sigma_+]}{[\sigma_-]}.
\]

При проверке прочности балок по главным напряжениям частно возникает необходимость знать не только величины главных напряжений в той или иной точке, но и их направления.

В частности, это необходимо при конструировании железобетонных балок, в которых арматуру следует располагать таким образом, чтобы она сопротивлялась действию растягивающих напряжений. В любой балке можно построить линию, касательная к которой в как
дой точке будет характеризовать направление главных напряжений. Такая кривая называется траекторией главных напряжений. Траектории главных напряжений зависят от вида нагрузки и условия закрепления балки.

Очевидно, через каждую точку балки проходят две траектории главных напряжений, соответственно σ_1 и σ_3, пересекающиеся между собой под прямым углом. В железобетонных балках обычно стремятся располагать арматуру в направлении траектории главных растягивающих напряжений (рис. 177).

Рис. 177

Рис. 178

10.4. Концентрация напряжений при изгибе

При изгибе, как и в случае растяжения или кручения, в местах резкого изменения размеров или формы поперечного сечения возникает концентрация напряжений. При статических нагрузках концентрация напряжений в деталях, изготовленных из пластичных материалов, не является опасной вследствие перераспределения напряжений в зоне концентрации за счет текучести материала. В случае хрупких материалов, когда не приходится рассчитывать на перераспределение напряжений и ограничение максимальных напряжений пределом текучести, концентрацию напряжений следует учитывать и при статических нагрузках. Допускаемые максимальные напряжения в зоне концентратора не должны достигать временного сопротивления материала, являющегося в данном случае предельным.

Влияние концентрации, возникающей в месте резкого изменения диаметра вала (рис. 178, a), может быть учеено введением некоторого коэффициента концентрации α:

$$\sigma_{\text{max}} = \alpha \sigma_n,$$

где $\sigma_n = Pl/W$, найденное для вала с диаметром, равным меньшему диаметру вала (рис. 178, b) при отсутствии концентратора.

Значения коэффициента концентрации α для различных отношений диаметров D/d и радиусов закруглений в галтели r, найденные методами теории упругости для $D/d = 3$ и $D/d = 1,5$, приведены в виде графика $\alpha = f(r/d)$ (рис. 179).
Максимальные напряжения в зоне концентратоа в пластине с двусторонней выточкой гиперболической формы при чистом изгибе в плоскости пластины (рис. 180) могут быть определены по следующей формуле, полученной методами теории упругости:

$$\sigma_{\text{max}} = \sigma_0 \frac{4}{\rho} \frac{a}{\rho} \sqrt{\frac{a}{\rho}} \left[\sqrt{\frac{a}{\rho}} + \left(\frac{a}{\rho} - 1 \right) \arctg \sqrt{\frac{a}{\rho}} \right],$$

где

$$\sigma_0 = \frac{3M}{2a^2h}$$ (δ — толщина пластины).

На рис. 181 приведен график зависимости σ_{max} от отношения a/ρ. На рис. 182 даны зависимости теоретического коэффициента концентрации α для различных отношений ширины пластины H к ее ширине в месте выточки радиусом ρ от отношения ρ/h.

На рис. 183 даны графики распределения напряжений в зоне концентратора в виде эллиптического отверстия в широкой пластине при чистом изгибе в ее плоскости для случая, когда $H/h = 25$. По мере удаления от дна выточки, а также в направлении вдоль оси у напряжения быстро убывают. Штриховой линией показано распределение напряжений, вычисленных по элементарной теории изгиба путем угла ослабления сечения отверстием.
Наибольшее напряжение, возникающее у дна выточки, можно определить по формуле

$$
\sigma_{\text{max}} = \sigma_a \left(1 + \sqrt{\frac{t}{\rho}}\right),
$$

где

$$\sigma_a = \frac{3M_t}{2bh^3} \quad (\delta — толщина пластины).$$

Зависимость σ_{max} от отношения t/ρ графически представлена на рис. 184.

Для круглого отверстия $\sigma_{\text{max}} = 2\sigma$. При $\rho \to \infty \sigma_{\text{max}} \to \sigma$.

В случае глубокой круговой выточки на теле вращения (рис. 185) наибольшее напряжение при изгибе возникает у дна выточки, где материал находится в условиях объемного напряженного состояния.

![Рис. 187](image1)

![Рис. 188](image2)

На рис. 185 показано распределение всех трех главных напряжений (σ_1, σ_2, σ_3), а на рис. 186 дано распределение напряжений σ_1 и σ_2 у дна выточки в зависимости от отношения a/ρ при различных коэффициентах Пуассона.

В случае мелких выточек на деталях вращения величина коэффициента концентрации зависит, главным образом, от отношения радиуса закругления r к диаметру выточки. На рис. 187 приведен график зависимости $\alpha = f \left(\frac{r}{d} \right)$ для этого случая.

Весьма распространенными концентраторами в работающих на изгиб деталях машин являются различного рода поперечные отверстия. Концентрация в этом случае зависит от отношения диаметра поперечного отверстия d к диаметру детали D, в которой это отверстие сделано. Зависимость коэффициента концентрации α от d/D приведена в виде графика на рис. 188.

Отметим, что при изгибе возможна не только концентрация нормальных напряжений, но и концентрация касательных напряжений в местах резких переходов, в частности в сечении $l—l$ двутавровой балки (рис. 189, a, b). Однако вследствие закруглений в местах перехода стенки в полку концентрация напряжений снижается и вместо эпюры, показанной на рис. 189, b, получается эпюра, показанная на рис. 189, a.

260
10.5. Дифференциальное уравнение изогнутой оси балки (упругой линии)

В инженерной практике приходится проводить расчет балок при изгибе не только на прочность, но и на жесткость, или деформативность. Деформативность балки в данном сечении характеризуется прогибом \(w \) и углом поворота \(\theta \). Информацию о \(w \) и \(\theta \) как функциях координат оси, совпадающей с осью балки, можно получить, зная уравнение изогнутой оси балки (упругой линии).

Упругой линией называется плоская кривая, форму которой принимает ось балки при плоском изгибе. На рис. 190 и 191 упругие линии изображены точками линиями.

![Рис. 190](image)

![Рис. 191](image)

![Рис. 192](image)

Уравнение упругой линии легко получить, зная выражение кривизны через изгибающий момент \(M(z) \) в данном сечении и изгибную жесткость \(EI \) поперечного сечения балки (см. раздел 10.1)

\[
\frac{1}{\rho} = \pm \frac{M(z)}{EI},
\]

(10.28)

Выражение кривизны через координаты точки в данном сечении \(w \) и \(z \), известное из курса высшей математики:

\[
\frac{1}{\rho} = \frac{d^2w}{dz^2} \left[1 + \left(\frac{dw}{dz} \right)^2 \right]^{3/2}.
\]

(10.29)

Учитывая знаки для \(M \) и \(1/\rho \) в зависимости от направления действия моментов и расположения координатных осей (рис. 192), можно приравнять правые части выражений (10.28) и (10.29), приняв в (10.28)
знак «плюс» для выбранного ранее положительного направления оси w вверх. Тогда точное уравнение изогнутой оси балки получим в виде

$$\frac{d^2w}{dz^2} \left[1 + \left(\frac{dw}{dz} \right)^2 \right]^{3/2} = \frac{M(z)}{EJ}.$$ \hspace{1cm} (10.30)

Если бы ось w была направлена вниз, то в правой части (10.30) следовало бы поставить знак «минус».

В связи с малостью деформации балки ($w_{\max} = (0, 01 - 0, 001) l$, $\theta_{\max} < 1^\circ$) в формуле (10.30) можно пренебречь членом $(dw/dz)^2 \approx 0$.

Тогда дифференциальное уравнение можно переписать в виде

$$\frac{d^2w}{dz^2} = \frac{M(z)}{EJ}.$$ \hspace{1cm} (10.31)

Это и есть то исходное (приближенное) дифференциальное уравнение изогнутой оси балки, решая которое, можно получить уравнение упругой линии $w = f(z)$ и уравнение угла поворота $\theta = dw/dz = f_1(z)$.

При интегрировании уравнение (10.31) первый раз, найдем

$$\theta(z) = \frac{dw}{dz} = \int \frac{M(z)}{EJ} \, dz + C_1.$$ \hspace{1cm} (10.32)

При интегрировании второй раз, получим

$$w(z) = \int dz \int \frac{M(z)}{EJ} \, dz + C_1z + C_2,$$ \hspace{1cm} (10.33)

где C_1 и C_2 — постоянные интегрирования, которые должны быть найдены из граничных условий (условий на концах балки).

Если балка заделана одним концом (рис. 193), то прогиб и угол поворота в заделке равны нулю:

$$w_B = 0; \quad \theta_B = 0.$$

Для балки на двух шарнирных опорах (рис. 191) равны нулю прогиб на этих опорах:

$$w_A = 0; \quad w_B = 0.$$

Учитывая дифференциальную зависимость между изгибающим моментом $M(z)$ и распределенной нагрузкой (см. раздел 3.6)

$$\frac{d^2M(z)}{dz^2} = q(z),$$

выражение упругой линии (10.31) можно записать в виде

$$\frac{d^2}{dz^2} \left[EJ(z) \frac{d^2w(z)}{dz^2} \right] = q(z).$$ \hspace{1cm} (10.34)

В этой форме дифференциальное уравнение применяют обычно при расчете балок на упругом основании, а также при рассмотрении колебаний балок.
Для иллюстрации нахождения уравнения упругой линии \(w = f (z) \) и угла поворота \(\theta = f (z) \), а также определения максимальных прогибов \(w_{\text{max}} \) и углов \(\theta_{\text{max}} \) (представляющих наибольший практический интерес) путем интегрирования дифференциального уравнения (10.31) рассмотрим несколько примеров.

Для консоли постоянного поперечного сечения при действии сосредоточенной силы \(P \) на свободном конце (рис. 193) изгибающий момент на расстоянии \(z \) от конца будет

\[
M (z) = -Pz,
\]

а дифференциальное уравнение изогнутой оси консоли (10.31) примет вид

\[
\frac{d^2w}{dz^2} = -\frac{Pz}{EJ}.
\]

После двукратного интегрирования будем иметь

\[
\frac{dw}{dz} = \theta (z) = -\frac{Pz^2}{2EJ} + C_1;
\]

\[
w (z) = -\frac{Pz^3}{6EJ} + C_1z + C_2.
\]

Постоянные \(C_1 \) и \(C_2 \) определим из условий

\[
w = 0 \text{ при } z = l;
\]

\[
\theta = 0 \text{ при } z = l.
\]

Из второго условия получим

\[
C_1 = \frac{P l^3}{2EJ};
\]

из первого условия получим

\[
C_2 = -\frac{P l^3}{3EJ}.
\]

Уравнения прогиба и угла поворота следующие:

\[
w (z) = -\frac{P l^3}{6EJ} \left[z - 3 \frac{z^2}{l} + \left(\frac{z}{l} \right)^3 \right]; \tag{10.35}
\]

\[
\theta (z) = \frac{P l^3}{2EJ} \left[1 - \left(\frac{z}{l} \right)^2 \right]. \tag{10.36}
\]

Максимальные значения \(w \) и \(\theta \) имеют место на свободном конце балки в точке \(A \):

\[
w_{\text{max}} = f_A = -\frac{P l^3}{3EJ}; \tag{10.37}
\]

\[
\theta_{\text{max}} = \theta_A = \frac{P l^2}{2EJ}. \tag{10.38}
\]

Отрицательное значение \(f_A \) свидетельствует о том, что прогиб направлен в сторону, противоположную положительному направлению оси \(w \); положительное значение \(\theta \) показывает, что поворот сечения происходит против часовой стрелки.
В случае изгиба балки, шарнирно опертой по концам и несущей равномерно распределенную нагрузку \(q \) (рис. 194), выражение изгибающего момента будет

\[
M(z) = \frac{ql}{2} z - \frac{qz^2}{2},
\]

а дифференциальное уравнение изогнутой оси балки (10.31) примет вид

\[
\frac{d^2w}{dz^2} = \frac{1}{EJ} \left(\frac{ql}{2} z - \frac{qz^2}{2} \right).
\]

Проинтегрировав дважды, получим

\[
\theta(z) = \frac{dw}{dz} = \frac{ql}{4EJ} z^2 - \frac{q}{6EJ} z^3 + C_1;
\]

\[
w(z) = \frac{ql}{12EJ} z^3 - \frac{qz^4}{24EJ} + C_1 z + C_2.
\]

Границные условия следующие:

\[
w = 0 \text{ при } z = 0;
\]

\[
w = 0 \text{ при } z = l.
\]

Из первого условия находим \(w(0) = 0 \); из второго условия имеем

\[
C_1 = \frac{-q}{24EJ}.
\]

Подставив значения \(C_1 \) и \(C_2 \) в выражения для \(w(z) \) и \(\theta(z) \), получим уравнение упругой линии и уравнение угла поворота:

\[
w(z) = -\frac{q l^2}{24EJ} \left[1 - 2 \left(\frac{z}{l} \right)^2 + \left(\frac{z}{l} \right)^3 \right];
\]

\[
\theta(z) = -\frac{q l^3}{24EJ} \left[1 - 6 \left(\frac{z}{l} \right)^2 + 4 \left(\frac{z}{l} \right)^3 \right].
\]

(10.39)

Максимальное значение прогиба будет посередине пролета

\[
w_{\text{max}} = f = \frac{5}{384} \frac{ql^4}{EJ}.
\]

(10.40)

Максимальные значения угла поворота будут на опорах

\[
\theta(0) = \theta_A = -\frac{q l^3}{24EJ};
\]

\[
\theta_A = -\theta_B.
\]

(10.41)

Уравнения изогнутой оси балки, значения максимальных прогибов и углов поворота опорных сечений для различных схем нагружения простейших балок приведены в табл. 27.

При определении перемещений отдельных сечений балки в ряде случаев удобно использовать графоаналитический метод (метод Мора), основанный на аналогии между дифференциальным уравнением упру-
гой линии (10.31) и дифференциальной зависимостью (3.3), связываю-
щей изгибающий момент и интенсивность распределенной нагрузки.
Указанная аналогия позволяет вычисление прогиба w по известному
$\frac{M(z)}{EJ}$ вести так же, как определение $M(z)$ по известному $q(z)$. Ордината
действительной эпюры $M(z)$, деленная на EJ, рассматривается как
интенсивность некоторой фиктивной нагрузки
$$q_\Phi(z) = \frac{M(z)}{EJ}.$$

Тогда искомые прогиб $w(z)$ и угол поворота $\theta(z)$ заданной (дей-
ствительной) балки определяются соответственно как изгибающий мо-
мент $M_\Phi(z)$ и поперечная сила $Q_\Phi(z)$ в сечении z фиктивной (взаимної)
балки от фиктивной нагрузки q_Φ. Для балки постоянного поперечного
сечения за интенсивность фиктивной нагрузки удобней принять величию
в EJ раз большую, т. е. ординату действительной эпюры $M(z)$, а
именно $\overline{q_\Phi}(z) = M(z)$. В этом случае
$$w(z) = \frac{M_\Phi(z)}{EJ}; \quad \theta(z) = \frac{Q_\Phi(z)}{EJ},$$

где $M_\Phi(z)$ и $Q_\Phi(z)$ — соответственно изгибающий момент и поперечная
сила в фиктивной балке от фиктивной нагрузки $q_\Phi(z)$, равной эпюре
$M(z)$ действительной балки.

Фиктивная (взаимная) балка имеет длину участков, равную дли-
не участков действительной балки, а опоры выбираются таким образом,
чтобы удовлетворить условиям деформации действительной балки.
Сочетания опорных закреплений действительной и фиктивной балок
приведены в табл. 24.

Последовательность определения деформаций следующая. Строит-
ся эпюра изгибающего момента действительной балки; выбирается со-
ответствующая схема фиктивной балки; фиктивная балка нагружается
эпюрой изгибающего момента действительной балки; в выбранном сеч-
ении фиктивной балки определяются фиктивные изгибающий момент
$M_\Phi(z)$ и поперечная сила $Q_\Phi(z)$ и по формулам (10.42) вычисляются
значения прогиба и угла поворота в выбранном сечении.

При вычислении $\overline{M_\Phi}(z)$ и $\overline{Q_\Phi}(z)$ в случае сложной конфигурации
эпюры изгибающего момента действительной балки, представляющей
фиктивную нагрузку, ее разбивают на отдельные простейшие фигуры
(см., например, рис. 255), площади и положения центров тяжести ко-
торых известны (см. табл. 30).

10.5. Определение перемещений в балках
по методу начальных параметров

Определение перемещений методом непосредственного интегриро-
вания дифференциального уравнения упругой линии в случае балок
с большим числом участков, каждый из которых характеризуется своим
выражением изгибающего момента, сопряжено со значительными труд-
иностями, связанными с определением произвольных постоянных интегрирования. При интегрировании дифференциальных уравнений для n участков приходится иметь дело с двойным числом постоянных интегрирования. Добавив к двум основным условиям на концах балки 2 (n — 1) условий непрерывного и плавного сопряжения всех участков упругой линии, можно составить $2n$ уравнений для определения этих произвольных постоянных.

Задача становится весьма трудоемкой уже при трех участках. Технику определения постоянных интегрирования можно существенно упростить, свидя ее к отысканию всего двух неизвестных — прогиб

и угла поворота в выбранном начале координат. Этот метод называется методом начальных параметров. Рассмотрим некоторую часть балки (рис. 195, а) длиной z, проведя сечения в точках 0 и L. Метод основан на следующих исходных положениях.

1. Начало координат выбирают в крайней левой точке рассматриваемой части балки и оно является общим для всех участков.
2. Выражение для изгибающего момента $M(z)$ составляетя путем вычисления моментов сил, расположенных слева от рассматриваемого сечения, взятого на расстоянии z от начала координат.
3. При включении в уравнения внешнего сосредоточенного момента M, приложенного на некотором расстоянии a от начала координат, его умножают на множитель $(z - a)^{0}$, равный единице.
4. В случае обрыва распределенной нагрузки (например, в сечении $z = d$) ее продлевают до конца рассматриваемого участка (рис. 195, б), а для восстановления фактически действующей на балку нагрузки вводят компенсирующую нагрузку обратного направления.
(экстраполированную дополнительную нагрузку и нагрузку, ее компенсирующую, принято показывать штрихами).

5. Интегрирование уравнений на всех участках производят без раскрытия скобок. При таком подходе выражение изгибающего момента на любом участке представлено через все силовые факторы, действующие слева от рассматриваемого сечения, включая изгибающий момент \(M_0 \) и поперечную силу \(Q_0 \), действующие в сечении, совпадающем с началом координат. Величины \(M_0 \) и \(Q_0 \) так же, как и прогиб \(w_0 \) и угол поворота \(\theta_0 \) в начале координат, называются начальными параметрами. Изгибающий момент в сечении балки, показанной на рис. 195, б, на расстоянии \(z \) от начала координат в точке 0 (на пятом участке балки) будет

\[
M(z) = M_0 + Q_0 z + M(z - a) + P(z - b) + Q_c \frac{(z - c)^2}{2} + \\
+ k \frac{(z - c)^3}{6} - q_d \frac{(z - d)^2}{2} - k \frac{(z - d)^3}{6},
\]

где \(k = \tan \beta = \frac{q_d - q_c}{d - c} \).

После подстановки изгибающего момента в дифференциальное уравнение (10.31), двукратного его интегрирования и определения постоянных интегрирования, которыми оказываются начальные параметры

\[C_1 = \theta_0 \text{ и } C_2 = w_0, \]

уравнения \(\theta(z) = f_1(z) \) и \(w(z) = f(z) \) в самом общем виде могут быть записаны так:

\[\theta(z) = \theta_0 + \frac{1}{EJ} \left[M_0 \frac{z}{1!} + \sum M \frac{(z - a)}{1!} + Q_0 \frac{z^2}{2!} + \\
+ \sum P \frac{(z - b)^2}{2!} + \sum q_c \frac{(z - c)^3}{3!} - \sum q_d \frac{(z - d)^3}{3!} + \\
+ \sum k \frac{(z - c)^4}{4!} - \sum k \frac{(z - d)^4}{4!} \right]; \]

\[w(z) = w_0 + \theta_0 z + \frac{1}{EJ} \left[M_0 \frac{z^2}{2!} + \sum M \frac{(z - d)^2}{2!} + \\
+ Q_0 \frac{z^2}{3!} + \sum P \frac{(z - b)^3}{3!} + \sum q_c \frac{(z - c)^4}{4!} - \\
- \sum q_d \frac{(z - d)^4}{4!} + \sum k \frac{(z - c)^5}{5!} - \sum k \frac{(z - d)^5}{5!} \right]. \]

Полученное уравнение (10.44) обычно называют универсальным уравнением упругой линии, имея в виду, что оно может быть применено при любых расчетных схемах балок.

В уравнения (10.43) и (10.44) подставляют нагрузки, расположенные слева от рассматриваемого сечения; знаки слагаемых определяются знаком соответствующих силовых факторов. Итак, определение перемещений по методу начальных параметров в конечном счете сводится к определению начальных параметров \(Q_0, M_0, \theta_0 \) и \(w_0 \). При этом статические начальные параметры \(Q_0 \) и \(M_0 \) находятся из условия равновесия балки, геометрические начальные параметры \(\theta_0 \) и \(w_0 \) определяются из
условий на опорах. Для определения начальных параметров Q_0 и M_0 могут быть использованы данные табл. 7, а для определения параметров θ_0 и ω_0 — данные табл. 27.

Воспользуемся полученным универсальным уравнением для определения прогибов консоли (рис. 196, a, b) в точках $z = a$ и $z = 2a$. Уравнение упругой линии на участке, где приложена нагрузка q, будет иметь вид

$$\omega(z) = \omega_0 + \theta_0 z + \frac{1}{EJ} \left[M_0 \frac{z^2}{2!} + Q_0 \frac{z^3}{3!} - q \frac{z^4}{4!} \right].$$

Из условия равновесия балки находим

$$M_0 = M_A = -\frac{qa^2}{2}; \quad Q_0 = R_A = qa.$$

Так как начало координат совпадает с заделкой, то геометрические начальные параметры — прогиб и угол поворота в начале координат — равны нулю:

$$\omega_0 = 0; \quad \theta_0 = 0.$$

Уравнение прогибов на первом участке будет

$$\omega(z) = \frac{1}{EJ} \left[-\frac{qa^2}{2} \frac{z^2}{2!} + qa \frac{z^3}{3!} - q \frac{z^4}{4!} \right].$$

При $z = a$

$$\omega_C = -\frac{qa^4}{8EJ}.$$

Уравнение прогиба на втором участке CB будет

$$\omega(z) = \frac{1}{EJ} \left[-\frac{qa^2}{2} \frac{z^2}{2!} + qa \frac{z^3}{3!} - q \frac{z^4}{4!} + q (z - a)^4 \right].$$

Положив $z = 2a$, для прогиба свободного конца получим

$$\omega_B = -\frac{7qa^4}{24EJ}.$$

Определи прогибы и углы поворота, можно проверить жесткость балки или подобрать ее сечение из условия жесткости

$$\omega_{\text{max}} = f \leq [f].$$

Допускаемые величины прогибов $[f]$ устанавливаются из условий эксплуатации или экспериментальных данных.

В случае расчета перемещений балок с промежуточным шарниром, универсальные уравнения (10.43) и (10.44) должны быть записаны в виде

$$\theta(z) = \theta_0 + \alpha (z-c_1) + \frac{1}{EJ} \left[M_0 \frac{z}{1!} + \sum M \frac{(z-c_1)}{1!} + \right.$$

$$+ Q_0 \frac{z^2}{2!} + \sum P \frac{(z-b)^2}{2!} + \sum q_0 \frac{(z-c)^3}{3!} -$$

$$- \sum q_d \frac{(z-d)^3}{3!} + \sum k \frac{(z-c)^4}{4!} - \sum k \frac{(z-d)^4}{4!} \right]; \quad (10.45)$$

268
\[
\begin{align*}
\omega (z) &= w_0 + \theta_0 z + \alpha (z - \varepsilon) + \frac{1}{EJ} \left[M_0 \frac{z^2}{2t} + \right. \\
&+ \sum M \frac{(z - a)^2}{2t} + Q_0 \frac{z^3}{3t} + \sum P \frac{(z - b)^3}{3t} + \\
&+ \left. \sum q_c \frac{(z - c)^4}{4t} - \sum q_d \frac{(z - d)^4}{4t} + \sum k \frac{(z - c)^6}{5t} - \sum k \frac{(z - d)^6}{5t} \right].
\end{align*}
\] (10.46)

Здесь \(\alpha\) — угол, на который отличаются углы поворота стержней, примыкающих к промежуточному шарниру, т. е.

\[
\theta (\varepsilon)_h + \alpha = \theta (\varepsilon)_{pr},
\]
где \(\theta (\varepsilon)_{pr}\) — угол поворота правого стержня в точке \(S\) (рис. 195); \(\theta (\varepsilon)_h\) — угол поворота левого стержня в том же шарнире \(S\). Следовательно с множителем \((z - j) < 0\), где \(j = a, b, c, d\), при расчете не учитываются.

Рис. 197 \hspace{1cm} Рис. 198

Взаимный угол наклона \(\alpha\) является дополнительной неизвестной величиной в уравнениях (10.45) и (10.46). Как и начальные параметры \(w_0\) и \(\theta_0\), угол \(\alpha\) определяется из условий на опорах. В зависимости от расчетной схемы балки возможны два основных случая составления опорных условий.

1. Угол \(\alpha\) может быть определен из условия равенства нулю прогиба на правой опоре (рис. 197).

2. Угол \(\alpha\) определяется вместе с \(\theta_0\) из условия равенства нулю прогибов на опорах \(B\) и \(C\) (рис. 198) путем решения системы двух алгебраических уравнений.

10.7. Расчет балок переменного сечения на прочность и жесткость

Ступенчатые стержни. При расчете на прочность ступенчатого стержня, изготовленного из пластичного материала, условие прочности будет иметь вид

\[
\sigma_{\text{max}} = \frac{M_{\text{max}}}{W} \leq [\sigma].
\] (10.47)

Для стержня из хрупкого материала следует учитывать концентрацию напряжений в местах сопряжения двух сечений разных диаметра. В этом случае условие прочности следует записывать в виде

\[
\sigma_{\text{max}} = \alpha \sigma_n = \alpha \frac{M}{W} \leq [\sigma],
\] (10.48)
где \(\alpha\) — теоретический коэффициент концентрации напряжений (см...
Приложение 2). В обеих формулах W — момент сопротивления ослабленного сечения.

При определении деформации ступенчатой балки (рис. 199, a) несходимо записать дифференциальное уравнение изогнутой оси балки для каждой из ступеней, изгибающие моменты поперечных сечений которых соответственно равны $EJ_1; EJ_2; EJ_3; ...$:

$$\frac{d^2\omega}{dz^2} = \frac{M(z)}{EJ_1}; \quad \frac{d^2\omega}{dz^2} = \frac{M(z)}{EJ_2}; \quad \frac{d^2\omega}{dz^2} = \frac{M(z)}{EJ_3}, \ldots$$ (10.49)

Заменим ступенчатую балку эквивалентной балкой постоянного сечения с моментом инерции J_0, равным моменту инерции одного из участков балки, например второго $J_0 = J_2$. Умножив числитель и знаменатель правой части дифференциального уравнения (10.49) для произвольного участка n на J_0, получим

$$\frac{d^2\omega}{dz^2} = \frac{M(z)}{EJ_n} \frac{J_0}{J_0} = \frac{M(z)}{EJ_0} \frac{J_0}{J_n} = \frac{M(z)}{EJ_0} \beta_n,$$ (10.50)

где $\beta_n = \frac{J_n}{J_0}$ — коэффициент приведения. В примере, приведенном на рис. 199, $J_1 : J_2 : J_3 = 1 : 3 : 2$ и $\beta_1 = 1; \beta_2 = 3/2.$

Так как изгибающий момент является линейной функцией нагрузки, то для каждой части балки вместо умножения на коэффициент приведения изгибающего момента можно умножить на этот коэффициент внешние нагрузки данной части вместе с внутренними усилиями и M в местах сопряжения различных ступеней (рис. 199, б, в). Соединяя отдельные части одну с другой и присоединив внутренние усилия в стыке, получим балку постоянного сечения с изгибающей жесткостью EJ, нагруженную приведенными внешними нагрузками (т. е. нагрузками, изложенными в β_n раз). При этом в местах сопряжений будут наблюдаться скачки поперечных сил и изгибающих моментов, соответственно равные

$$\Delta Q_1 = Q_1 (\beta_2 - \beta_1); \quad \Delta Q_2 = Q_2 (\beta_3 - \beta_2);$$

$$\Delta M_1 = M_1 (\beta_2 - \beta_1); \quad \Delta M_2 = M_2 (\beta_3 - \beta_2).$$

В местах стыка частей балки надо приложить дополнительные сосредоточенные силы и сосредоточенные моменты, определяемые приведенными формулами.

Полученная таким образом эквивалентная балка (рис. 199, в) будет иметь упругую линию, полностью совпадающую с упругой линией заданной ступенчатой балки (рис. 199, a).

270
Перемещения такой балки можно определить, интегрируя дифференциальное уравнение

$$\frac{d^2 \omega}{dz^2} = \frac{M_{np}(z)}{EJ_0},$$

(10.51)

где M_{np} — момент приведенных внешних нагрузок и дополнительных нагрузок ΔQ и ΔM, определяемый, как и в обычной балке, нагруженной по схеме рис. 199, а. Для определения ω и θ можно воспользоваться также универсальными уравнениями (10.43) и (10.44) метода начальных параметров, рассматривая приведенную балку как балку постоянного сечения с изгибу жесткостью поперечного сечения EJ_0.

Балки с непрерывно изменяющимися по длине сечениям. Если размеры сечения стержня непрерывно изменяются по длине, то формулы, полученные на основании гипотезы плоских поперечных сечений, становятся неверными, как и сама гипотеза. Однако, как показывают результаты расчета методами теории упругости, в том случае, когда угол наклона образующей поверхности стержня к его оси не превышает 15—20°, распределение нормальных напряжений по высоте сечения можно принимать линейным. Тогда, естественно, можем использовать обычное условие прочности и дифференциальное уравнение упругой линии

$$\sigma_{\text{max}} = \frac{M(z)}{W(z)} \leq [\sigma];$$

(10.52)

$$\frac{d^2 \omega}{dz^2} = \frac{M(z)}{EJ(z)},$$

(10.53)

Погрешности при вычислении касательных напряжений по формуле Журавского

$$\tau = \frac{QS(y)}{b(z)J(z)},$$

(10.54)

в данном случае будут большими, чем при вычислении нормальных напряжений по формуле Навье

$$\sigma = \frac{M(z)y}{J(z)},$$

(10.55)

Формулу (10.53), выражающую дифференциальное уравнение изгиба балки переменного сечения, можно записать в виде

$$\frac{d^2 \omega}{dz^2} = \frac{M_{np}(z)}{EJ_0},$$

(10.56)

где $M_{np}(z) = \frac{J_0}{J(z)}M(z)$ — приведенный изгибающий момент, смысл которого объясняет от M_{np}, входящего в формулу (10.51); J_0 — момент инерции какого-либо сечения, обычно наибольший или наименьший.

Балка, момент сопротивления которой изменяется пропорционально изгибающему моменту от внешних нагрузок, называется балкой равного сопротивления изгибу. Рассчитывается такая балка по формуле

$$W(z) = \frac{M(z)}{[\sigma]}.$$

(10.57)

В балке равного сопротивления изгибу максимальные напряжения в любом сечении одинаковы и равны допускаемым $[\sigma]$. Примером бал-
ки равного сопротивления может служить консоль с постоянной шириной \(b \) и переменной высотой \(h(z) \) (рис. 200), определяемой из формулы (10.57). Тогда

\[
W(z) = \frac{bh^2(z)}{6} = \frac{M(z)}{[\sigma]} = \frac{Pz}{[\sigma]},
\]

откуда

\[
h(z) = V \sqrt{\frac{6P}{b[\sigma]}} Vz.
\]

(10.58)

Следовательно, высота балки меняется по параболическому закону, достигая максимального в месте закрепления

\[
h_0 = h(l) = V \sqrt{\frac{6P}{b[\sigma]}} VT.
\]

Поскольку согласно (10.58) в месте приложения силы \(z = 0 \) \(h(0) = 0 \), то высота концевого сечения определяется из условия среза

\[
\tau_{\text{max}} = \frac{3P}{2F} = \frac{3P}{b h} \leq [\tau],
\]

откуда

\[
h \geq \frac{3P}{2b[\tau]}.
\]

Рис. 200

Балки параболического очертания (весьма выгодные с точки зрения экономии материала) из-за сложности изготовления применяются весьма редко. На практике часто применяют балки равного сопротивления изгибу, имеющие постоянную высоту \(h \) и переменную ширину \(b(z) \) (рис. 201).

Закон изменения ширины \(b(z) \) найдем из (10.57):

\[
W(z) = \frac{b(z)h^3}{6} = \frac{M(z)}{[\sigma]} = \frac{Pz}{2[\sigma]},
\]

откуда получаем линейную зависимость

\[
b(z) = \frac{3P}{h^3[\sigma]} z.
\]

При \(z = l/2 \)

\[
b_0 = b \left(\frac{l}{2} \right) = \frac{3P l}{2h^3[\sigma]}.
\]

Максимальный прогиб такой балки равного сопротивления изгибу определяется на основании (10.56). По известным \(J_0 \), \(J(z) \) и их отношению

\[
J_0 = \frac{b_0h^3}{12}; \quad J(z) = \frac{b(z)h^3}{12};
\]

\[
\frac{J_0}{J(z)} = \frac{b_0}{b(z)} = \frac{l}{2z}
\]

можно найти приведенный момент

\[
M_{np}(z) = \frac{M(z)}{J(z)} J_0 = \frac{Pz}{2} \frac{J_0}{J(z)} = \frac{Pl}{4}.
\]

272
Подставляя M_{pr} в (10.56), получаем

$$\frac{d^2w}{dz^2} = \frac{P l}{4EJ_0}.$$

Интегрируя это уравнение дважды, находим

$$\frac{dw}{dz} = \theta(z) = \frac{1}{EJ_0} \left(\frac{P l}{4} z + C_1 \right);$$
$$w(z) = \frac{1}{EJ_0} \left(\frac{P l z^2}{8} + C_1 z + C_2 \right).$$

Постоянные интегрирования C_1 и C_2 определяются из условий

$$w(0) = 0; \quad \theta \left(\frac{l}{2} \right) = 0.$$

Отсюда

$$C_1 = -\frac{P l^2}{8}; \quad C_2 = 0.$$

Рис. 201

Тогда

$$w(z) = \frac{1}{EJ_0} \left(\frac{P l}{8} z^2 - \frac{P l^2}{8} z \right),$$

$$w_{max} = \frac{P l^3}{32EJ_0}.$$

Отсюда видно, что максимальный прогиб рассматриваемой балки равного сопротивления изгибу в полтора раза больше прогиба балки постоянного сечения с изгибной жесткостью EJ_0.

Приведенная теория с достаточной степенью приближения может быть использована при расчете рессор (рис. 202, a, b, e, e). При
этому ширину концевых сечений балки определяют из условия срыва (см. рис. 203, а, б)

\[\tau_{\text{max}} = \frac{P}{F} = \frac{P}{b \cdot h} \leq \tau, \]

откуда

\[b = \frac{P}{h \cdot \tau}. \]

Формулы для определения размеров поперечного сечения и максимального прогиба балок равного сопротивления приведены в табл. 25. В табл. 26 даны уравнения упругой линии и углов поворота поперечных сечений консольной балки переменной высоты для некоторых случаев ее нагружения.

10.8. Расчет на изгиб с учетом сил инерции

Действие сил инерции следует учитывать при расчете элементов конструкций, испытывающих большие ускорения. Примером может служить спарник AB (рис. 204), соединяющий две оси, одна из которых (O1) является ведущей. Любой элемент длины спарника, описывающий окружность радиусом \(r \) с угловой скоростью \(\omega \), испытывает центробежное ускорение \(\omega^2 r \). Интенсивность возникающей по длине спарника распределенной нагрузки будет

\[q_\mu = \frac{\gamma F}{g} \omega^2 r, \]

где \(F \) — площадь поперечного сечения спарника; \(\gamma \) — удельный вес материала; \(g \) — ускорение свободного падения.

Наиболее опасным положением спарника будет крайне нижнее положение \(A_1B_1 \), при котором нагрузка от сил инерции \(q_\mu \) и от собственного веса \(q_c \) суммируются:

\[q_{\text{max}} = q_\mu + q_c = \frac{\gamma F}{g} \omega^2 r + \gamma F = \gamma F \left(1 + \frac{\omega^2 r}{g} \right). \]
Рассматривая спарник как балку на двух шарирных опорах, находим максимальный изгибающий момент

\[M_{\text{max}} = \frac{q_{\text{max}} l^2}{8} = \frac{qF l^2}{8} \left(1 + \frac{\omega^2 r}{g} \right) \]

и наибольшее напряжение

\[\sigma_{\text{max}} = \frac{M_{\text{max}}}{W} = \frac{F}{W} \frac{\gamma l^2}{8} \left(1 + \frac{\omega^2 r}{g} \right). \]

Силы инерции необходимо учитывать также при расчете шатуна поршневой машины (рис. 205). Шатун испытывает инерционную рас- пределенную нагрузку, изменяющуюся по линейному закону, как показано на рисунке. Максимальная интенсивность инерционной нагрузки будет в точке A, тогда кривошип составляет с шатуном угол 90°;

\[q_{\text{max}} = \frac{\gamma F}{\omega^2 r}, \]

где \(r \) — радиус кривошипа.

Максимальный изгибающий момент в шатуне (при рассмотрении его как шарнирно опертой балки), как известно, будет на расстоянии \(l/\sqrt{3} \) от точки B:

\[M_{\text{max}} = \frac{q_{\text{max}} l^3}{9 \sqrt{3}}, \]

а максимальное напряжение

\[\sigma_{\text{max}} = \frac{M_{\text{max}}}{W}. \]

Подставляя значение \(q_{\text{max}} \), находим

\[\sigma_{\text{max}} = \frac{q_{\text{max}} l^2}{9 \sqrt{3} W} = \frac{F \gamma l^2 \omega^2 r}{9 \sqrt{3} W}. \]

10.9. Касательные напряжения при изгибе балок тонкостенного профиля. Центр изгиба

Формула Журавского дает верные результаты в случаях, когда ширина балки (сечения mn на рис. 206) достаточно мала по сравнению с высотой \(h \).

![Рис. 206](image)

В сечениях \(m_1 \) полок тонкостенного профиля (рис. 206, a, b, c, d) напряжения \(t \), параллельные усилию \(Q \), настолько малы, что их можно пренебречь. Но в этих полках возникают касательные напряжения \(t_t \), перпендикулярные усилию \(Q \). Учитывая малую толщину полки \(t \),

275
можно считать, что касательные напряжения \(\tau_n \) по толщине полки распределены равномерно. Тогда их величина определяется по формуле

\[
\tau_n = \frac{QS(x)}{J_f},
\]

(10.59)

Рис. 207

найденной из рассмотрения условия равновесия части полки двутаврового сечения длиной \(dz \) (рис. 207), где статический момент

\[
S(x) = \left(\frac{b}{2} - x \right) t \left(\frac{h}{2} - \frac{t}{2} \right).
\]

(10.60)

Рис. 208

Рис. 209

Из сопоставления формул (10.59) и (10.60) видно, что закон распределения касательных напряжений по ширине полки определяется законом изменения статического момента \(S(x) \), т. е. \(\tau_n \) распределяются по линейному закону.

Эпюры касательных напряжений, построенные для двутаврового сечения № 20 при \(Q = 98,0665 \) кН, приведены на рис. 208.
Касательные напряжения в полках тонкостенных профилей существенно влияют на характер напряженного состояния стержня и вид его деформаций.
Если сечение имеет две оси симметрии и силовая плоскость проходит через одну из них (рис. 209, а), то в сечении возникают равнодействующие усилия в стенке T_{ct} и в полке T_{n} (рис. 209, б). В силу симметрии полок усилия T_{n} взаимно уравновешиваются на каждой полке.
Иначе обстоит дело, если главная центральная ось, перпендикулярная к нейтральной линии, не является осью симметрии (рис. 210, а). Касательные напряжения в стенке и полках приводятся соответственно к усилиям T_{ct} и T_{n} (рис. 210, б).
При этом вертикальными касательными напряжениями в полках пренебрегают. Поперечная сила

$$Q = T_{ct}.$$

При этом она не проходит через центр тяжести, а, будучи равнодействующей силы T_{ct} и двух сил T_{n}, создающих пару, смещена на некоторое расстояние x_{C} (рис. 210, б) и пересекает нейтральную линию в точке C. Смещение x_{C} можно определить из условия

$$\sum M_{A} = Q \left(x_{C} + \frac{d}{2} \right) - T_{n} (h - t) = 0,$$

откуда

$$x_{C} = \frac{T_{n}}{Q} \left(h - t \right) - \frac{d}{2}.$$

(10.61)

Учитывая, что

$$T_{n} = t \int_{-x_{0} - d}^{b - x_{0}} \tau_{n} dx = \int_{-x_{0} - d}^{b - x_{0}} \frac{Q S (x)}{J} dx =$$

$$= t \int_{-x_{0} - d}^{b - x_{0}} \frac{Q (b - x_{0} - x) \frac{t}{2}}{J} dx = \frac{Q t (h - t) (b - d)^{2}}{4 J},$$

формулу (10.61) можем записать в окончательном виде

$$x_{C} = \frac{t (h - t)^{2} (b - d)^{2}}{4 J} - \frac{d}{2}.$$

Смещение равнодействующей относительно центра тяжести сечения из расстояния $x_{C}^{1} + x_{0}$, как это следует из схемы, приведенной на рис. 211, а, приводит к тому, что внешняя нагрузка P, действующая в плоскости xy, вызывает в сечении балки не только переменный по длине изгибающий момент $M(z) = P z$, но также крутящий момент (рис. 211, б) $M_{kr} = P (x_{0} + x_{C})$ за счет смещенностности поперечной силы $Q = P$ (являющихся равнодействующей усилии T_{ct} и T_{n}). Вследствие этого балка будет не только изгибаться, но и скручиваться (рис. 211, в).
Для предотвращения скручивания на практике используют симметричные сечения из двух швеллеров или выносят точку приложения нагрузки из главной плоскости так, чтобы она проходила через точку C (рис. 211, ε).

В этом случае участок балки длиной z полностью уравновешивается силами \(P, Q(z) = P \) и моментом \(M(z) = P(z) \) — и кручения не будет. Поэтому точку C называют центром изгиба или центром жесткости. Центры изгиба всех сечений балки расположены на прямой, которая называется осью жесткости балки (рис. 211, б). Очевидно, для стержней с двойной симметрией ось жесткости балки совпадает с осью, на которой размещены центры тяжести сечений.

10.10. О расчете балок на упругом основании

При рассмотрении балки на сплошном упругом основании (рис. 212) предполагается, что реакция основания в каждой точке пропорциональна упругому прогибу \(w \) в этой точке.

Обозначенная коэффициент пропорциональности, имеющий размерность \(\frac{сила}{длина} \), буквой \(\alpha \), получаем, что интенсивность реакции основания равна \(\alpha w \).

Таким образом, при заданной внешней распределенной нагрузке \(q(z) \) полная распределенная нагрузка, действующая на балку, будет

\[p(z) = q(z) - \alpha w(z). \] (10.62)
Расчет балок на упругом основании представляет собой статически неопределенную задачу. Интенсивность реакции основания связана с деформацией балки, поэтому при решении задачи сначала необходимо найти упругую линию балки. Дифференциальное уравнение изогнутой оси балки согласно (10.34) можно, учитывая принятые на рис. 212 направления оси w и нагрузки q, записать в виде

$$\frac{d^4w(z)}{dz^4} = \frac{1}{EJ} [q(z) - \alpha w(z)].$$ \hspace{1cm} (10.63)

Если распределенная нагрузка отсутствует, т. е. $q(z) = 0$ (рис. 212), то уравнение (10.63) принимает вид

$$\frac{d^4w(z)}{dz^4} = -\frac{\alpha}{EJ} w(z).$$ \hspace{1cm} (10.64)

Выберем начало координат на левом конце рассматриваемого участка, где начальными параметрами будут w_0, θ_0, M_0 и Q_0 (рис. 213). Введем обозначение

$$L = \sqrt{\frac{4EJ}{\alpha}}$$

L имеет размерность длины и заменим независимую переменную z безразмерной абсциссой

$$\xi = \frac{z}{L},$$

уравнение (10.64) переишием в виде

$$\frac{d^4w}{d\xi^4} + 4w = 0.$$ \hspace{1cm}

Общее решение этого уравнения

$$w = C_1 e^\xi \cos \xi + C_2 e^\xi \sin \xi + C_3 e^{-\xi} \cos \xi + C_4 e^{-\xi} \sin \xi.$$ \hspace{1cm} (10.65)

Взяв соответствующие производные от (10.65), выразим через них Q, M и θ:

$$\frac{dw}{d\xi} = 0L = C_1 e^\xi (\cos \xi - \sin \xi) + C_2 e^\xi (\cos \xi + \sin \xi) -$$

$$- C_3 e^{-\xi} (\cos \xi + \sin \xi) + C_4 e^{-\xi} (\cos \xi - \sin \xi);$$ \hspace{1cm} (10.66)

$$\frac{d^2w}{d\xi^2} = -\frac{M(z)}{EJ} = -2 (C_1 e^\xi \sin \xi - C_2 e^\xi \cos \xi -$$

$$- C_3 e^{-\xi} \sin \xi + C_4 e^{-\xi} \cos \xi);$$ \hspace{1cm} (10.67)

$$\frac{d^3w}{d\xi^3} = -\frac{Q(z) L^3}{EJ} = -2 [C_1 e^\xi (\cos \xi + \sin \xi) - C_2 e^\xi (\cos \xi - \sin \xi) -$$

$$- C_3 e^{-\xi} (\cos \xi - \sin \xi) - C_4 e^{-\xi} (\cos \xi + \sin \xi)].$$ \hspace{1cm} (10.68)

Положив в (10.65) — (10.68) $\xi = 0$, получим выражения для начальных параметров:

$$w_0 = C_1 + C_3;$$

$$L\theta_0 = C_1 + C_2 - C_3 + C_4;$$

$$L^2M_0 = (-2C_2 + 2C_4) EJ;$$

$$L^3Q_0 = (2C_1 - 2C_2 - 2C_3 - 2C_4) EJ.$$

279
Решив систему этих четырех линейных уравнений относительно постоянных интегрирования, получим выражение последних через начальные параметры в виде

\[
C_1 = \frac{\omega_0}{2} + \frac{L\theta_0}{4} + \frac{L^3Q_0}{8EJ};
\]

\[
C_2 = \frac{L\theta_0}{4} - \frac{L^2M_0}{4EJ} - \frac{L^3Q_0}{8EJ};
\]

\[
C_3 = \frac{\omega_0}{2} - \frac{L\theta_0}{4} - \frac{L^3Q_0}{8EJ};
\]

\[
C_4 = \frac{L\theta_0}{4} + \frac{L^2M_0}{4EJ} - \frac{L^3Q_0}{8EJ}.
\]

Подставив выражении постоянных интегрирования в (10.65) — (10.68), найдем

\[
w(z) = \omega_0 Y_1(\xi) + L\theta_0 Y_2(\xi) - \frac{L^2M_0}{EJ} Y_3(\xi) - \frac{L^3Q_0}{EJ} Y_4(\xi);
\]

\[
\theta(z) = \theta_0 Y_1(\xi) - \frac{LM_0}{EJ} Y_2(\xi) - \frac{L^2Q_0}{EJ} Y_3(\xi) - \frac{4\omega_0}{L} Y_4(\xi);
\]

\[
M(z) = M_0 Y_1(\xi) + LQ_0 Y_2(\xi) + \alpha L^2\omega_0 Y_3(\xi) + \alpha L^3\theta_0 Y_4(\xi);
\]

\[
Q(z) = Q_0 Y_1(\xi) + \alpha L\omega_0 Y_2(\xi) + \alpha L^2\theta_0 Y_3(\xi) - \frac{4}{L} M_0 Y_4(\xi),
\]

где \(Y_1, Y_2, Y_3, Y_4\) — функции А. Н. Крылова*;

\[
Y_1(\xi) = \text{ch} \xi \cos \xi = \frac{1}{2} (e^\xi + e^{-\xi}) \cos \xi;
\]

\[
Y_2(\xi) = \frac{1}{2} (\text{ch} \xi \sin \xi + \text{sh} \xi \cos \xi) =
\]

\[
= \frac{1}{4} [(e^\xi + e^{-\xi}) \sin \xi + (e^\xi - e^{-\xi}) \cos \xi];
\]

\[
Y_3(\xi) = \frac{1}{2} \text{sh} \xi \sin \xi = \frac{1}{2} \left[\frac{1}{2} (e^\xi - e^{-\xi}) \sin \xi \right];
\]

\[
Y_4(\xi) = \frac{1}{4} (\text{ch} \xi \sin \xi - \text{sh} \xi \cos \xi) =
\]

\[
= \frac{1}{8} [(e^\xi + e^{-\xi}) \sin \xi - (e^\xi - e^{-\xi}) \cos \xi].
\]

При дифференцировании функций Крылова справедливы следующие важные зависимости:

\[
LY_1' = -4Y_4; \quad LY_2' = Y_1; \quad LY_3' = Y_2; \quad LY_4' = Y_3.
\]

В общем случае (рис. 214), когда на отрезке \(O_2\) действует сосредоточенный момент \(M_1\) в точке с абсциссой \(a_1\), сосредоточенная сила \(P_1\) в точке с абсциссой \(b_1\) и равномерно распределенная нагрузка \(q\)

* Значения этих функций приведены в Приложении 4.

280
на участке от \(z = c \) до \(z = d \), общие уравнения для \(w, \theta, Q \) и \(M \) имеют вид

\[
\begin{align*}
 w(z) &= w_0 Y_1 \left(\frac{z}{L} \right) + \theta_0 L Y_3 \left(\frac{z}{L} \right) - \frac{1}{EJ} \left(M_0 L^2 Y_3 \left(\frac{z}{L} \right) +
 \right. \\
 &\left. + Q_0 L^3 Y_3 \left(\frac{z}{L} \right) + \sum_{i} M_i Y_3 \left(\frac{z - a_i}{L} \right) - \sum_{i} P_i Y_4 \left(\frac{z - b_i}{L} \right) +
 \right. \\
 &\left. + \frac{L^4}{4} \sum_{i} q_i \left[Y_1 \left(\frac{z - c_i}{L} \right) - Y_1 \left(\frac{z - d_i}{L} \right) \right] \right) \\
 \theta(z) &= \theta_0 Y_1 \left(\frac{z}{L} \right) - \frac{1}{EJ} \left(M_0 L Y_3 \left(\frac{z}{L} \right) + Q_0 L^3 Y_3 \left(\frac{z}{L} \right) +
 \right. \\
 &\left. + \frac{4EJ}{L} w_0 Y_4 \left(\frac{z}{L} \right) + L \sum_{i} M_i Y_3 \left(\frac{z - a_i}{L} \right) - \sum_{i} P_i Y_3 \left(\frac{z - b_i}{L} \right) -
 \right. \\
 &\left. - \sum_{i} q_i \left[Y_4 \left(\frac{z - c_i}{L} \right) - Y_4 \left(\frac{z - d_i}{L} \right) \right] \right) \\
 M(z) &= M_0 Y_1 \left(\frac{z}{L} \right) + Q_0 L Y_2 \left(\frac{z}{L} \right) + \alpha L^2 w_0 Y_3 \left(\frac{z}{L} \right) + \alpha L^3 \theta_0 Y_4 \left(\frac{z}{L} \right) +
 \right. \\
 &\left. + \sum_{i} M_i Y_1 \left(\frac{z - a_i}{L} \right) - L \sum_{i} P_i Y_2 \left(\frac{z - b_i}{L} \right) +
 \right. \\
 &\left. + L^2 \sum_{i} q_i \left[Y_3 \left(\frac{z - c_i}{L} \right) - Y_3 \left(\frac{z - d_i}{L} \right) \right] \right) \\
 Q(z) &= Q_0 Y_1 \left(\frac{z}{L} \right) + \alpha L w_0 Y_2 \left(\frac{z}{L} \right) + \alpha L^2 \theta_0 Y_3 \left(\frac{z}{L} \right) - \frac{4M_0}{L} Y_4 \left(\frac{z}{L} \right) -
 \right. \\
 &\left. - \frac{4}{L} \sum_{i} M_i Y_4 \left(\frac{z - a_i}{L} \right) - \sum_{i} P_i Y_1 \left(\frac{z - b_i}{L} \right) +
 \right. \\
 &\left. + L \sum_{i} q_i \left[Y_2 \left(\frac{z - c_i}{L} \right) - Y_2 \left(\frac{z - d_i}{L} \right) \right] \right)
\end{align*}
\]

(10.69) (10.70) (10.71) (10.72)

Рис. 214

 Таким образом, при известных начальных параметрах \(w_0, \theta_0, M_0 \) и \(Q_0 \) величины \(w(z), \theta(z), M(z) \) и \(Q(z) \) могут быть определены в любом сечении с координатой \(z \) по формулам (10.69) — (10.72).

Начальные параметры в каждом конкретном случае могут быть определены из условий на концах балки. Эти условия для различных случаев закрепления балки при совмещении начала координат с левым концом представлены ниже.
<table>
<thead>
<tr>
<th>Условия на концах балки</th>
<th>Левый конец ((z = 0))</th>
<th>Правый конец (z = l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Левый конец</td>
<td>Правый конец</td>
<td>(w)</td>
</tr>
<tr>
<td>Свободен</td>
<td>Свободен</td>
<td>—</td>
</tr>
<tr>
<td>Свободен</td>
<td>Оперт</td>
<td>—</td>
</tr>
<tr>
<td>Заделан</td>
<td>Оперт</td>
<td>—</td>
</tr>
<tr>
<td>Оперт</td>
<td>Оперт</td>
<td>0</td>
</tr>
<tr>
<td>Заделан</td>
<td>Заделан</td>
<td>0</td>
</tr>
</tbody>
</table>

\(M_l\) и \(Q_l\) — соответственно внешние сосредоточенные момент и сила на правой опоре.

При выборе начала координат на левом конце однопролетной балки два начальных параметра всегда известны. Для определения двух других параметров необходимо решить систему двух алгебраических уравнений, составленную из условий закрепления правого конца балки.

10.11. Изгиб балок, материал которых не следует закону Гука

Диаграммы растяжения и сжатия, записанные для материалов, не следующих закону Гука (чугун, камень и др.), показывают, что напряжения растут медленнее деформаций и отставание роста напряжения от деформаций значительно при растяжении, чем при сжатии (рис. 215). В этом случае нейтральная линия не проходит через центр тяжести поперечного сечения, а смешается в сторону центра кривизны оси балки (рис. 216). По известному радиусу кривизны нейтрального слоя на основании гипотезы плоских сечений относительное удлинение волокна, находящегося на расстоянии \(y\) от нейтрального слоя, как и прежде, определяется известной формулой

\[
\varepsilon = \frac{y}{\rho}.
\]

(10.7)

Поэтому прежде всего следует найти положение и радиус кривизны нейтрального слоя.

282
Рассмотрим балку прямоугольного сечения из материала, не следующего закону Гука (рис. 217). Учитывая, что для многих материалов зависимости $e = f(\sigma)$ при растяжении и сжатии могут быть представлены в виде

$$e_p = k_p\sigma_p^n; \quad e_{cж} = k_{cж}\sigma_{cж}^m,$$

где k_p, $k_{cж}$, n и m — величины, характеризующие физические свойства материала, положение нейтрального слоя можно определить из условий

$$\sum Z = \int_{F} \sigma dF = 0;$$

$$\sum M_x = \int_{F} \sigma y dF - M = 0$$

или

$$b\left(\int_{0}^{h_1} \sigma_p dy - \int_{0}^{h_2} \sigma_{cж} dy\right) = 0;$$

$$b\left(\int_{0}^{h_1} \sigma_p y dy + \int_{0}^{h_2} \sigma_{cж} y dy\right) = M.$$

На основании (10.74) и (10.73)

$$\sigma_p = \left(\frac{e_p}{k_p}\right)^{\frac{1}{n}} = \left(\frac{y}{k_p\rho}\right)^{\frac{1}{n}}; \quad \sigma_{cж} = \left(\frac{e_{cж}}{k_{cж}}\right)^{\frac{1}{m}} = \left(\frac{y}{k_{cж}\rho}\right)^{\frac{1}{m}}.$$

(10.77)

Подставляя (10.77) в (10.75) и (10.76) и интегрируя, соответственно получаем

$$\frac{n}{n + 1} \left(\frac{h_1}{k_p\rho}\right)^{\frac{1}{n}} h_1 - \frac{m}{m + 1} \left(\frac{h_2}{k_{cж}\rho}\right)^{\frac{1}{m}} h_2 = 0;$$

$$\frac{n}{2n + 1} b \left(\frac{h_1}{k_p\rho}\right)^{\frac{1}{n}} h_2^2 - \frac{m}{2m + 1} b \left(\frac{h_2}{k_{cж}\rho}\right)^{\frac{1}{m}} h_2^2 = M.$$

(10.78)

(10.79)

Учитывая, что $h_1 + h_2 = h$, из последних двух уравнений находим ρ, h_1 и h_2, а затем по формулам (10.77) — напряжения σ_p и $\sigma_{cж}$.

Можно решить и обратную задачу: определить наибольший допускаемый изгибающий момент по допускаемым напряжениям растяжения $[\sigma_p]$ или сжатия $[\sigma_{cж}]$. При этом, пользуясь формулами (10.77), определяют напряжения в крайних волокнах:

$$(\sigma_p)_{\text{max}} = \sigma_1 = \left(\frac{h_1}{k_p\rho}\right)^{\frac{1}{n}}; \quad (\sigma_{cж})_{\text{max}} = \sigma_2 = \left(\frac{h_2}{k_{cж}\rho}\right)^{\frac{1}{m}}.$$

(10.80)
На основании (10.80) выражения (10.78) и (10.79) можно представить в виде

\[
\frac{n}{n+1} \sigma_1 h_1 - \frac{m}{m+1} \sigma_2 h_2 = 0; \quad (10.81)
\]

\[
\frac{n}{2n+1} b \sigma_1 h_1^2 + \frac{m}{2m+1} b \sigma_2 h_2^2 = M. \quad (10.82)
\]

Кроме того, из уравнения (10.80) следует, что

\[
\frac{h_1}{h_2} = \frac{\sigma_1 k_p}{\sigma_2 k_{cж}}. \quad (10.83)
\]

Рис. 217
Рис. 218

Пользуясь соотношениями (10.81) — (10.83) и учитывая, что \(h_1 + h_2 = h \), можно по известному \([\sigma_p]\) или \([\sigma_{cж}]\) определить положение нейтральной оси и допускаемое значение изгибающего момента \([M]\).

В случае, когда материал следует закону Гука, но модули упругости при растяжении \(E_p \) и сжатии \(E_{cж} \) неодинаковы (обычно \(E_{cж} > E_p \)), эпюра нормальных напряжений будет иметь вид, приведенный на рис. 218, а максимальные напряжения при известном действующем изгибающем моменте \(M \) для стержня прямоугольного сечения будут определяться по формулам

\[
\begin{aligned}
\sigma_p &= \frac{3M}{bh^2} \left(1 + \sqrt{\frac{E_p}{E_{cж}}} \right); \\
\sigma_{cж} &= \frac{3M}{bh^2} \left(1 - \sqrt{\frac{E_{cж}}{E_p}} \right).
\end{aligned} \quad (10.84)
\]

В случае, когда напряжения определяются через относительные деформации в крайних волокнах, найденные с помощью тензометров, формулы (10.84) лучше представить в виде

\[
\begin{aligned}
\sigma_p &= \frac{3M}{bh^2} \left(1 + \frac{\varepsilon_{cж}}{\varepsilon_p} \right); \\
\sigma_{cж} &= \frac{3M}{bh^2} \left(1 + \frac{\varepsilon_p}{\varepsilon_{cж}} \right).
\end{aligned} \quad (10.85)
\]

284
Таблица 24. Схемы действительных и соответствующих им фиктивных балок

<table>
<thead>
<tr>
<th>Действительная балка</th>
<th>Фиктивная балка</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagram 1]</td>
<td>![Diagram 2]</td>
</tr>
<tr>
<td>![Diagram 3]</td>
<td>![Diagram 4]</td>
</tr>
<tr>
<td>![Diagram 5]</td>
<td>![Diagram 6]</td>
</tr>
<tr>
<td>![Diagram 7]</td>
<td>![Diagram 8]</td>
</tr>
<tr>
<td>![Diagram 9]</td>
<td>![Diagram 10]</td>
</tr>
<tr>
<td>![Diagram 11]</td>
<td>![Diagram 12]</td>
</tr>
</tbody>
</table>

285
<table>
<thead>
<tr>
<th>Схема балки и ее поперечное сечение</th>
<th>Формулы для определения размеров поперечного сечения и максимального прогиба</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(h_z = \sqrt{\frac{6Pz}{b[\sigma]}}); (f = \frac{8P}{Eb}\left(\frac{l}{h}\right)^3)</td>
</tr>
<tr>
<td></td>
<td>(b_z = \frac{6Pz}{h^2[\sigma]}); (f = \frac{6P}{Eb}\left(\frac{l}{h}\right)^3)</td>
</tr>
<tr>
<td></td>
<td>(d_z = \sqrt{\frac{32Pz}{\pi[\sigma]}})</td>
</tr>
<tr>
<td></td>
<td>(h_z = z \sqrt{\frac{3q}{B[\sigma]}})</td>
</tr>
<tr>
<td>Схема балки и ее поперечное сечение</td>
<td>Формулы для определения размеров поперечного сечения и максимального прогиба</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>$h_z = \sqrt{\frac{6Pc^2}{bl}}$; $h_z' = \sqrt{\frac{6Paz'}{bl}}$</td>
</tr>
<tr>
<td></td>
<td>$h_z = \sqrt{\frac{3ql^2}{4b}} \left(1 - \frac{z^2}{l^2} \right)$; $f = \frac{3ql^4}{16bEh^3}$</td>
</tr>
<tr>
<td></td>
<td>$b_z = \frac{3Pz}{h^2}$; $f = \frac{3Pl^3}{8bh^3}$</td>
</tr>
</tbody>
</table>

287
Таблица 26. Уравнения упругой линии и угла поворота поперечных сечений консольной балки переменной высоты

![Diagram](image)

<table>
<thead>
<tr>
<th>Схема балки и нагрузки</th>
<th>Уравнение упругой линии</th>
<th>Уравнение угла поворота</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P \cdot L^3 \frac{EJ_o}{L_0} \left[-\ln \frac{L}{a+z} + \frac{a}{2(a+z)} + \frac{2L + a}{2L^2} (l - z) - \frac{a}{2L}\right]$</td>
<td>$P \cdot L^3 \frac{EJ_o}{L_0} \left[\frac{2L + a}{2(a+z)^2} - \frac{2L + a}{2L^2}\right]$</td>
</tr>
<tr>
<td></td>
<td>$-\frac{pL^3}{2EJ_o} \left{2a \ln \frac{L}{a+z} - (a+z) [\ln (a+z) - 1] - \frac{4aL - a^2}{2L^2} (l - z) + (a+z) \ln L - \frac{a^2}{2} \left(\frac{1}{a+z} - \frac{1}{L}\right) - L\right}$</td>
<td>$-\frac{pL^3}{2EJ_o} \left[\ln \frac{L}{a+z} - 2a \left(\frac{1}{a+z} - \frac{1}{L}\right) + \frac{a^2}{2} \left(\frac{1}{a+z} - \frac{1}{L}\right)\right]$</td>
</tr>
</tbody>
</table>
Таблица 27. Уравнения упругой линии, максимальные прогибы и углы поворота концевых и опорных сечений статически определенных балок постоянного поперечного сечения

<table>
<thead>
<tr>
<th>Схема балки</th>
<th>Уравнение упругой линии w_z и максимальный прогиб f</th>
<th>Угол поворота θ</th>
</tr>
</thead>
</table>
| ![Diagram](image) | $0 < z < l$
$w_z = \frac{M_0 L^3}{2EJ} \left(1 - \frac{z}{l}\right)^2$
$f = \frac{M_0 L^3}{2EJ}$ при $z = 0$ | $\theta = \frac{M_0 l}{EJ}$
при $z = 0$ |
<table>
<thead>
<tr>
<th>Схема балки</th>
<th>Уравнение упругой линии (w_z) и максимальный прогиб (f)</th>
<th>Угол поворота (\theta)</th>
</tr>
</thead>
</table>
| ![Image](https://via.placeholder.com/150) | \begin{align*}
0 &
\leq z
\leq a \\

w_z &= -\frac{1}{2EJ}\left[(M_1 + M_2)(l - z)^2 - M_1(z - a)^2 - M_2(a + b - z)^2 \right] \\
&\text{при } a \leq z \leq a + b \\

w_z &= -\frac{1}{2EJ}\left[(M_1 + M_2)(l - z)^2 - M_2(a + b - z)^2 \right] \\
&\text{при } a + b < z < l \\

w_z &= -\frac{1}{2EJ}\left[(M_1 + M_2)l^2 - M_1a^2 - M_2(a + b)^2 \right] \\
&\text{при } z = 0
\end{align*} | \begin{align*}
\theta &= \frac{1}{EI}\left[(M_1 + M_2)l - M_1a - M_2 \times \right. \\
&\times (a + b) \left. \right] \\
&\text{при } z = 0
\end{align*} |
| ![Image](https://via.placeholder.com/150) | \begin{align*}
0 &
\leq z
\leq l \\

w_z &= \frac{mI^3}{6EI}\left[2 - 3\frac{z}{l} + \left(\frac{z}{l} \right)^3 \right] \\

f &= \frac{mI^3}{3EI} \text{ при } z = 0
\end{align*} | \begin{align*}
\theta &= -\frac{mI^3}{2EI} \\
&\text{при } z = 0
\end{align*} |
<table>
<thead>
<tr>
<th>$0 \leq z \leq l$</th>
<th>$w_2 = \frac{P l^3}{6 E J} \left[2 - 3 \frac{z}{l} + \left(\frac{z}{l} \right)^3 \right]$</th>
<th>$\theta = \frac{P l^3}{2 E J}$ \quad \text{при } z = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \leq z < a$</td>
<td>$w_2 = \frac{P b^3}{6 E J} \left(1 - 3 \frac{1 - z}{b} \right) = -\frac{P b^3}{6 E J} \left(3 \frac{a - z}{b} + 2 \right)$</td>
<td>$\theta = \frac{P b^3}{2 E J}$ \quad \text{при } z = 0$</td>
</tr>
<tr>
<td>$a < z < l$</td>
<td>$w_2 = \frac{P b^3}{6 E J} \left(\frac{l - z}{b} - 3 \right) \left(\frac{l - z}{b} \right)^2$</td>
<td>---</td>
</tr>
<tr>
<td>$f = \frac{P b^3}{6 E J} \left(1 - 3 \frac{1}{b} \right) = -\frac{P b^3}{6 E J} \left(2 + 3 \frac{a}{b} \right)$ \quad \text{при } z = 0$</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>$0 < z < l$</td>
<td>$w_2 = -\frac{q l^4}{24 E J} \left[3 - 4 \frac{z}{l} + \left(\frac{z}{l} \right)^4 \right]$</td>
<td>$\theta = \frac{q l^4}{6 E J}$ \quad \text{при } z = 0$</td>
</tr>
<tr>
<td>$f = -\frac{q l^4}{8 E J}$ \quad \text{при } z = 0$</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>$0 < z < b$</td>
<td>$w_2 = -\frac{q l^4}{24 E J} \left[3 - 4 \frac{a^3}{l^3} + \frac{a^4}{l^4} - 4 \left(1 - \frac{a^2}{l^2} \right) \frac{z}{l} + \frac{z^4}{l^4} \right]$</td>
<td>$\theta = \frac{q l^4}{6 E J} \left(1 - \frac{a^3}{l^3} \right)$ \quad \text{при } z = 0$</td>
</tr>
<tr>
<td>$b < z < l$</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Схема балки</td>
<td>Уравнение упругой линии (w_z) и максимальный прогиб (f)</td>
<td>Угол поворота (\theta)</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>[w_z = - \frac{ql^4}{24EJ} \left[3 - 4 \frac{a^3}{l^3} + \frac{a^4}{l^4} - 4 \left(\frac{1 - a^3}{l^3} \right) \frac{z}{l} + \frac{2^4}{l^4} - \frac{(z - b)^4}{l^4} \right]]</td>
<td>[f = - \frac{ql^4}{24EJ} \left(3 - 4 \frac{a^3}{l^3} + \frac{a^4}{l^4} \right) \text{ при } z = 0]</td>
<td>[\theta = \frac{ql^3}{24EJ} \text{ при } z = 0]</td>
</tr>
<tr>
<td></td>
<td>[w_z = - \frac{ql^4}{120EJ} \left(4 - 5 \frac{z}{l} + \frac{z^2}{l^2} \right)]</td>
<td>[\theta = \frac{ql^3}{8EJ} \text{ при } z = 0]</td>
</tr>
<tr>
<td></td>
<td>[f = - \frac{ql^4}{30EJ} \text{ при } z = 0]</td>
<td></td>
</tr>
</tbody>
</table>
\[w_z = -\frac{qal^3}{120EJ} \left[3 \left(5 - 5 \frac{a}{l} + \frac{a^3}{l^3} \right) - 5 \left(6 - 8 \frac{a}{l} + \frac{a^3}{l^3} \right) \right] + 3 \frac{a^3}{l^3} \frac{z}{l} + \frac{a^3}{l} \]

\[l = -\frac{qal^3}{30EJ} \left(5 - 5 \frac{a}{l} + \frac{a^3}{l^3} \right) \quad \text{при} \quad z = 0 \]

\[w_z = -\frac{qal^3}{120EJ} \left[20 - 10 \frac{a}{l} + \frac{a^3}{l^3} - 5 \left(6 - 4 \frac{a}{l} + \frac{a^3}{l^3} \right) \right] + \frac{a^3}{l^3} \frac{z}{l} + 5 \frac{a^3}{l^3} \frac{z^2}{a^3} - \frac{a^3}{l^3} \frac{z^2}{a^3} \]

\[l = -\frac{qal^3}{120EJ} \left(20 - 10 \frac{a}{l} + \frac{a^3}{l^3} \right) \quad \text{при} \quad z = 0 \]

\[w_z = -\frac{109 ql^4}{1920 EJ} \left[1 - \frac{140 z}{109 l} + \frac{32 z^3}{109 l^3} \right] \]

\[l = -\frac{109 ql^4}{1920 EJ} \quad \text{при} \quad z = 0 \]

\[w_z = -\frac{109 ql^4}{1920 EJ} \left[1 - \frac{140 z}{109 l} + \frac{32 z^3}{109 l^3} - \frac{64 \left(z - \frac{l}{2} \right)^3}{l^3} \right] \]

\[l = -\frac{109 ql^4}{1920 EJ} \quad \text{при} \quad z = 0 \]

\[0 = \frac{qal^2}{24EJ} \left(6 - 8 \frac{a}{l} + 3 \frac{a^2}{l^2} \right) \quad \text{при} \quad z = 0 \]

\[0 = \frac{qal^2}{24EJ} \left(6 - 4 \frac{a}{l} + \frac{a^2}{l^2} \right) \quad \text{при} \quad z = 0 \]

\[0 = \frac{7 ql^3}{96 EJ} \quad \text{при} \quad z = 0 \]
<table>
<thead>
<tr>
<th>Схема балки</th>
<th>Уравнение упругой линии (w_x) и максимальный прогиб (f)</th>
<th>Угол поворота (\theta)</th>
</tr>
</thead>
</table>
| ![Diagram](image1) | \(0 < z < l \) \[
\begin{align*}
 w_x &= -\frac{l^4}{120EI} \left[11q_1 + 4q_2 - 5(3q_1 + q_2) \frac{z}{l} + \\
 & \quad + 5q_1 \frac{z^2}{l^2} + (q_2 - q_1) \frac{z^3}{l^3} \right] \\
 f &= -\frac{11q_1 + 4q_2}{120EI} l^4 \quad \text{при } z = 0 \\
 \theta &= \frac{3q_1 + q_2}{24EI} l^3 \quad \text{при } z = 0
\end{align*}
| |
| ![Diagram](image2) | \(0 < z < l \) \[
\begin{align*}
 w_x &= -\frac{M_0 l^3}{6EI} \left(2 \frac{z}{l} - 3 \frac{z^2}{l^2} + \frac{z^3}{l^3} \right) \\
 w &= -\frac{M_0 l^3}{16EI} \quad \text{при } z = l/2 \\
 f &= -0.0642 \frac{M_0 l^3}{EI} \quad \text{при } z = 0.422l \\
 \theta &= -\frac{M_0 l}{3EI} \quad \text{при } z = 0 \\
 \theta &= \frac{M_0 l}{6EI} \quad \text{при } z = l
\end{align*}
| |
| ![Diagram](image3) | \(0 < z < l \) \[
\begin{align*}
 w_x &= -\frac{l^4}{6EI} \left[(2M_1 + M_2) \frac{z}{l} - 3M_1 \frac{z^2}{l^2} + (M_1 - M_2) \frac{z^3}{l^3} \right] \\
 w &= -\frac{M_1 + M_2}{12EI} l^3 \quad \text{при } z = l/2 \\
 \theta &= -\frac{M_1 l}{3EI} + \frac{M_2 l}{6EI} \quad \text{при } z = 0 \\
 \theta &= \frac{M_1 l}{6EI} + \frac{M_2 l}{3EI} \quad \text{при } z = l
\end{align*}
| |
\[w_z = \begin{cases}
\frac{M \cdot a}{6EJ} \left(\frac{6}{l} - 3 \frac{a^2}{l^2} - 2 \right) \frac{z}{l^3} & \text{при } z = a \\
\frac{M}{6EJ} \left(3 \frac{a^2}{l^2} - \frac{a}{l} - \frac{13 a^3}{l^3} \right) & \text{при } z = a/2 \\
\frac{M P a}{3EJ} \left(3 \frac{a^3}{l^3} - \frac{a}{l} - 2 \frac{a^2}{l^2} \right) & \text{при } z = a \\
\frac{M P a}{16EJ} \left(2 - 6 \frac{a}{l} - 3 \frac{a^3}{l^3} \right) & \text{при } z = 0 \\
\frac{M P a}{16EJ} \left(1 - 3 \frac{a^3}{l^3} \right) & \text{при } z = l
\end{cases} \]

\[f_z = \begin{cases}
\frac{P z + P a}{48EJ} \left(\frac{3}{l} - 4 \frac{ad}{l^3} \right) & \text{при } z = l/2 \\
\frac{P z}{48EJ} & \text{при } z = a \\
\frac{P z}{48EJ} & \text{при } z = l
\end{cases} \]

\[w_z = \begin{cases}
\frac{P a}{6EJ} \left(\frac{a}{a} + \frac{z}{b} - \frac{z^3}{a^2} \right) & \text{при } z = a \\
\frac{P a}{6EJ} \left(\frac{a}{b} + \frac{l - z}{a} - \frac{(l - z)^3}{a b^2} \right) & \text{при } z = a - b \\
\frac{P a}{6EJ} \left(\frac{a}{b} + \frac{l}{a} - \frac{a^3}{a b^2} \right) & \text{при } z = a \\
\frac{P a}{6EJ} \left(1 - \frac{a}{b} \right) & \text{при } z = 0
\end{cases} \]
Продолжение табл. 27

Схема балки

<table>
<thead>
<tr>
<th>Уравнение упругой линии (w_z) и максимальной прогиба (f)</th>
<th>Угол поворота (\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(w = - \frac{Pb}{48EI} (3l^2 - 4bl)) при (z = l/2)</td>
</tr>
<tr>
<td></td>
<td>(f = - \frac{Pr^2}{27EJ} \left(\frac{a}{b} \right)^3) при (z = a)</td>
</tr>
<tr>
<td></td>
<td>(f = - \frac{Pb^2 \sqrt{3}}{27EJ} \sqrt{1 - \frac{a^2}{l^2}}) при (z = \sqrt{\frac{l^2 - a^2}{3}})</td>
</tr>
<tr>
<td></td>
<td>(\theta = \frac{Pa}{6EI} (l^3 - a^2)) при (z = l)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
0 & \leq z < a \\
\theta & = \frac{Pa (a + b)}{2El} \\
\theta & = \frac{Pa (a + b)}{2El} \\
\theta & = \frac{Pa (a + b)}{2El} \\
\end{align*}
\]

при \(z = 0 \)

при \(z = l \)
\[
\begin{align*}
\omega_2 &= -\frac{ql^4}{2AEJ} \left(z^3 \frac{z}{l} - 2 \left(z \frac{z}{l} \right)^3 + \left(z \frac{z}{l} \right) \right) \\
\theta &= -\frac{ql^3}{2AEJ} \text{ при } z = 0 \\
\theta &= -\frac{ql^3}{2AEJ} \text{ при } z = l
\end{align*}
\]

\[
\begin{align*}
\omega_2 &= -\frac{qbl^3}{48EJ} \left[8 \frac{d}{l} \left(z \frac{z}{l} - z^3 \right) - \frac{z}{l} \left(8 \frac{d^3}{l^3} - \frac{2ab^3}{l^3} - b^3 \frac{b^3}{l^3} + 2 \frac{b^3}{l^3} \right) \right] \\
\omega_2 &= -\frac{qbl^3}{48EJ} \left[8 \frac{d}{l} \left(z \frac{z}{l} - z^3 \right) - \frac{z}{l} \left(8 \frac{d^3}{l^3} - 2 \frac{ab^3}{l^3} - \frac{b^3}{l^3} + 2 \frac{b^3}{l^3} \right) \right] \\
\theta &= -\frac{qbl^3}{2AEJ} \left(4 \frac{d}{l} - 4 \frac{d^3}{l^3} + \frac{ab^3}{l^3} + \frac{b^3}{l^3} \right) \\
\theta &= -\frac{qbl^3}{2AEJ} \left(4 \frac{d}{l} - 4 \frac{d^3}{l^3} + \frac{ab^3}{l^3} + \frac{b^3}{l^3} \right) \\
\text{при } z = 0 \\
d &= c + \frac{1}{2} b
\end{align*}
\]

\[
\begin{align*}
\omega_2 &= -\frac{qa^4}{24EJ} \left[4 \left(1 - \frac{a}{2l} \right) \frac{z^3}{a} - 4 \frac{\left(a^2 + b \right)}{a^2} + \frac{z^4}{a^2} \right] \\
\omega_2 &= -\frac{qa^4}{24EJ} \left[4 \left(1 - \frac{a}{2l} \right) \frac{z^3}{a} - 4 \frac{\left(a^2 + b \right)}{a^2} + \frac{z^4}{a^2} \right] \\
\theta &= -\frac{qa^4}{6EJ} \left(1 - \frac{a}{2l} \right)^3 \text{ при } z = 0 \\
\theta &= -\frac{qa^4}{12EJ} \left(1 - \frac{a^2}{2l^2} \right) \text{ при } z = l
\end{align*}
\]
Схема балки	Уравнение упругой линии \(w_z \) и максимальный прогиб \(f \)	Угол поворота \(\theta \)

\[
\begin{align*}
\text{при } z = a & \quad \theta = \frac{-7q l^2}{360EJ} \\
\text{при } z = 0 & \quad \theta = \frac{2q l^3}{360EJ}
\end{align*}
\]

\[
\begin{align*}
\text{при } z = l & \quad \theta = \frac{-q a^4 l}{360EJ} \\
\text{при } z = 0 & \quad \theta = \frac{-q a^4 l}{360EJ}
\end{align*}
\]

\[
\begin{align*}
\text{при } z = a & \quad \theta = \frac{-q a^4 l}{360EJ} \\
\text{при } z = l & \quad \theta = \frac{-q a^4 l}{360EJ}
\end{align*}
\]

\[
\begin{align*}
\text{при } z = 0 & \quad \theta = \frac{-q a^4 l}{360EJ}
\end{align*}
\]

\[
\begin{align*}
\text{при } z = l & \quad \theta = \frac{q a^4 l}{90EJ}
\end{align*}
\]
0 ≤ z ≤ a

\[w_z = - \frac{q a b^4}{360 E J} \left(10 - 3 \frac{b^3}{l^3} \right) \frac{z}{a} - 10 \frac{z^3}{a l^2} \]

a ≤ z ≤ l

\[w_z = - \frac{q a b^4}{360 E J} \left(10 - 3 \frac{b^3}{l^3} \right) \frac{z}{a} - 10 \frac{z^3}{a l^2} + 3 \frac{(z - a)^3}{b^3 a l^2} \]

w = \frac{q a b^4}{360 E J} \left(20 \frac{b}{l} - 13 \frac{b^3}{l^3} \right)

при z = a

\[\theta = - \frac{q b^4 l}{360 E J} \left(10 - 3 \frac{b^3}{l^3} \right) \]

при z = 0

\[\theta = \frac{q b^4 l}{360 E J} \left(20 - 15 \frac{b}{l} + 3 \frac{b^3}{l^3} \right) \]

при z = l

\[f = - \frac{61}{5760} \frac{q l^4}{E J} \quad \text{при z = l/2} \]

\[\theta = - \frac{q l^3}{30 E J} \quad \text{при z = 0} \]

\[\theta = \frac{q l^3}{30 E J} \quad \text{при z = l} \]

0 ≤ z ≤ l/2

\[w_z = - \frac{q l^4}{24 E J} \left(\frac{5}{8} \frac{z}{l} - \frac{z^3}{l^3} - \frac{2}{5} \frac{z^5}{l^5} \right) \]

l = \frac{q l^4}{120 E J} \quad \text{при z = l/2}

\[\theta = - \frac{5}{192 E J} \frac{q l^3}{z} \quad \text{при z = 0} \]

\[\theta = \frac{5}{192 E J} \frac{q l^3}{z} \quad \text{при z = l} \]
Схема галки

<table>
<thead>
<tr>
<th>Угол поворота (\theta)</th>
<th>Уравнение упругой линии (w_z) и максимальный прогиб (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 \leq z \leq l)</td>
<td>(w_z = \frac{P a l^3}{6 E J} \left(\frac{z}{l} - \frac{z^3}{3} \right))</td>
</tr>
<tr>
<td>(l < z < l + a)</td>
<td>(w_z = \frac{P a l^3}{6 E J} \left[\frac{z}{l} - \frac{z^3}{3} - \frac{(l + a)(z - l)^3}{a l^5} \right])</td>
</tr>
<tr>
<td>(w_{\text{max}} = 0,05642 \frac{P a l^3}{E J}) при (\tau = 0,578l)</td>
<td></td>
</tr>
<tr>
<td>(w = -\frac{P a l^3}{3 E J} (l + a)) при (z = l + a)</td>
<td></td>
</tr>
<tr>
<td>(0 = \frac{P a l}{6 E J}) при (z = 0)</td>
<td></td>
</tr>
<tr>
<td>(0 = -\frac{P a l}{3 E J}) при (z = l)</td>
<td></td>
</tr>
<tr>
<td>(0 = -\frac{P a l}{6 E J} (2l + 3a)) при (z = l + a)</td>
<td></td>
</tr>
</tbody>
</table>

Схема галки

<table>
<thead>
<tr>
<th>Угол поворота (\theta)</th>
<th>Уравнение упругой линии (w_z) и максимальный прогиб (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 < z < a)</td>
<td>(w_z = -\frac{P a l^3}{6 E J} \left[\frac{(3l + 2a) - 3(l + a)}{a} \frac{z}{a} + \frac{z^3}{a^3} \right])</td>
</tr>
<tr>
<td>(\alpha < z \leq l)</td>
<td>(w_z = -\frac{P a l^3}{6 E J} \left[\frac{(3l + 2a) - 3(l + a)}{a} \frac{z}{a} + \frac{z^3}{a^3} - \frac{(z - a)^3}{a^3} \right])</td>
</tr>
<tr>
<td>(w = -\frac{P a l}{6 E J} (3l + 2a)) при (z = 0) и (z = l + 2a)</td>
<td></td>
</tr>
<tr>
<td>(\alpha = \frac{l}{a} \tau) при (z = a + \tau)</td>
<td></td>
</tr>
<tr>
<td>(0 = \frac{Pa l}{2 E J}) при (z = a)</td>
<td></td>
</tr>
<tr>
<td>(0 = -\frac{Pa l}{2 E J}) при (z = a + l)</td>
<td></td>
</tr>
<tr>
<td>(0 = \frac{Pa (a + l)}{2 l J}) при (z = 0)</td>
<td></td>
</tr>
<tr>
<td>(l = \frac{Pa (a + l)}{2 l J}) при (z = 2a + l)</td>
<td></td>
</tr>
</tbody>
</table>
$0 < z < l$

$w_z = \frac{q a^2 l^2}{12EJ} \left(\frac{z}{l} \right)^2$

$l < z < l + a$

$w_z = -\frac{q a^2 l^2}{24EJ} \left[\left(4 + 3 \frac{a}{l} \right) - 4 \left(1 + \frac{l}{a} \right) \left(1 + \frac{a}{l} - \frac{z}{l} \right) \right]$

$w = \frac{q a^2 l^2}{24EJ}$ при $z = l/2$

$w_{max} = 0.0321 \frac{q a^2 l^2}{EJ}$ при $z = 0.577l$

$w = -\frac{q a^2}{24EJ} (4l + 3a)$ при $z = l + a$

$\theta = \frac{q a^2 l}{12EJ}$ при $z = 0$

$\theta = -\frac{q a^2 l}{6EJ}$ при $z = l$

$\theta = -\frac{q a^4}{6EJ} (a + l)$ при $z = l + a$

$0 < z < l$

$w_z = -\frac{q l^2}{24EJ} \left[\left(1 - 2 \frac{a^2}{l^2} \right) l - 2 \times \left(1 - \frac{a^2}{l^2} \right) \left(l^3 + l^4 \right) \right]$

$l < z < l + a$

$w_z = -\frac{q l^4}{24EJ} \left[\left(4 \frac{a^2}{l^2} + 2 a \right) (l - 3) \right] - \left(4 \frac{a^2}{l^3} - 1 + \frac{a^2}{l^4} \right)$

$\theta = -\frac{q l^3}{24EJ} \left(1 - 2 \frac{a^2}{l^2} \right)$ при $z = 0$

$\theta = \frac{q l^3}{24EJ} \left(1 + \frac{a^2}{l^2} \right)$ при $z = l$

$\theta = -\frac{q l^3}{24EJ} \left(4 \frac{a^2}{l^3} + 4 \frac{a^2}{l^4} - 1 \right)$
<table>
<thead>
<tr>
<th>Схема балки</th>
<th>Уравнение упругой линии (w_x) и максимальный прогиб (l)</th>
<th>Угол поворота (\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[w_x = \frac{q t^4}{24 E I} \left[\left(1 - \frac{a^2}{l^2} - \frac{3 a^3}{l^5} \right) a - \left(1 - \frac{6 a^2}{l^2} - \frac{a^3}{l^5} \right) \right]] (a \leq z \leq a + l)</td>
<td>[\theta = -\frac{q t^3}{4 E I} \left(1 - \frac{6 a^2}{l^2} - \frac{a^3}{l^5} \right)] при (z = l + 2a)</td>
</tr>
<tr>
<td></td>
<td>[w_x = \frac{q t^4}{24 E I} \left[\left(1 - \frac{a^2}{l^2} - \frac{3 a^3}{l^5} \right) a - \left(1 - \frac{6 a^2}{l^2} - \frac{a^3}{l^5} \right) \right]] (a \leq z \leq a + l)</td>
<td>[\theta = -\frac{q t^3}{4 E I} \left(1 - \frac{6 a^2}{l^2} - \frac{a^3}{l^5} \right)] при (z = l + 2a)</td>
</tr>
<tr>
<td></td>
<td>[w_x = \frac{q t^4}{24 E I} \left[\left(1 - \frac{a^2}{l^2} - \frac{3 a^3}{l^5} \right) a - \left(1 - \frac{6 a^2}{l^2} - \frac{a^3}{l^5} \right) \right]] (a \leq z \leq a + l)</td>
<td>[\theta = -\frac{q t^3}{4 E I} \left(1 - \frac{6 a^2}{l^2} - \frac{a^3}{l^5} \right)] при (z = l + 2a)</td>
</tr>
<tr>
<td></td>
<td>[w_x = \frac{q t^4}{24 E I} \left[\left(1 - \frac{a^2}{l^2} - \frac{3 a^3}{l^5} \right) a - \left(1 - \frac{6 a^2}{l^2} - \frac{a^3}{l^5} \right) \right]] (a \leq z \leq a + l)</td>
<td>[\theta = -\frac{q t^3}{4 E I} \left(1 - \frac{6 a^2}{l^2} - \frac{a^3}{l^5} \right)] при (z = l + 2a)</td>
</tr>
<tr>
<td></td>
<td>[w_x = \frac{q t^4}{24 E I} \left[\left(1 - \frac{a^2}{l^2} - \frac{3 a^3}{l^5} \right) a - \left(1 - \frac{6 a^2}{l^2} - \frac{a^3}{l^5} \right) \right]] (a \leq z \leq a + l)</td>
<td>[\theta = -\frac{q t^3}{4 E I} \left(1 - \frac{6 a^2}{l^2} - \frac{a^3}{l^5} \right)] при (z = l + 2a)</td>
</tr>
<tr>
<td></td>
<td>[w_x = \frac{q t^4}{24 E I} \left[\left(1 - \frac{a^2}{l^2} - \frac{3 a^3}{l^5} \right) a - \left(1 - \frac{6 a^2}{l^2} - \frac{a^3}{l^5} \right) \right]] (a \leq z \leq a + l)</td>
<td>[\theta = -\frac{q t^3}{4 E I} \left(1 - \frac{6 a^2}{l^2} - \frac{a^3}{l^5} \right)] при (z = l + 2a)</td>
</tr>
</tbody>
</table>
ГЛАВА 11
СЛОЖНОЕ СОПРОТИВЛЕНИЕ

Под сложным сопротивлением подразумевают различные комбинации простых напряженных состояний (растяжения, сжатия, сдвига, кручения, изгиба). В общем случае наружения бруса (рис. 219, а) в его поперечных сечениях действуют шесть компонентов внутренних усилий \(N, Q_x, Q_y, M_x, M_y, M_{kr} \) (рис. 219, б), связанные с четырьмя простыми деформациями стержня: растяжением или сжатием, сдвигом, кручением и изгибом.

На основании гипотезы о независимом действии сил напряженное состояние жесткого стержня определяют путем суммирования напряженных состояний, вызванных каждым видом простого нагружения в отдельности.

Аналогично деформации (перемещения) могут быть определены путем сложения деформаций (перемещений), вызванных каждым компонентом нагрузки в отдельности.

Принцип суммирования действия сил, или принцип суперпозиции, применим во всех случаях, когда деформации малы, а материя подчиняется закону Гука. На практике редко встречаются случаи, когда в стержне возникают все шесть компонентов внутренних усилий, обычно приходится иметь дело с их различными комбинациями.

11.1. Сложный и косой изгиб

Сложный, или неплоский, изгиб вызывается внешними силами, действующими в разных плоскостях, проходящих через ось балки (рис. 220, а). Изогнутая ось балки в этом случае не является плоской кривой.

Если все нагрузки, вызывающие изгиб, действуют в одной плоскости, но не совпадающей ни с одной из главных плоскостей, то изгиб называется косым (рис. 221, а).

Обычно сложный или косой изгиб приводит к двум плоским изгибам, для чего нагрузки, действующие в произвольных продольных плоскостях, раскладываются на составляющие, лежащие в главных плоскостях \(zy \) и \(zx \) (рис. 220, б, 221, б). При этом в сечениях возникает четыре компоненты внутренних усилий: \(Q_x, Q_y, M_x \) и \(M_y \).
Напряжения в точках любого сечения, расположенных в первом квадранте системы координат xy (рис. 222, a), при одновременном действии M_x и M_y определяются формулой

$$
\sigma = \frac{M_{xy}}{J_x} + \frac{M_{yx}}{J_y}.
$$

Применяя эту формулу, в общем случае, следует учитывать знаки при координатах x и y.

304
При косом изгибе (рис. 223) справедливы зависимости

\[
\begin{align*}
M_x &= M \cos \alpha; \\
M_y &= M \sin \alpha,
\end{align*}
\]
(11.2)

где \(M \) — изгибающий момент в данном сечении в силовой плоскости \(pp \) (рис 222, б).

Формула (11.1) может быть записана в виде

\[
\sigma = M \left(\frac{y \cos \alpha}{J_x} + \frac{x \sin \alpha}{J_y} \right).
\]
(11.3)

Уравнение нейтральной линии получим из (11.1), приняв \(\sigma = 0 \):

\[
\sigma = \frac{M_y \gamma_0}{J_x} + \frac{M_x \gamma_0}{J_y} = 0.
\]
(11.4)

Рис. 222

Уравнение (11.4) является уравнением прямой линии, проходящей через начало координат. Положение нейтральной линии определяется тангенсом угла ее наклона \(\beta \) (рис. 222, б) к главной оси \(x \):

\[
tg \beta = \frac{y_0}{x_0} = - \frac{M_y}{M_x} \frac{J_x}{J_y}.
\]
(11.5)

Строим векторную диаграмму моментов (рис. 223), определяют угол \(\alpha \) наклона силовой плоскости \(pp \) (плоскости действия момента):

\[
tg \alpha = \frac{M_y}{M_x}.
\]
(11.6)

Тогда угол наклона нейтральной линии (11.5) может быть представлен формулой

\[
tg \beta = - \frac{J_x}{J_y} tg \alpha,
\]
(11.7)

из которой видно, что в общем случае сложного изгиба, когда \(J_x \neq J_y \), нейтральная линия не перпендикулярна к силовой линии.

Поскольку при косом изгибе отношение \(M_y \) к \(M_x \), характеризуемое \(tg \alpha \) (11.6), постоянно по всей длине стержня, угол наклона нейтральной линии (11.7) не зависит от положения сечения вдоль стержня.
нной линии также постоянен, т. е. упругая линия расположена в на-ной плоскости \(n \equiv n \) (рис. 223), называемой плоскостью изгиба.

Проверка прочности при сложном напряженном состоянии осуществляется на основании данных о наибольшем суммарном напряжении. Очевидно, при сложном изгибе \(\sigma_{max} \) будут в точках, наиболее удаленных от нейтральной линии (точки \(A \) и \(B \) на рис. 224). В данном случае в точке \(A \) возникают наибольшие растягивающие напряжения, в точке \(B \) — наибольшие сжимающие напряжения. Условия прочности будут иметь вид

\[
\sigma_{max} = \sigma_A = \frac{M_y y_A}{J_x} + \frac{M_x x_A}{J_y} \leq [\sigma_1];
\]

\[
\sigma_{min} = \sigma_B = -\frac{M_y y_B}{J_x} - \frac{M_x x_B}{J_y} \leq [\sigma_2].
\]

В случае косого изгиба (рис. 222, 6) условия прочности записываются в виде

\[
\sigma_{max} = \sigma_B = M_{max} \left(\frac{x_B \sin \alpha}{J_y} + \frac{y_B \cos \alpha}{J_x} \right) \leq [\sigma_1];
\]

\[
\sigma_{min} = \sigma_D = -M_{max} \left(\frac{x_D \sin \alpha}{J_y} + \frac{y_D \cos \alpha}{J_x} \right) \leq [\sigma_2].
\]

В частности, для прямоугольного сечения, когда

\[
\frac{J_y}{x_D} = \frac{J_y}{x_B} = W_y; \quad \frac{J_x}{y_D} = \frac{J_x}{y_B} = W_x,
\]

формулы (11.10) и (11.11) могут быть представлены так.

\[
\sigma_{max} = \sigma_B = M_{max} \left(\frac{\sin \alpha}{W_y} + \frac{\cos \alpha}{W_x} \right) \leq [\sigma_1],
\]

\[
\sigma_{min} = \sigma_D = -M_{max} \left(\frac{\sin \alpha}{W_y} + \frac{\cos \alpha}{W_x} \right) \leq [\sigma_2].
\]
Определение размеров сечения в случае неплоского изгиба производят методом подбора, задаваясь различными отношениями моментов сопротивлений. Касательные напряжения могут быть определены по формуле Журавского

\[\tau_y = \frac{Q_y S_y}{J_y b}, \quad \tau_x = \frac{Q_x S_y}{J_y h}. \]

Перечисления определяются по принципу независимости действия сил. Если \(\omega \) — прогиб в направлении главной оси \(y \), \(\nu \) — прогиб в направлении главной оси \(x \) (рис. 225), то дифференциальные уравнения изгиба в плоскостях \(y0z \) и \(x0z \) будут иметь вид

\[E J_x \frac{d^2 \omega}{dz^2} = M_x; \quad E J_y \frac{d^2 \nu}{dz^2} = M_y. \quad (11.14) \]

Уравнения (11.14) решают любым известным способом как для простого изгиба.

Величина полного прогиба в любом сечении балки может быть получена геометрическим суммированием прогибов в разных плоскостях по формуле

\[f = \sqrt{\nu^2 + \omega^2}. \quad (11.15) \]

Направление полного прогиба перпендикулярно к нейтральной линии (см. рис. 225).

Рис 225

11 2. Изгиб с растяжением

Совместное действие изгиба и растяжения (сжатия) имеет место при продольно-поперечном действии нагрузок; внекентричном растяжении (сжатии).

Сложный изгиб с растяжением (сжатием) прямого бруса. В общем случае (рис. 226, а), когда на брус действуют продольные и поперечные силы, пересекающие ось бруса, в сечении возникают усилия \(M_x, M_y, Q_x, Q_y \), а также продольное усилие в направлении оси \(z = N_z \) (рис 226, б) Нормальные напряжения в произвольной точке при этом определяются формулой

\[\sigma = \frac{N_z}{F} + \frac{M_x}{J_x} y + \frac{M_y}{J_y} x. \quad (11.16) \]

Полагая напряженное состояние в опасной точке линейным (пренебрегая при этом касательными напряжениями), условие прочности записывают в общем виде

\[\sigma_{max} \leq [\sigma]. \quad (11.17) \]

Для сечения с двойной симметрией формула (11 16) примет вид

\[\sigma_{\pm} = \frac{N}{F} \pm \frac{M_x}{W_x} \pm \frac{M_y}{W_y}. \]

В случае изгиба в плоскости \(xy \)

\[\sigma_{\pm} = \frac{N}{F} \pm \frac{M_x}{W_x}. \quad (11.18) \]
Эти формулы применяются также при расчете на прочность плоских рам и арок малой кривизны. В этом случае опасными сечениями будут те, где действует M_{max}.

Внесцентренное растяжение (сжатие) прямого бруса. Ядро сечения. На практике часто изгиб сочетается с растяжением (сжатием), что обусловлено внесцентренным приложением нагрузки, параллельно оси стержня, когда равнодействующая P не совпадает с осью балки (рис. 227). Обозначим координаты точки приложения равнодействующей x_p и y_p, а расстояние от этой точки до оси z, называемое эксцентриситетом, — e. Внутренние усилия в любом сечении равны

$$N = P; \quad M_y = Px_p; \quad M_x = Py_p,$$

напряжения в произвольной точке сечения определяются формулой

$$\sigma_z = \frac{N}{F} + \frac{M_y}{I_y} x + \frac{M_x}{I_x} y.$$ (11.1)

\[\text{Рис. 226}\]

или

$$\sigma_z = \frac{P}{F} \left(1 + \frac{x_p F}{I_y} x + \frac{y_p F}{I_x} y\right).$$ (11.2)

Эту формулу можно выразить также через радиусы инерции

$$\sigma_z = \frac{P}{F} \left(1 + \frac{x_p}{I_y} x + \frac{y_p}{I_x} y\right).$$ (11.3)

Уравнение нейтральной линии ($\sigma = 0$) находим из (11.21):

$$\frac{x_p}{I_y} x_0 + \frac{y_p}{I_x} y_0 = -1.$$ (11.23)

Отрезки, отсекаемые нейтральной линией на осях y и x (рис. 228), найдем из (11.22), полагая $x_0 = 0$, $y_0 = 0$:

$$x_{n} = -\frac{I_y}{x_p} ; \quad y_{n} = -\frac{I_x}{y_p} .$$ (11.24)
Из (11.23) следует, что нейтральная линия пересекает координатные оси в точках, принадлежащих квадранту, противоположному тому, в котором находится точка приложения силы \(P \).

Условия прочности для точек с наибольшими растягивающими и наименьшими сжимающими напряжениями (соответственно точек \(A \) и \(B \) на рис. 228) можно записать в виде

\[
\sigma_{A} = \frac{P}{l_{x}} \left(1 + \frac{x_{A}}{l_{y}} \right) \leq \sigma_{+}, \quad (11.24)
\]

\[
\sigma_{B} = \frac{P}{l_{x}} \left(1 - \frac{x_{B}}{l_{y}} \right) \leq \sigma_{-}. \quad (11.25)
\]

Эпюры напряжений \(\sigma_{2} \) приведены на рис. 228.

Для стержня прямоугольного сечения условие прочности удобно представить следующим образом:

\[
\sigma_{\text{max}} = \frac{P}{l_{x}} + \frac{M_{x}}{W_{x}} + \frac{M_{y}}{W_{y}} \leq \sigma. \quad (11.26)
\]

Формулы (11.24) — (11.26) справедливы и в случае, когда сила \(P \) является сжимающей, при условии, что нет опасности потери устойчивости.

Расстояние нейтральной линии от центра тяжести и величины зон сечения испытывающих растягивающие и сжимающие усилия, зависят от эпсилон-центристиита \(\varepsilon \). Очевидно, одна из зон может отсутствовать (при растяжении — зона сжатия, при сжатии — зона растяжения), а нейтральная линия не будет пересекать сечение.

Представляет большой практический интерес, особенно при внешнем сжатии колонн из материалов, плохо сопротивляющихся растяжению (например, кирпичной кладки), знать то асимптомальное значение \(\varepsilon \)-центристиита, при котором в сечении не будет растягиваться в процессе растяжения, т. е. нейтральная линия будет на арочном сечении.

Однако вокруг центра тяжести сечения, внутри которой приложены силы \(P \) вызывает во всех точках поперечного сечения напряжения одного знака, называется ядром сечения. Для определения ядра сечения необходимо задаваться различными положениями нейтральной линии.
линии, проводя ее касательно к контуру и иногда пересекая ее (рис. 229), и вычислять координаты соответствующих точек притяжения силы по следующим, вытекающим из (11.23) формулам:

\[y_p = -\frac{i_x^2}{y_n}; \quad x_p = -\frac{i_y^3}{x_n}. \]

Вычисленные таким образом точки определяют контур ядра сечения.

При повороте нейтральной линии относительно некоторой неопределенной точки контура сечения, например точки А, точка притяжения силы перемещается вдоль некоторой прямой, например 2—3.

Для построения ядра сечения какой-либо фигуры, например прямоугольника (рис. 230), необходимо рассмотреть ряд положений нейтральной линии, совпадающих со сторонами сечения. Совместив нейтральную линию со стороной CD (положение 1—1), получим \(y_n = b \), \(x_n = \infty \); тогда на основании (11.27)

\[y_p = -\frac{i_x^2}{y_n} = -\frac{b}{6}; \quad x_p = -\frac{i_y^3}{\infty} = 0, \]

где

\[i_x^2 = \frac{J_x}{F} = \frac{hb^3}{12bh} = \frac{b^2}{12}; \quad i_y^3 = \frac{J_y}{F} = \frac{bh^3}{12bh} = \frac{h^2}{12}. \]

Таким образом, определяем координату точки 1 ядра сечения. Совместим положение нейтральной линии со стороной AD (положение 2—2), аналогично получим

\[y_n = \infty; \quad x_n = -\frac{h}{2}, \]

а координатами точки 2 ядра будут

\[y_p = 0; \quad x_p = -\frac{i_y^3}{x_n} = -\frac{\frac{h^2}{12}}{-\frac{h}{2}} = \frac{h}{6}. \]

Заданнаясь соответствующими положениями нейтральной линии 3—3 и 4—4, по аналогии определим координаты точек ядра 3 и 4.

В табл. 28 приведена форма и размеры ядра сечения для различных сечений брусьев.
11.3. Изгиб с кручением

Круглый вал. Совместное действие изгиба и кручения является наиболее характерным случаем нагружения валов. В этом напряженном состоянии имеют место пять компонентов внутренних усилий:

\[M_{kr} = M_x; M_y; M_z; Q_y; Q_x. \]

При расчете валов сначала строят эпюры изгибающих \(M_x \) и \(M_y \), результирующего \(M \), а также крутящих \(M_{kr} \) моментов и устанавливают опасное сечение (рис. 231, а, б, в, е, д). Результирующий изгибающий момент определяют по формуле

\[M = \sqrt{M_x^2 + M_y^2} \quad (11.28) \]

По известным \(M \) и \(M_{kr} \) в опасном сечении определяют максимальные нормальные и касательные напряжения в опасных точках сечения (рис. 232) по формулам

\[\sigma_{max} = \frac{M}{W} = \frac{\sqrt{M_x^2 + M_y^2}}{W}; \quad (11.29) \]

\[\tau_{max} = \frac{M_{kr}}{W_p}. \quad (11.30) \]
Главные напряжения в наиболее опасной точке (точка B на рис. 233) будут (см. раздел 10.3)

$$\sigma_1 = \frac{1}{2} (\sigma + \sqrt{\sigma^2 + 4\tau^2}); \quad \sigma_2 = 0; \quad \sigma_3 = \frac{1}{2} (\sigma - \sqrt{\sigma^2 + 4\tau^2}). \quad (11.3)$$

Для проверки прочности элемента, выделенного у опасной точки, следует воспользоваться одной из формул соответствующей теории прочности:

$$\sigma_{\text{экв,М}} = \frac{1 - m}{2} \sigma + \frac{1 + m}{2} \sqrt{\sigma^2 + 4\tau^2} \leq [\sigma]; \quad (11.3)$$

$$\sigma_{\text{экв,IV}} = \sqrt{\sigma^2 + 3\tau^2} \leq [\sigma], \quad (11.4)$$

где

$$m = \frac{[\sigma_+]}{[\sigma_-]}.$$

Формула (11.32) пригодна при $m < 1$ для хрупких материалов и $m = 1$ для пластичных материалов.

Подставляя в формулы (11.32) и (11.30) выражения для напряжений и учитывая, что $W_p = 2W$, получаем

$$\sigma_{\text{экв,М}} = \frac{1}{W} \left[\frac{1 - m}{2} \sqrt{M_x^2 + M_y^2} + \frac{1 + m}{2} \sqrt{M_{\text{кр}}^2 + M_x^2 + M_y^2}\right] \leq [\sigma]; \quad (11.3)$$

$$\sigma_{\text{экв,IV}} = \frac{1}{W} \sqrt{0.75M_{\text{кр}}^2 + M_x^2 + M_y^2} \leq [\sigma]. \quad (11.4)$$

Вторые множители в этих формулах представляют собой приведенный момент $M_{\text{пр}}$, действие которых эквивалентно совместному действию моментов M_x, M_y и $M_{\text{кр}}$ в соответствии с принятыми теориями прочности:

$$M_{\text{пр,М}} = \frac{1 - m}{2} \sqrt{M_x^2 + M_y^2} + \frac{1 + m}{2} \sqrt{M_{\text{кр}}^2 + M_x^2 + M_y^2}; \quad (11.3)$$

$$M_{\text{пр,IV}} = \sqrt{0.75M_{\text{кр}}^2 + M_x^2 + M_y^2} = \sqrt{0.75M_{\text{кр}}^2 + M^2}. \quad (11.4)$$

Аналогично для других теорий прочности получим

$$M_{\text{пр,М}} = \frac{1}{2} \left[\sqrt{M_x^2 + M_y^2} + \sqrt{M_{\text{кр}}^2 + M_x^2 + M_y^2}\right]; \quad (11.3)$$

$$M_{\text{пр,II}} = 0.35 \sqrt{M_x^2 + M_y^2} + 0.65 \sqrt{M_{\text{кр}}^2 + M_x^2 + M_y^2} \quad \text{(при } \mu = 0.3) \quad (11.3)$$

$$M_{\text{пр,III}} = \sqrt{M_x^2 + M_y^2 + M_{\text{кр}}^2}. \quad (11.3)$$

Условия прочности (11.34) и (11.35) можно выразить одной формулой

$$\sigma_{\text{экв}} = \frac{M_{\text{пр}}}{W} \leq [\sigma]. \quad (11.4)$$

Отсюда

$$W \geq \frac{M_{\text{пр}}}{[\sigma]}, \quad (11.4)$$

312
в диаметр вала определяем из условия

\[d \geq \sqrt[3]{\frac{32M_{\text{пр}}}{\pi[\sigma]}} \approx \sqrt[3]{10 \frac{M_{\text{пр}}}{[\sigma]}}. \] (11 43)

Приведенные формулы полностью применимы и для расчета валов кольцевого сечения.

Брус прямоугольного сечения. При нагружении такого бруса, например, системой сил \(P_1 \) и \(P_2 \) (рис. 234, а), вызывающих в сечении моменты \(M_x \), \(M_y \) и \(M_{kr} \), расчет проходит по следующей схеме. Внешние силы раскладывают на составляющие, приходящие к оси вала. Для нахождения опасного сечения строят эпюры \(M_x \), \(M_y \) и \(M_{kr} \) (рис. 234, б). Установив по эпюрам опасное сечение \(1-1 \), расположенное левее точки приложения силы \(P_2 \), находит опасную точку \(t \) в нем, для чего строят эпюры напряжений от всех силовых факторов (рис. 235, а, б, в, г, д, е): \(\sigma_x(M_x) \); \(\sigma_y(M_y) \); \(\tau_{xz}(Q_x) \); \(\tau_{yz}(Q_y) \); \(t(М_{kr}) \).

Эпюра \(t(М_{kr}) \) для длинной стороны контура имеет максимум, который обозначим \(t_{\text{max}}(М_{kr}) \). Найбольшую ординату эпюры \(t(М_{kr}) \) на короткй стороне обозначим \(t_{\text{max}}(М_{kr}) \). Эти напряжения можно рассчитать по известным формулам крушения брусьев прямоугольного сечения (см. раздел 9.2):

\[t_{\text{max}}(М_{kr}) = t_L = t_N = \frac{M_{kr}}{\alpha h b^2}; \quad t_{\text{max}}(М_{kr}) = t_M = t_K = \frac{t_{\text{max}}(М_{kr})}{\nu t_{\text{max}}(М_{kr})}. \]

Рис. 234

Рис. 235

313
В данном случае \(\sigma_{C} \) от изгиба не совпадают с \(\tau_{max} \) от кручения, поэтому для выявления одной опасной точки приходится рассматривать сочетание напряжений в нескольких точках. Обычно бывает достаточно трех точек: одной из угловых (A или C), одной посередине длиной (B или N) и одной посередине короткой (M или K) сторон прямоугольника. Так, для точек \(C, L, K \)

\[
\sigma_{C} = \frac{M_{x}}{W_{x}} + \frac{M_{y}}{W_{y}} \leq [\sigma];
\]

(11.44)

\[
\tau_{L} = \frac{M_{kr}}{\gamma h b^{3}} \pm \frac{3 Q_{x}}{2 bh};
\]

(11.45)

\[
\tau_{K} = \frac{M_{kr}}{\gamma h b^{3}} \pm \frac{3 Q_{y}}{2 bh}.
\]

(11.46)

Обычно касательные напряжения от поперечных сил \(Q_{x} \) и \(Q_{y} \) малы и можно пренебречь.

Эквивалентные напряжения в точках \(L \) и \(K \) согласно IV теории прочности и теории Кулона — Мора равны:

в точке \(L \)

\[
\sigma_{ekv} = \sqrt{\left(\frac{M_{x}}{W_{x}}\right)^{2} + 3 \left(\frac{M_{kr}}{\gamma h b^{3}}\right)^{2}} \leq [\sigma];
\]

(11.47)

\[
\sigma_{ekv} = \frac{1 - m \cdot M_{x}}{2 W_{x}} + \frac{1 + m}{2} \sqrt{\left(\frac{M_{x}}{W_{x}}\right)^{2} + 4 \left(\frac{M_{kr}}{\gamma h b^{3}}\right)^{2}} \leq [\sigma];
\]

(11.48)

в точке \(K \)

\[
\sigma_{ekv} = \sqrt{\left(\frac{M_{y}}{W_{y}}\right)^{2} + 3 \left(\frac{\gamma h b^{3}}{M_{kr}}\right)^{2}} \leq [\sigma];
\]

(11.49)

\[
\sigma_{ekv} = \frac{1 - m \cdot M_{y}}{2 W_{y}} + \frac{1 + m}{2} \sqrt{\left(\frac{M_{y}}{W_{y}}\right)^{2} + 4 \left(\frac{\gamma h b^{3}}{M_{kr}}\right)^{2}} \leq [\sigma].
\]

(11.50)

Таким образом, наиболее опасная точка определяется только в результате вычисления эквивалентных напряжений во всех трех точках \(C, L \) и \(K \) по формулам (11.44), (11.47) — (11.50). При этом в каждом конкретном случае положение наиболее опасной точки зависит от соотношения моментов \(M_{x}, M_{y}, M_{kr} \)

Общий случай действия сил на брус. Если в сечении стержня действуют осевая сила \(N_{x} \), изгибающие моменты в главных плоскостях \(M_{x}, M_{y} \), а также крутящий момент \(M_{kr} \), то условие прочности, например для IV теории прочности, в точке \(K \) (рис. 235, a) будет

\[
\sigma_{ekv} = \sqrt{\left(\frac{M_{x}}{W_{x}} + \frac{N_{x}}{F}\right)^{2} + \frac{\gamma h b^{3}}{M_{kr}}} \leq [\sigma];
\]

(11.51)

анalogично в точке \(L \)

\[
\sigma_{ekv} = \sqrt{\left(\frac{M_{y}}{W_{y}} + \frac{N_{y}}{F}\right)^{2} + \frac{\gamma h b^{3}}{M_{kr}}} \leq [\sigma].
\]

(11.52)
Таблица 28. Форма и размеры ядра сечения

<table>
<thead>
<tr>
<th>Геометрическое сечение: ядро сечения (заштриховано)</th>
<th>Размеры ядра сечения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Квадрат</td>
<td>$x_1 = y_1 = h/6$; $x_2 = y_2 = h/3$; $r_{\text{min}} = 0,0589h$</td>
</tr>
<tr>
<td>Ядро—квадрат</td>
<td></td>
</tr>
<tr>
<td>Прямоугольник</td>
<td>$x_1 = b/6$; $y_1 = h/6$; $x_3 = b/3$; $y_2 = h/3$; $r_{\text{min}} = \frac{bh}{6 \sqrt{b^2 + h^2}}$</td>
</tr>
<tr>
<td>Ядро—ромб</td>
<td></td>
</tr>
<tr>
<td>Равнобедренный треугольник</td>
<td>$x_1 = b/8$; $y_1 = h/12$; $y_2 = h/6$</td>
</tr>
<tr>
<td>При $h = \frac{\sqrt{3}}{2} b$ (равносторонний треугольник)</td>
<td></td>
</tr>
<tr>
<td>Ядро подобно поперечному сечению</td>
<td>$x_1 = \frac{b}{8}$; $y_1 = \frac{\sqrt{3}}{24} b$; $y_2 = \frac{\sqrt{3}}{12} b$</td>
</tr>
<tr>
<td>Поперечное сечение: ядро сечения (зашифровано)</td>
<td>Размеры ядра сечения</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>Полый прямоугольник</td>
<td>$x_1 = \frac{1}{6} \cdot \frac{hb^3 - h_1 b_1^3}{b (bh - b_1 h_1)}$; $y_1 = \frac{1}{6} \cdot \frac{bh^3 - b_1 h_1^3}{h (bh - b_1 h_1)}$</td>
</tr>
<tr>
<td>Ядро—ромб</td>
<td>При $h = b$ и $h_1 = b_1$ (полый квадрат) $r_{min} = 0,0589h \left[1 + \left(\frac{h_1}{h} \right)^2 \right]$</td>
</tr>
<tr>
<td>Восьмиугольник</td>
<td>$r_{min} = 0,2256R$</td>
</tr>
<tr>
<td>Ядро—восьмиугольник</td>
<td>Если восьмиугольник полый (радиусы описанных окружностей наружной — R_3, внутренней — R_1, толщина стенки равна $0,924 (R_2 - R_1)$), то $r_{min} = 0,2256R_2 \left[1 + \left(\frac{R_1}{R_2} \right)^2 \right]$</td>
</tr>
<tr>
<td>Круг</td>
<td>$r = D/8$</td>
</tr>
<tr>
<td>Ядро—круг</td>
<td></td>
</tr>
<tr>
<td>Поперечное сечение: ядро сечения (заштриховано)</td>
<td>Размеры ядра сечения</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>Пустой круг</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[r = \frac{D}{8} \left[1 + \left(\frac{d}{D} \right)^2 \right]]</td>
</tr>
<tr>
<td>Ядро—круг</td>
<td></td>
</tr>
<tr>
<td>Тонкостенная труба</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[r = \frac{D}{4}]</td>
</tr>
<tr>
<td>Ядро—круг</td>
<td></td>
</tr>
</tbody>
</table>
12.1. Обобщенные силы и перемещения

Встречающиеся в задачах сопротивления материалов и строительной механики внешние нагрузки весьма разнообразны и обычно представляют собой группу сил. Работу группы постоянных сил можно представить в виде произведения двух величин

\[A = P \Delta P. \]

(12.1)

в котором множитель \(P \) зависит только от сил группы и называется обобщенной силой, а \(\Delta P \) зависит от перемещений и называется обобщенным перемещением.

Таким образом, под обобщенной силой будем понимать любую нагрузку (сосредоточенные силы, сосредоточенные моменты, распределенные нагрузки), которая способна совершать работу на соответствующем обобщенном перемещении.

Так, рассматривая работу системы сил, действующих на стержень (рис. 236), получаем

\[A = P \Delta_1 - P \Delta_2 = P (\Delta_1 - \Delta_2) = P \Delta_p, \]

где \(P \) — обобщенная сила; \(\Delta_p = \Delta_1 - \Delta_2 = \Delta l \) — обобщенное перемещение.

Работа системы сил (рис. 237)

\[A = P \cdot AA_1 + P \cdot BB_1 = P (0A + 0B) \cdot d\theta = Pad\theta = Md\theta. \]

Здесь обобщенной силой является момент \(M = Pa \), а соответствующим обобщенным перемещением — угол поворота \(d\theta \).

Для системы сил (рис. 238) обобщенной силой является момент \(M \), а обобщенным перемещением — изменение угла \(\alpha \) между элементами \(AB \) и \(CD \), т. е.

\[\Delta_P = d\theta_1 + d\theta_2. \]

Обычно принято обозначать обобщенные перемещения (как линейные, так и угловые) буквами \(\Delta \) и \(\delta \) с соответствующими двойными индексами. Первый индекс указывает точку и направление перемещения.
второй — силовой фактор, вызвавший это перемещение. Например, \(\Delta_{RP} \) означает перемещение точки приложения силы \(P \) по направлению ее действия, вызванное той же силой \(P \) (рис. 239, a), \(\Delta_{MM} \) — перемещение точки приложения момента \(M \) в направлении действия момента, вызванное этим моментом (рис. 239, b).

Для обозначения полного перемещения, вызванного несколькими силовыми факторами, при \(\Delta \) сохраняют только первый индекс. Так, полный прогиb и угол поворота конца балки (рис. 240) соответственно выражаются формулами

\[
\begin{align*}
\Delta_P &= \Delta_{RP} + \Delta_{RQ} + \Delta_{PM}, \\
\Delta_M &= \Delta_{MP} + \Delta_{MQ} + \Delta_{MM}.
\end{align*}
\] (12.2)

Рис. 238

Рис. 239

Перемещения, вызванные единичной силой (\(p = 1 \)) или единичным моментом (\(M = 1 \)), принято обозначать буквой \(\delta \) и называть удельным перемещением. Если единичная сила \(P = 1 \) вызывает перемещение \(\delta_P \), то полное перемещение \(\Delta_P \), вызванное силой \(P \) будет

\[
\Delta_P = P \delta_P.
\] (12.3)

Описыв размерность удельного перемещения

\[
[\delta] = \frac{\text{размерность обобщенного перемещения}}{\text{размерность обобщенной силы}}.
\] (12.4)

Если силовые факторы, действующие на систему, обозначить соответственно \(X_1, X_2, X_3 \) и т. д. (рис. 241), то перемещения по направлению каждого из них можно выразить формулами

\[
\begin{align*}
\Delta_1 &= \Delta_{1P} + X_1 \delta_{11} + X_2 \delta_{12} + X_3 \delta_{13}; \\
\Delta_2 &= \Delta_{2P} + X_1 \delta_{21} + X_2 \delta_{22} + X_3 \delta_{23}; \\
\Delta_3 &= \Delta_{3P} + X_1 \delta_{31} + X_2 \delta_{32} + X_3 \delta_{33};
\end{align*}
\] (12.5)

где \(X_1 \delta_{11} = \Delta_{11}; X_2 \delta_{12} = \Delta_{12}; X_3 \delta_{13} = \Delta_{13}; \ldots; X_i \delta_{mi} = \Delta_{mi}. \)

Размерность перемещений \(\delta_{mi} \) можно установить, умножив последнее равенство на \(X_m \). При этом выражение \(X_m X_i \delta_{mi} = X_m \Delta_{mi} \) имеет размерность работы (Дж), откуда получим

\[
[\delta_{mi}] = \frac{\text{Дж}}{[X_m] [X_i]}.
\]
Например, в формуле (12.5) размерность

$$[\delta_{13}] = \frac{\text{Дж}}{[X_1][X_3]} = \frac{\text{Н} \cdot \text{м}}{\text{Н} \cdot \text{м}} = \frac{1}{\text{Н}}.$$

Рис. 241

12.2. Работа внешних сил

Из рассмотрения картины деформации упругого элемента (рис. 242, a) в пределах закона Гаусса, представленной в координатах обобщенная сила P — обобщенное перемещение Δ (рис. 242, б), следует

что приращение силы dP вызывает бесконечно малое перемещение $d\Delta$. Работа внешних сил при этом, если пренебречь бесконечно малым второго порядка, равна

$$dA = (P + dP) d\Delta \approx P d\Delta.$$

Полная работа, совершенная статически приложенной обобщенной силой P, вызвавшей обобщенное перемещение $\Delta = P \delta_{PP}$ (δ_{PP} — перемещение от $P = 1$), выражается формулой

$$A = \int_{\Delta}^{P} P d\Delta = \int_{0}^{P} P d(P \delta_{PP}) = \int_{0}^{P} P \delta_{PP} dP = \frac{\delta_{PP} P^2}{2};$$

$$A = \frac{\delta_{PP} P^2}{2} = \frac{\Delta^2}{2 \delta_{PP}} = \frac{P \Delta}{2}.$$

(12.6)

Таким образом, действительная работа при статическом действии обобщенной силы на упругую систему равна половине произведения окончательного значения силы на окончательное значение соответствующего перемещения.
При действии на упругую систему нескольких обобщенных сил \(P_1, P_2, \ldots, P_t \) (рис. 243) работа деформации равна полусумме произведений окончательных значений обобщенных сил на соответствующие окончательные суммарные обобщенные перемещения

\[
A = \frac{1}{2} \sum P_i \Delta_i, \tag{12.7}
\]

и не зависит от порядка нагружения системы.

12.3. Работа внутренних сил

При упругой деформации в элементах деформируемого тела развиваются внутренние силы — силы упругого сопротивления (рис. 244). Эти силы также совершают работу. Поскольку направления упругих сил (показаны штрихами) противоположны перемещениям (на которых они совершают работу), вызываемыми внешними силами (показаны сплошными линиями), то работа внутренних сил всегда отрицательна.

Работа внутренних сил \(N, Q \) и \(M \), возникающих в элементе стержня длиной \(ds \) (рис. 244), совершаемая осевой силой \(N \) на перемещении

\[
\Delta (ds) = \frac{N ds}{EF},
\]

моментом \(M \) на перемещении

\[
d\theta = \frac{M ds}{EJ}.
\]

и поперечной силой \(Q \) на перемещении

\[
\gamma ds = k \frac{Q ds}{GF}, \tag{12.8}
\]

может быть выражена формулой

\[
dW = -\frac{M^2 ds}{2EJ} - \frac{N^2 ds}{2EF} - k \frac{Q^2 ds}{2GF}, \tag{12.9}
\]
Интегрируя (12.9) в пределах каждого стержня и суммируя результаты по всем стержням системы, получаем формулу для работы внутренних сил в случае плоского изгиба:

$$
W = - \sum_0^5 \frac{M^2 ds}{2EF} - \sum_0^5 \frac{N^2 ds}{2EF} - \sum k \frac{Q^2 ds}{2GF}.
$$

(12.10)

Заметим, что выражение (12.8) получено из условия

$$
\gamma ds = - \frac{dW_Q}{Q},
$$

где

$$
dW_Q = - \int_F \frac{1}{2} \tau \gamma ds dF = - \int_F \frac{\tau^2 ds}{2G} dF =
$$

$$
= - \frac{Q^2 ds}{2GJ_x b^2} \int_F S_x \frac{b^2}{b^2} dF = - k_y \frac{Q^2 ds}{2GF};
$$

$$
k_y = \frac{F}{J_x b^2} \int_F \frac{S_x dF}{b^2} - \text{коэффициент, зависящий от формы сечения.}
$$

В частности, для прямоугольного сечения \(b \times h \)

$$
F = bh; \quad J_x = \frac{bh^3}{12}; \quad S_x = \frac{bh^2}{8} \left(1 - \frac{4h^2}{h^2} \right);\)

$$

$$
k_y = \frac{9}{2h} \int_0^{h/2} \left(1 - \frac{4y^2}{h^2} \right) dy = 1, 2;
$$

для круглого сечения \(k = \frac{32}{27} \); для прокатных профилей приближенно \(k = \frac{F}{F_c} \), где \(F_c \) — площадь стенки; \(F \) — полная площадь сечения.

Для чистого сдвига, когда

$$
\tau = \frac{Q}{F},
$$

$$
dW_Q = - \frac{1}{2} \int_F \tau \gamma ds dF = - \frac{1}{2} \tau F \gamma ds = - \frac{Q \gamma ds}{2} = - \frac{Q^2 ds}{2GF}.
$$

В том случае, когда в стержне действует крутящий момент \(M_{kr} \), при котором элементарный участок стержня закручивается на угол

$$
d\theta = \frac{M_{kr} ds}{GJ_{k}},
$$

где \(GJ_k \) — жесткость поперечного сечения стержня при кручении, элементарная работа внутренних сил за счет кручения равна

$$
dW_{kr} = - \frac{1}{2} M_{kr} d\theta = - \frac{M_{kr}^2 ds}{2GJ_k},
$$

322
а полная работа внутренних сил в стержне длиной l будет

$$W_{kr} = - \int_0^l \frac{M_{kr}^2}{2GJ_k} \ ds.$$ \hspace{1cm} (12.11)

В общем случае (рис. 245), когда в сечении стержня действуют все шесть силовых факторов ($N, Q_x, Q_y, M_x, M_y, M_z = M_{kr}$), работа внутренних сил (сил упругости) будет определяться по формуле

$$W = - \int_0^l \frac{M_x^2}{2EJ_x} \ ds - \int_0^l \frac{M_y^2}{2EJ_y} \ ds - \int_0^l \frac{M_{kr}^2}{2GJ_k} \ ds - \int_0^l \frac{N^2}{2EF} \ ds - \int_0^l k_x \left(\frac{Q_x^2}{2GF} \ ds \right) - \int_0^l k_y \left(\frac{Q_y^2}{2GF} \ ds \right).$$ \hspace{1cm} (12.12)

Формула (12.12) справедлива и для стержней малой кривизны.

Рис. 245 \hspace{1cm} Рис. 246

12.4. Применение начала возможных перемещений к упругим системам

Применительно к упругим системам начало возможных перемещений можно сформулировать так: если система находится в равновесии под действием приложенной нагрузки, то сумма работ внешних и внутренних сил на возможных бесконечно малых перемещениях точек системы равна нулю:

$$\sum P_i \Delta_{im} + W_{im} = 0,$$ \hspace{1cm} (12.13)

где P_i — внешние силы; Δ_{im} — возможные перемещения точек приложения этих сил; $\sum P_i \Delta_{im}$ — работа внешних сил; W_{im} — работа внутренних сил.

В процессе совершения системой возможного перемещения величина и направление внешних и внутренних сил остаются неизменными. Поэтому при вычислении работ следует брать их половину, а полную величину произведения соответствующих сил и перемещений.

Учитывая малость деформаций и их линейную зависимость от нагрузок, в качестве возможных перемещений можно принимать упругие перемещения, вызванные любым видом нагрузки и происходящие без нарушения связей. Работа внешних и внутренних сил на возможных перемещениях называется возможной, или виртуальной работой.
Рассмотрим два состояния плоской системы, находящейся в равновесии: состояние а, при котором система деформируется обобщённой силой \(P_a \) (рис. 246, а), и состоянии б системы, деформируемой силой \(P_b \) (рис. 246, б).

Перемещения состояния б могут рассматриваться как возможны для состояния а и, наоборот, перемещения состояния а являются возможными для состояния б.

Поэтому работа \(A_{ab} \) сил состояния а на перемещениях состояния и работа \(A_{ba} \) состояния б на перемещениях состояния а соответственно равны

\[
A_{ab} = P_a \Delta_{ab},
\]

\[
A_{ba} = P_b \Delta_{ba}.
\]

(12.11)

Рис. 247

Работа внутренних сил состояния а (рис. 247, а — штриховые линии) на перемещениях, вызванных нагрузкой состояния (рис. 247, а, б), может быть найдена из рассмотрения работы внутренних сил при деформировании элемента стержня длиной \(ds \) (рис. 248). Ниже приведена схема определения работы внутренних сил.

Таким образом, полное значение возможной работы внутренних сил стержневой системы будет

\[
W_{ab} = - \sum_s \int \frac{M_s M_b}{EJ} ds - \sum_s \int \frac{N_s N_b}{EF} ds - \sum_s \int \frac{k Q_s Q_b}{GF} ds.
\]

(12.16)

Подставляя (12.14) и (12.16) в (12.13), получаем общее выражение начала возможных перемещений для плоской упругой стержневой системы:

\[
\sum S P_a \Delta_{ab} - \left[\sum_s \int \frac{M_s M_b}{EJ} ds + \sum_s \int \frac{N_s N_b}{EF} ds + \sum_s \int \frac{k Q_s Q_b}{GF} ds \right] = 0.
\]

(12.17)
<table>
<thead>
<tr>
<th>Внешнее усилие, действующее на элемент (рис. 247, 6)</th>
<th>Деформация элемента (рис. 248)</th>
<th>Работа внутренних сил состояния а на перемещениях состояния б</th>
<th>Работа внутренних сил состояния а в системе стержней</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_b</td>
<td>[(\Delta s)_b = \frac{N_b ds}{EF}]</td>
<td>$-N_a (\Delta s)_b = \frac{N_a N_b ds}{EF}]</td>
<td>$-\sum_s \frac{N_a N_b ds}{EF}]</td>
</tr>
<tr>
<td>Q_b</td>
<td>[(\gamma ds)_b = \frac{Q_b ds}{GF}]</td>
<td>$-Q_a (\gamma ds)_b = \frac{Q_a Q_b ds}{GF}]</td>
<td>$-\sum_s \frac{Q_a Q_b ds}{GF}]</td>
</tr>
<tr>
<td>M_b</td>
<td>[(d\theta)_b = \frac{M_b ds}{EJ}]</td>
<td>$-M_a (d\theta)_b = \frac{M_a M_b ds}{EJ}]</td>
<td>$-\sum_s \frac{M_a M_b ds}{EJ}]</td>
</tr>
</tbody>
</table>

Если в качестве возможных принять действительные перемещения Δs, вызванные заданной нагрузкой P_a, то выражение (12.17) примет вид

\[
\sum P_a \Delta a - \left[\sum_s \frac{M_a^2 ds}{EJ} + \sum_s \frac{N_a^2 ds}{EF} + \sum_s k \frac{Q_a^2 ds}{GF} \right] = 0, \quad (12.18)
\]

или

\[
\frac{1}{2} \sum P_a \Delta a - \left[\frac{1}{2} \sum_s \frac{M_a^2 ds}{EJ} + \sum_s \frac{N_a^2 ds}{EF} + \sum_s k \frac{Q_a^2 ds}{GF} \right] = 0, \quad (12.19)
\]

Таким образом,

\[A + W = 0, \quad (12.20) \]

где

\[A = \frac{1}{2} \sum P_a \Delta a \quad (12.21) \]

представляет собой действительную работу внешних сил в процессе статической деформации, а

\[W = -\frac{1}{2} \left[\sum_s \frac{M_a^2 ds}{EJ} + \sum_s \frac{N_a^2 ds}{EF} + \sum_s k \frac{Q_a^2 ds}{GF} \right] \quad (12.22) \]

представляет собой работу внутренних сил в процессе статической деформации.

Из уравнения (12.20) следует, что действительные значения работы внешних и внутренних сил равны по величине и противоположны по знаку.
12.5. Теоремы о взаимности работ и перемещений

Рассмотрим упругую систему в двух состояниях: состоянии (рис. 249, a) и состоянии 2 (рис. 249, b). На основании принципа возможных перемещений получим для первого состояния

$$ P_1 \Delta_{12} - \sum \left[\int \frac{M_1 M_2}{EI} ds + \int \frac{N_1 N_2}{EF} ds + \int \frac{Q_1 Q_2}{GF} ds \right] = 0; \quad (12.23) $$

dля второго состояния

$$ P_2 \Delta_{21} - \sum \left[\int \frac{M_2 M_1}{EI} ds + \int \frac{N_2 N_1}{EF} ds + \int \frac{Q_2 Q_1}{GF} ds \right] = 0. \quad (12.24) $$

![Рис. 249 и Рис. 250](image)

Так как выражения для работ внутренних сил в обеих формулах одинаковы, то из (12.23) и (12.24) получим равенство

$$ P_1 \Delta_{12} = P_2 \Delta_{21}. \quad (12.25) $$

Формула (12.25) выражает теорему о взаимности работ (теорему Беати): возможная работа внешних (или внутренних) сил состояния 1 в перемещениях состояния 2 равна возможной работе внешних (и внутренних) сил состояния 2 на перемещениях состояния 1.

В частном случае, когда $P_1 = 1; P_2 = 1$ (рис. 250), на основании (12.15) получим соотношение

$$ \delta_{12} = \delta_{21}. \quad (12.26) $$

выражающее теорему о взаимности перемещений (теорему Максвелла): перемещение точки приложения первой единичной силы по ее направлению, вызванное действием второй единичной силы, равно перемещению точки приложения второй единичной силы по ее направлению, вызванному действием первой единичной силы.

12.6. Общие формулы для определения перемещений.
Метод Мора

Общие формулы для определения перемещений легко получить, пользуясь началом возможных перемещений, если в качестве вспомогательного состояния принять систему, нагруженную в точке (перемещение которой нас интересует) соответствующей единичной обобщенной силой.
щенной силой $X_i = 1$, которая должна совершать работу на возможном перемещении, каким является интересующее нас перемещение $\Delta _{iP}$ под действием внешних нагрузок.

Обозначив усилия, вызванные системой внешних сил $\sum P$ (рис. 251, a), через M_p, N_p, Q_p, а усилия, вызванные единичной силой $X_i = 1$ (рис. 251, b), через \bar{M}_i, \bar{N}_i, \bar{Q}_i, начало возможных перемещений (12.17) для вспомогательного состояния (применя в качестве возможного действительное перемещение) можно записать в виде

$$1 \cdot \Delta _{iP} = \sum \left[\int \frac{\bar{M}_i M_p}{EJ} ds + \int \frac{\bar{N}_i N_p}{EF} ds + \int k \frac{\bar{Q}_i Q_p}{GF} ds \right]. \quad (12.27)$$

Рис. 251

Очевидно, в самом общем случае, при наличи всех шести компонентов внутренних усилий, формула (12.27) принимает вид

$$\Delta _{iP} = \sum \int \left[\frac{\bar{M}_i^x M_p^x}{EJ_x} + \frac{\bar{M}_i^y M_p^y}{EJ_y} + \frac{\bar{M}_i^{KP} M_p^{KP}}{GJ_k} + k_x \frac{\bar{Q}_i^x Q_p^x}{GF} + k_y \frac{\bar{Q}_i^y Q_p^y}{GF} + \frac{\bar{N}_i N_p}{EF} \right] ds. \quad (12.28)$$

Формула (12.28) является наиболее общей для определения перемещений в стержнях и называется формулой Мора. Она применима также для расчета стержней малой кривизны. Определение перемещений по формулам (12.27) и (12.28) называют методом Мора. При этом требуется вычисление входящих в указанные формулы так называемых интегралов Мора, для чего необходимо перемножить эпюры соответствующих усилий. Поэтому метод Мора иногда называют методом перемножения эпюр.

В большинстве случаев при определении перемещений в балках, рамках и арках по методу Мора в формуле (12.27) можно пренебречь влиянием продольных деформаций и сдвига, учитывая лишь перемещения, которые вызываются изгибом. Тогда формула (12.27) для плоской системы может быть записана следующим образом:

$$\Delta _{iP} = \sum \int \frac{\bar{M}_i M_p}{EJ} ds. \quad (12.29)$$

327
При пространственном нагружении формула Мора принимает

$$\Delta_{tP} = \sum \left[\int s \frac{M^r_t M^p_t}{EJ_x} ds + \int s \frac{M^r_y M^p_y}{EJ_y} ds + \int s \frac{M^r_{kr} M^p_{kr}}{GJ_{kr}} ds \right].$$

(12)

При расчете шарнирных ферм, образованных из прямых стержней в формуле Мора сохраняется член, содержащий лишь продольную силу:

$$\Delta_{tP} = \sum \frac{N_i N_p}{EF} l_i.$$

(12)

Формула (12.31) называется формулой Максвелла.

Порядок определения перемещений по методу Мора.
1. Строится вспомогательная система и нагружается единичной нагрузкой в точке, где требуется определить перемещение. При определении линейных перемещений в заданном направлении прикладывается единичная сила, при определении угловых перемещений — единичный момент.

2. Для каждого участка системы выписываются выражения линейных факторов в произвольном сечении заданной (M_p, N_p, Q_p) и вспомогательной ($\bar{M}_i, \bar{N}_i, \bar{Q}_i$) систем.

3. Вычисляются по всем участкам системы интегралы Мора. При расчете плоских балок, рам и арок используется формула (12.2) для расчета ферм — формула (12.31).

4. Если вычисленное перемещение имеет положительный знак то это значит, что его направление совпадает с направлением единичной силы. Отрицательный знак указывает на то, что действительное перемещение противоположно направлению единичной силы.

В табл. 29 приведены значения интеграла Мора для наиболее распространенных случаев сочетания эпюр \bar{M}_i и M_p при изгибе.

12.7. Перемещения, вызванные изменением температуры

Предположим, что элемент стержня ds нагрея внизу до температуры t_b и вверху — до t_h (рис. 252, a, b), а также, что по высоте сечения температура изменяется по линейному закону. Тогда удлинения верхних и нижних волокон рассматриваемого элемента будут

$$\Delta_b (ds) = \alpha t_b ds;$$

$$\Delta_h (ds) = \alpha t_h ds,$$

(12)

где α — коэффициент линейного расширения.

Удлинение по оси неравномерно нагретого элемента и взаимный угол поворота его крайних сечений высотой h определяются соответственно формулами

$$\Delta (ds)_t = \frac{t_b + t_h}{2} ds;$$

(12.33)

$$\Delta (ds)_t = \frac{\Delta_h (ds) - \Delta_b (ds)}{h} = \alpha \left(\frac{t_h - t_b}{h} \right) ds.$$

(12.34)

Для определения перемещения любой точки K системы в любом направлении i на выращенного разностью температур, выбираем все...
могательную систему и нагружаем ее соответствующей обобщенной единичной нагрузкой $X = 1$ (рис 252, в) Приняв интересующее нас перемещение за возможное, записываем в соответствии с (12.27) формулу возможных перемещений применительно к рассмотренному случаю

$$
\Delta u = \sum_0 \int \bar{M}_i (d \theta)_i + \sum_0 \int \bar{N}_i (\Delta ds)_i
$$

Учитывая (12.33) и (12.34), получаем

$$
\Delta u = \sum_0 \int \bar{N}_i \alpha \frac{t_n + t_v}{2} ds + \sum_0 \int \bar{M}_i \alpha \frac{t_n - t_v}{h} ds.
$$

Формула (12.36) применима и для расчета брусьев малой кривизны.

Рис. 252

В фермах, где действуют только продольные усилия, температурные перемещения определяются по формуле

$$
\Delta u = \sum \bar{N}_i \alpha t,
$$

где $t = \frac{t_n + t_v}{2}$ — температура на оси стержня.

12.8. Вычисление интеграла Мора

Интеграл $Mora \int \bar{M}_i M_P dz$ для случая, когда эпюра от заданной нагрузки имеет произвольное, а от единичной — прямолинейное очертание (рис 253), оказалось удобным определять графо-аналитическим способом, предложенным А.Н. Верещагиным.

Примем следующие обозначения Ω — площадь эпюры M_P от внешней нагрузки; C — центр тяжести эпюры, \bar{M}_C — ордината эпюры от единичной нагрузки под центром тяжести эпюры M_P. Очевидно,

$$
M_P dz = d\Omega
$$

(дифференциал площади эпюры),

$$
\bar{M}_i = z \tan \alpha;
$$

$$
\int_{i} \bar{M}_i M_P dz = \tan \alpha \int_{i} d\Omega,
$$

329
\[\int \sigma d\Omega = z_c \Omega; \quad \tan \alpha = z_c = \bar{M}_c; \]
\[\int \bar{M}_i M_p dz = \Omega \bar{M}_c. \]

Рис. 253

Рис. 254

Общая формула перемещений для систем, состоящих из прямолинейных элементов

\[\Delta_{IP} = \sum \int \bar{M}_i M_p dz \frac{EJ}{\Omega}, \]

записывается в виде

\[\Delta_{IP} = \sum \Omega \bar{M}_c \frac{EJ}{}. \]

(12.38)

Это и есть формула Верещагина. Вычисления по этой формуле производятся по участкам, на каждом из которых прямолинейная эпюра должна быть без переломов (рис. 254).

В тех случаях, когда обе эпюры \(\bar{M}_i \) и \(M_p \) прямолинейны, можно умножать площадь одной из них на ординату другой эпюры, расположенную под центром тяжести первой. Сложная эпюра \(M_p \) может быть разбита на простые фигуры (рис. 255), для каждой из которых легко определить координату центра тяжести. При этом площадь каждой фигуры умножают на ординату единичной эпюры под ее центром тяжести, обозначаемую через \(\eta_k \) (вместо \(M_{C_k} \)). Формула Верещагина в этом случае примет вид

\[\Delta_{IP} = \sum \Omega_k \eta_k \frac{EJ}{}. \]

(12.39)

В табл. 30 приведены площади и координаты центров тяжести некоторых элементарных фигур.
При учете кручения в соответствующий член общей формулы (12.38) будет входить жесткость на кручение GJ_k. Если эпюры M_P и \bar{M}_t противоположны по знаку, то результат их умножения имеет знак «мияуес».

Общая формула Верещагина применима и при расчете стержней переменного сечения. В этом случае интеграл Мора записывается в виде

$$\Delta_{t_P} = \sum_l \int \frac{\bar{M}_t M_{pr} dz}{EJ(z)} = \sum_l \int \frac{M_{pr} J_0 J(z)}{EJ_0} \bar{M}_t dz,$$

где $J(z)$ — момент инерции площади произвольного сечения;
J_0 — момент инерции определенного (характерного) сечения. Назовем величину

$$M_{pr} = M_P \frac{J_0}{J(z)}$$

приведенным изгибающим моментом в текущем сечении. Теперь интеграл Мора может быть записан в виде

$$\Delta_{t_P} = \sum_l \int \frac{\bar{M}_t M_{pr} dz}{EJ_0},$$

а формула Верещагина —

$$\Delta_{t_P} = \sum_l \frac{\Omega_{pr} \bar{M}_C}{EJ_0},$$

где Ω_{pr} — площадь эпюры M_{pr}; \bar{M}_C — ордината единичной эпюры под центром тяжести приведенной эпюры.

В случае, если эпюры M_P очерчены по квадратой параболе или прямой, а \bar{M}_t — по прямой, эффективно применение формулы Симпсона — Корноухова

$$\Delta_{t_P} = \sum_l \frac{1}{6EJ} (\bar{M}_t^{ub} M_P^{ub} + 4 \bar{M}_t^{crp} M_P^{crp} + \bar{M}_t^{prp} M_P^{prp}),$$

где буквами «уб», «кр», «пр» обозначены соответственно крайние левые, средние и крайние правые ординаты переменных эпюр.

12.9. Потенциальная энергия деформации

В соответствии с законом сохранения энергии работа внешних сил при деформировании упругой системы не пропадает, а трансформируется в потенциальную энергию деформации, которая может проявиться в виде работы, совершаемой внутренними силами при разгрузке. Так, при частичной разгрузке (рис. 256) балка, несколько выпрямляясь и приподнимая оставшуюся часть груза, совершает определенную работу.

Пренебрегая при статическом нагружении кинетической энергией, а также потерями энергии на внутреннее трение, изменение температуры, магнитные и электрические явления, имеющие место при деформации, можно утверждать, что уменьшение потенциальной энергии
груда равно изменению потенциальной энергии деформации, накопленной упругой конструкцией, т. е.

\[U = U_p, \]

где \(U \) — приращение потенциальной энергии деформации; \(U_p \) — уменьшение потенциальной энергии груза.

Уменьшение потенциальной энергии груза численно равно действительной работе внешних сил при нагружении тела. Следовательно, потенциальная энергия деформации численно равна работе внешних сил при нагружении системы или работе внутренних сил, совершенной в процессе разгрузки. Согласно (12.12) потенциальная энергия деформации в общем случае может быть определена формулой

\[
U = A = \frac{1}{2} \int s M_x^2 ds + \frac{1}{2} \int s M_y^2 ds + \frac{1}{2} \int G J_k \frac{k K P ds}{s} + \]

\[
+ \frac{1}{2} \int s N_x^2 ds + \frac{1}{2} \int s N_y^2 ds + \frac{1}{2} \int s K_x ds + \frac{1}{2} \int s k_y ds .
\]

(12.41)

Рис. 256

Рис. 257

Поскольку потенциальная энергия деформации является квадратичной функцией обобщенных сил (или обобщенных перемещений), она всегда положительна.

12.10. Теорема Кастилью. Теорема Лагранжа

Рассмотрим упругую систему (рис. 257), статически нагруженную произвольной нагрузкой \(Q \) и некоторой обобщенной силой \(P \). Перемещение точки приложения силы \(P \) по ее направлению и от ее действия будет \(\Delta P_P \), а перемещение той же точки под действием сил \(Q \) будет \(\Delta P_Q \). При полном перемещении рассматриваемой точки, равном \(\Delta P = \Delta P_P + \Delta P_Q \), потенциальная энергия упругой системы выразится формулой

\[
U = \frac{1}{2} P \Delta P_P + P \Delta P_Q + U_{QQ},
\]

где \(U_{QQ} \) — энергия, накопленная в результате деформации системы только силами \(Q \) и численно равная работе сил \(Q \) на вызванных ими перемещениях.

Так как \(\Delta P_P = P \delta_{PP} \), то приведенную выше формулу можно записать в виде

\[
U = \frac{1}{2} P^2 \delta_{PP} + P \Delta P_Q + U_{QQ},
\]

(12.42)
Продифференцировав это выражение по силе \(P \), получим

\[
\frac{\partial U}{\partial P} = P\delta_{PP} + \Delta_{PQ} = \Delta_{PP} + \Delta_{PQ} = \Delta_P.
\]

Таким образом,

\[
\Delta_P = \frac{\partial U}{\partial P}. \tag{12.43}
\]

Перемещение точки приложения обобщенной силы по направлению ее действия равно частной производной от потенциальной энергии по этой силе. В этом состоит теорема Кастильяно.

Заметим, что вторая производная от потенциальной энергии по силе (обобщенной) согласно формуле (12.42) равна

\[
\frac{\partial^2 U}{\partial P^2} = \frac{\partial \Delta_P}{\partial P} = \delta_{PP}, \tag{12.44}
\]

и имеет существенно положительную величину.

Для плоской стержневой системы формула (12.41) примет вид

\[
U = \int_s \frac{M^2(s)}{2EJ} + \int_s \frac{N^2(s)}{2EF} + \int_s \frac{k Q^2(s)}{2GF}, \tag{12.45}
\]

где \(M(s), N(s), Q(s) \) — усилия в сечении стержня.

Применяя правило дифференцирования по параметру, находим

\[
\Delta_P = \frac{\partial U}{\partial P} = \int_s \frac{M(s)}{EJ} \frac{\partial M(s)}{\partial P} + \int_s \frac{N(s)}{EF} \frac{\partial N(s)}{\partial P} + \int_s k \frac{Q(s)}{GF} \frac{\partial Q(s)}{\partial P}, \tag{12.46}
\]

или, пренебрегая влиянием на величину перемещений осевых и перечных сил, получаем

\[
\Delta_P = \int_s \frac{M(s)}{EJ} \frac{\partial M(s)}{\partial P}. \tag{12.47}
\]

Если при определении перемещений точки по условию задачи нет соответствующей обобщенной силы, ее вводят в виде фиктивной. Составленное выражение для потенциальной энергии деформации дифференцируется по этой силе, после чего она приравнивается нулю.

Если представить потенциальную энергию деформации как квадратичную функцию независимых перемещений \(\Delta_1, \Delta_2, \ldots, \Delta_n \), то оказывается, что частная производная от потенциальной энергии по любому перемещению, равно силе, действующей по направлению перемещения, и е.

\[
\frac{\partial U}{\partial \Delta_t} = P_t. \tag{12.43}
\]

В этом состоит теорема Лагранжа.
12.11. Теорема о минимуме потенциальной энергии

Заменим в статически неопределённой системе (рис. 258, a) связи соответствующими реакциями \(X_1, X_2, X_3, \ldots \) (рис. 258, b), которые будем рассматривать как независимые друг от друга внешние нагрузки, и вычислим по методу Кастильяно соответствующие перемещения \(\Delta_1, \Delta_2, \Delta_3, \ldots \).

Зная заранее, что указанные перемещения равны нулю, можно писать

\[
\Delta_1 = \frac{\partial U}{\partial X_1} = 0; \quad \Delta_2 = \frac{\partial U}{\partial X_2} = 0; \quad \Delta_3 = \frac{\partial U}{\partial X_3} = 0, \ldots,
\]

где \(U = U(X_1, X_2, X_3, \ldots, P) \) — полная потенциальная энергия деформации системы.

![Рис. 258](image)

Легко убедиться, что равенства

\[
\frac{\partial U}{\partial X_1} = 0; \quad \frac{\partial U}{\partial X_2} = 0; \quad \frac{\partial U}{\partial X_3} = 0; \ldots
\]

выражают условия экстремума функции \(U \). Нетрудно видеть, что этот экстремум является минимумом. Доказательством последнего служит положительный знак вторых производных, которые согласно (12.44) выражают перемещения \(\delta_{11}, \delta_{22}, \delta_{33}, \ldots \), являющихся сумму положительными величинами:

\[
\frac{\partial^2 U}{\partial X_1^2} = \delta_{11}; \quad \frac{\partial^2 U}{\partial X_2^2} = \delta_{22}; \quad \frac{\partial^2 U}{\partial X_3^2} = \delta_{33}.
\]

Таким образом, в статически неопределённых системах лишие не известные усилия принимают такие значения, при которых потенциальная энергия деформации имеет наименьшее значение (теорема Кастриоль). Эта теорема известна также как теорема о наименьшей работе, так как вместо потенциальной энергии можно говорить о числе равной ей работе внешних сил. Из нее следует, что при добавлении в упругую систему каких-либо связей потенциальная энергия системы всегда уменьшается.
<table>
<thead>
<tr>
<th>Эноры M_l</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Эноры M_p</td>
<td>1</td>
<td>1/2 $h h l$</td>
<td>$1/3 h h l$</td>
<td>$1/6 h (h_1 + 2h_2) l$</td>
<td>$1/6 h (2h_2 - h_1) l$</td>
<td>$1/6 h h (1 + h_2) l$</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>$1/2 h h l$</td>
<td>$1/6 h h l$</td>
<td>$1/6 h (2h_1 + h_2) l$</td>
<td>$1/6 h (h_2 - h_1) l$</td>
<td>$1/6 h h (1 + h_1) l$</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$1/2 h h l$</td>
<td>$1/6 h h l$</td>
<td>$1/6 [h_2 (2h_1 + h_2) + h_2 (2h_2 - h_1)] l$</td>
<td>$1/6 (1 + h_2) h_1 l$</td>
<td>$1/6 (1 + h_1) h_2 l$</td>
</tr>
</tbody>
</table>

Таблица 29. Выражения интеграла Мора $\int M_l M_p dz$ для различных сочетаний энор M_l и M_p (1 — основание площади эноры).
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>$\frac{1}{2} h h l$</td>
<td>$\frac{1}{6} (1 + \alpha) h h l$</td>
<td>$\frac{1}{6} \left[(1 + \beta) \bar{h}_1 + (1 + \alpha) h l \right]$</td>
<td>$\frac{1}{6} \left[(1 + \alpha) \bar{h}_2 - (1 + \beta) \bar{h}_1 \right] h l$</td>
<td>$\frac{1}{3} h \bar{h} l$ при $\alpha = \bar{\alpha}$</td>
</tr>
<tr>
<td>h_1</td>
<td>$\frac{1}{2} (h_2 - h_1) \bar{h} l$</td>
<td>$\frac{1}{6} \left[(2\bar{h}_2 - h_1) \bar{h} l \right]$</td>
<td>$\frac{1}{6} \left[h_1 (2\bar{h}_2 + \bar{h}_1) - h_1 \left(2\bar{h}_2 - h_1 \right) \right] l$</td>
<td>$\frac{1}{6} \left[h_2 (2\bar{h}_2 - h_1) - h_1 \left(2\bar{h}_2 - h_1 \right) \right] l$</td>
<td>$\frac{1}{6} \left[(1 + \bar{\alpha}) h_2 - (1 + \bar{\alpha}) h_1 \right] \bar{h} l$</td>
</tr>
<tr>
<td>$h_{\bar{h}}$</td>
<td>$h \bar{h}_1 l$</td>
<td>$\frac{1}{2} h \bar{h}_1 l$</td>
<td>$\frac{1}{2} h (\bar{h}_1 + \bar{h}_3) \beta l$</td>
<td>$\frac{1}{2} h (\bar{h}_1 - \bar{h}_3) \beta l$</td>
<td>$\frac{h \bar{h}_1 l \left(3 - 3\alpha - \frac{\bar{\alpha}^2}{\alpha} \right) l}{6\beta}$ при $\bar{\alpha} < \alpha$</td>
</tr>
<tr>
<td>h</td>
<td>$\frac{1}{3} h h l$</td>
<td>$\frac{1}{4} h h l$</td>
<td>$\frac{1}{12} h (\bar{h}_1 + \bar{h}_3) \beta l$</td>
<td>$\frac{1}{12} h (\bar{3}h_2 - \bar{h}_3) \beta l$</td>
<td>$\frac{1}{12} h \bar{h} \left(1 + \bar{\alpha} + \bar{\alpha}^2 \right) l$</td>
</tr>
<tr>
<td>Diagram</td>
<td>$\frac{1}{3}h\bar{h}l$</td>
<td>$\frac{1}{12}h\bar{h}l$</td>
<td>$\frac{1}{12}h\left(3\bar{h}_1 + \bar{h}_2\right)l$</td>
<td>$\frac{1}{12}h\left(\bar{h}_a - 3\bar{h}_1\right)l$</td>
<td>$\frac{1}{12}h\bar{h}(1 + \bar{h} + \bar{h}^2)l$</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>$\frac{2}{3}h\bar{h}l$</td>
<td>$\frac{1}{3}h\bar{h}l$</td>
<td>$\frac{1}{3}h\left(\bar{h}_1 + \bar{h}_2\right)l$</td>
<td>$\frac{1}{3}h\left(\bar{h}_a - \bar{h}_2\right)l$</td>
<td>$\frac{1}{3}(1 + \bar{h}^2)h\bar{h}l$</td>
</tr>
<tr>
<td></td>
<td>$\frac{2}{3}h\bar{h}l$</td>
<td>$\frac{5}{12}h\bar{h}l$</td>
<td>$\frac{1}{12}h\left(3\bar{h}_1 + 5\bar{h}_2\right)l$</td>
<td>$\frac{1}{12}h\left(5\bar{h}_a - 3\bar{h}_2\right)l$</td>
<td>$\frac{1}{12}(5 - \bar{h} - \bar{h}^2)h\bar{h}l$</td>
</tr>
<tr>
<td></td>
<td>$\frac{2}{3}h\bar{h}l$</td>
<td>$\frac{1}{4}h\bar{h}l$</td>
<td>$\frac{1}{12}h\left(5\bar{h}_1 + 3\bar{h}_2\right)l$</td>
<td>$\frac{1}{12}h\left(3\bar{h}_a - 5\bar{h}_1\right)l$</td>
<td>$\frac{1}{12}(5 - \bar{h} - \bar{h}^2)h\bar{h}l$</td>
</tr>
<tr>
<td>$\frac{1}{6}h\left(h_1 + h_a + h_2\right)l$</td>
<td>$\frac{1}{6}h\left(h_1 + 2h_2\right)l$</td>
<td>$\frac{1}{6}\left(\bar{h}_1h_2 + 4h_2\bar{h}_a + h_a\bar{h}_2\right)l$</td>
<td>$\frac{1}{6}\left(h_2\bar{h}_a + 4\bar{h}_a\bar{h}_2 - h_1\bar{h}_2\right)l$</td>
<td>$\frac{1}{6}\left(h_1 (1 + \bar{h}) + h_2 (1 + \bar{h}_a) + 2h_3 (1 + \bar{h}_a)\bar{h}_a\right)l$</td>
<td></td>
</tr>
<tr>
<td>Эпора (M)</td>
<td>Площадь (W)</td>
<td>Координаты центра тяжести</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\frac{lh}{2})</td>
<td>(\frac{2}{3} l) (\frac{1}{3} l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\frac{(h_1 + h_2)}{2} l)</td>
<td>(\frac{h_1 + 2h_2}{3 (h_1 + h_2)} l) (\frac{h_2 + 2h_1}{3 (h_1 + h_2)} l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\frac{lh}{2})</td>
<td>(\frac{a + l}{3}) (\frac{b + l}{3})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Квадратичная парабола</td>
<td>(\frac{lh}{3})</td>
<td>(\frac{3}{4} l) (\frac{1}{4} l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кубическая парабола</td>
<td>(\frac{lh}{4})</td>
<td>(\frac{4}{5} l) (\frac{1}{5} l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Половина квадратичной параболы</td>
<td>(\frac{2}{3} lh)</td>
<td>(\frac{5}{8} l) (\frac{3}{8} l)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Продолжение табл. 30

<table>
<thead>
<tr>
<th>Эпюра (M)</th>
<th>Площадь (\Omega)</th>
<th>Координаты центра тяжести</th>
<th>(z_C)</th>
<th>(l - z_C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Квадратичная парабола</td>
<td>(\frac{2}{3} lh)</td>
<td>(\frac{1}{2} l)</td>
<td>(\frac{1}{2} l)</td>
<td></td>
</tr>
<tr>
<td>Квадратичная парабола</td>
<td>(q \left(\frac{l}{6} \left[l^2 + \frac{q}{l^2} \right] \right) + 3a (a + l))</td>
<td>(z_C = \frac{l}{4} \left(\frac{6a^2l + 8al^2 + 3l^3}{3a^2l + 3al^2 + l^2} \right))</td>
<td>(l - z_C = \frac{l}{4} \left(\frac{6a^2l + 4al^2 + l^3}{3a^2l + 3al^2 + l^2} \right))</td>
<td></td>
</tr>
</tbody>
</table>
Глава 13

Статически неопределенные системы

13.1. Основные этапы расчета статически неопределенных систем

Статически неопределенными называются системы, силовые факторы в элементах которых не могут быть определены только из условий равновесия твердого тела. В таких системах имеется больше связей, чем это необходимо для равновесия. Таким образом, часть связей, в этом смысле является как бы лишней, а соответствующие усилия являются лишними неизвестными. По числу лишних связей или лишних неизвестных определяют степень статической неопределенности системы.

На рис. 259, а приведена статически определенная система, а на рис. 259, б — один из статически неопределенных. На рис. 260, а показана дважды статически неопределенная балка, полученная из статически определенной системы (рис. 260, б) в результате установки двух шарнирных опор в точках B и C. На рис. 261 показана дважды статически неопределенная плоская рама.

Статическая неопределенность может быть результатом не только введения дополнительных связей, но также и условием образования системы. Примером может служить рама (рис. 262, а), в которой реакции опор R_A, H_A, R_E легко определяются из условий равновесия, но последовательно не позволяют найти все силовые факторы в ее элементах. Разрезав раму на две части и рассматривая равновесие одной из них (рис. 262, б), устанавливаем, что эта рама представляет собой систему шесть раз статически неопределенную, как кажда замкнутый (бесшарнирный) контур является три раза статически неопределенным.
Установка шарнира на оси стержня (рис. 263, а) (одиночный шарнир) обращает в нуль изгибающий момент в этом сечении и, следовательно, снижает степень статической неопределенности на единицу. Шарнир, включенный в узел (общий шарнир), где сходятся пе стержней (см., например, рис. 263, б, в), снижает степень статической неопределенности на $n - 1$, так как заменяет собой столько же одиночных шарниров (рис. 263, в). Степень статической неопределенности плоских систем может быть определена по формуле

$$s = 3k - n,$$ \hspace{1cm} (13.1)

где k — число замкнутых контуров, n — число шарниров в расчете на одиночные. Основание (земля) рассматривается как стержень бесконечной жесткости ($EI = \infty$).

При расчете статически неопределенных систем можно в качестве неизвестных принимать как силы или силовые факторы, так и перемещения или деформационные факторы. В первом случае имеем так называемый метод сил, во втором — метод перемещений*.

Расчет по методу сил проводят в такой последовательности.
1. Устанавливают степень статической неопределенности.
2. Путем удаления лишних связей заменяют исходную систему статически определимой, называемой основной системой. Таких систем можно построить несколько, соблюдая при этом условие их геометрической неизменяемости.
3. Основную систему нагружают заданными внешними силами и лишними неизвестными усилиями, заменяющими действие удаленных связей, в результате чего получают эквивалентную систему.

4. Для обеспечения эквивалентности исходной и основной систем неизвестные усилия должны быть подобраны так, чтобы деформации основной системы не отличались от деформаций исходной статически неопределенной системы. Для этого перемещения точек приложенных лишних неизвестных по направлению их действия приравнивают нулю. Из полученных таким образом уравнений определяют значения лишних неизвестных усилий. Определение перемещений соответствующих точек можно производить любым способом, однако лучше использовать при этом наиболее общий метод Мора.

5. После установления значений лишних неизвестных усилий производят определение реакций и построение эпюр внутренних усилий, подбор сечений и проверку прочности обычным способом.

Рассмотрим пример расчета статически неопределенной системы (рис. 264). Приняв реакцию опоры B за лишнюю неизвестную X_1, получим основную систему в виде консоли, нагруженной распределенной нагрузкой q и усилием X_1, придем к эквивалентной системе (рис. 264, β). Дополнительным уравнением перемещений будет равенство нулю прогиба в точке A_1

$$\Delta_1 = 0.$$ (12)

Полный прогиб Δ_1 можно представить как сумму прогибов от внешней нагрузки (рис. 264, α)

$$\Delta_{1P} = -\frac{ql^4}{8EJ}$$ (14)

и от неизвестной реакции X_1 (рис. 264, ε)

$$\Delta_{11} = \frac{X_1l^3}{3EJ}.$$ (13)

Уравнение (13.2) можем записать в виде

$$\Delta_1 = \Delta_{1P} + \Delta_{11} = 0,$$

или

$$-\frac{ql^4}{8EJ} + \frac{X_1l^3}{3EJ} = 0.$$
Отсюда находим искомую реакцию

\[X_1 = \frac{3}{8} ql. \]

(13.6)

Из уравнения статики легко найти остальные реакции, а затем обычным способом построить эпюры \(Q \) и \(M \), как это показано на рис. 265.

В табл. 31 приведены расчетные формулы для определения опорных реакций, поперечной силы \(Q \), изгибающего момента \(M \) и перемещений для основных случаев нагружения статически неопределенных однопролетных балок, а в табл. 32 — для случаев смещения опор и неравномерного нагрева балок.

13.2. Канонические уравнения метода сил

Дополнительные уравнения перемещений, выражающие равенство нулю перемещений по направлениям лишних неизвестных, удобно ставить в так называемой канонической форме, т. е. по определенной закономерности. Покажем это на примере решения простейшей статически неопределенной системы (рис. 266, a).

Выберем в качестве основной системы консоль в качестве эквивалентной системы получим консоль, нагруженную внешней силой \(P \) и лишней неизвестной \(X_1 \) (рис. 266, b). Дополнительное уравнение перемещений, выражающее равенство нулю перемещения точки \(B \) от сил \(P \) и \(X_1 \), будет

\[\Delta_1 = \Delta (P, X_1) = 0. \]

(13.7)

На основании принципа независимости действия сил запишем

\[\Delta_1 = \Delta_1 P + \Delta_{11}, \]

(13.8)

где \(\Delta_1 P \) — перемещение от заданной нагрузки \(P \) (рис. 266, в); \(\Delta_{11} \) — перемещение от силы \(X_1 \). Обозначив перемещение от \(X_1 = 1 \) по ее направлению через \(\delta_{11} \) (рис. 266, г), получим

\[\Delta_{11} = \delta_{11} X_1. \]

Уравнение перемещений (13.8) примет вид

\[\delta_{11} X_1 + \Delta_1 P = 0. \]

(13.9)

Это каноническая форма уравнения перемещений для один раз статически неопределимой системы. Из формулы (13.9) имеем

\[X_1 = -\frac{\Delta_1 P}{\delta_{11}}. \]

(13.10)

Для системы, имеющей две лишние связи (рис. 267), канонические уравнения будут

\[\begin{align*}
\delta_{11} X_1 + \delta_{12} X_2 + \Delta_1 P &= 0; \\
\delta_{21} X_1 + \delta_{22} X_2 + \Delta_2 P &= 0.
\end{align*} \]

(13.11)
<table>
<thead>
<tr>
<th>Схема нагружения балки</th>
<th>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</th>
<th>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z₀, максимальный момент Мₘₐₓ</td>
<td>Уравнения упругой линии w(x), угол поворота θ концевого сечения, максимальный прогиб f (при постоянном EJ)</td>
</tr>
</tbody>
</table>
$$\sigma < z < l \quad M = M_0 \left[1 - \frac{3}{2} \left(1 - \frac{a^2}{l^2} \right) \frac{z}{l} \right]$$

$$z_0 = a \quad M_{\max}^a = -\frac{3}{2} M_0 \frac{a}{l} \left(1 - \frac{a^2}{l^2} \right)$$

$$M_{\max}^o = M_0 \left[1 - \frac{3}{2} \frac{a}{l} \left(1 - \frac{a^2}{l^2} \right) \right]$$

$$z_0^o = l \quad M_{\max}^o = -\frac{1}{2} M_0 \left(1 - 3 \frac{a^2}{l^2} \right)$$

при $a < 0.275l$ и $M_{\max}^a < M_{\max}^o$

при $a = 0.577l$ и $M_{\max}^o = 0$

$$w(z) = -\frac{M_0 l^3}{E J} \left[\frac{1}{4} \left(1 - \frac{a^2}{l^2} \right) \left(\frac{a^2}{l^2} - 3 \frac{z}{l} \right) - \frac{1}{2} \left(\frac{a^2}{l^2} + \frac{a^2}{l^2} + \frac{z}{l} \right) \right]$$

$$\theta = \frac{M_0 l^4}{E J} \left(\frac{a}{l} - \frac{1}{4} - \frac{3}{4} \frac{a^2}{l^2} \right)$$

при $z = 0$

$$R_A = \frac{5}{16} P; \quad R_B = \frac{11}{16} P; \quad M_B = \frac{3}{16} PL$$

$$0 < z < l/2$$

$$Q = \frac{5}{16} P; \quad M = \frac{5}{16} Pz$$

$$l/2 < z < l$$

$$Q = -\frac{11}{16} P; \quad M = P \left(\frac{z}{2} - \frac{11}{16} \right)$$

$$0 < z < \frac{l}{2}$$

$$w(z) = -\frac{P l^3}{96 E J} \left(3 \frac{z}{l} - 5 \frac{z^3}{l^3} \right)$$

$$l/2 < z < l$$

$$w(z) = -\frac{P l^3}{96 E J} \left[3 \frac{z}{l} - 5 \frac{z^3}{l^3} + \frac{16 (z - l/2)^3}{l^3} \right] = -\frac{P l^3}{96 E J} \left(15 \frac{z}{l} - 24 \frac{z^3}{l^3} + \frac{4}{l} \right)$$
<table>
<thead>
<tr>
<th>Схема нагружения балки. Эпоры Q и M</th>
<th>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения z, максимальный момент M<sub>max</sub></th>
<th>Уравнения упругой линии w(z), угол поворота h концевого сечения, максимальный прогиб f (при постоянном EJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z_0 = 1$, $M_{max} = -\frac{3}{16} Pl$</td>
<td>$f = -0.0093 \frac{PL^3}{EJ}$ при $z = 0.447l$</td>
<td></td>
</tr>
<tr>
<td>$\theta = -\frac{P}{2EI}$ при $z = 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w = -\frac{7PL^3}{768EI}$ при $z = l/2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_A = \frac{P}{2} b \left(3 - \frac{a}{l}\right)$; $R_B = \frac{P}{2} b \left(3 - \frac{b}{l}\right)$; $M_B = \frac{Pab}{2l^2} (l + b)$</td>
<td>$0 < z < b$</td>
<td></td>
</tr>
<tr>
<td>$Q = \frac{P}{2} b \left(3 - \frac{a}{l}\right)$; $M = \frac{P}{2} a \left(3 - \frac{a}{l}\right)^2 l$</td>
<td>$b < z < l$</td>
<td></td>
</tr>
<tr>
<td>$Q = P \left[\frac{1}{2} b \left(3 - \frac{a}{l}\right) - 1\right]$; $M = Pb \left[\frac{a}{2} \left(3 - \frac{a}{l}\right) - \frac{z-b}{l}\right]$</td>
<td>$z < 0$</td>
<td></td>
</tr>
<tr>
<td>$w(z) = -\frac{Pl^3}{6EI} \left[R_A \left(3 \frac{z}{l} - \frac{z^3}{l^3}\right) - 3 a^2 z^2\right]$</td>
<td>$w(z) = -\frac{Pb^2}{12Ef} (3a + 4b)$ при $z = b$</td>
<td></td>
</tr>
<tr>
<td>$w(z) = -\frac{P}{6EI} \left[R_A \left(3 \frac{z}{l} - \frac{z^3}{l^3}\right) - 3 a^2 z^2 + \left(\frac{z}{l} - \frac{b}{l}\right)^3\right]$</td>
<td>$w(z) = -\frac{P}{6EI} \left[R_A \left(3 \frac{z}{l} - \frac{z^3}{l^3}\right) - 3 a^2 z^2 + \left(\frac{z}{l} - \frac{b}{l}\right)^3\right]$</td>
<td></td>
</tr>
</tbody>
</table>
Наименьшее значение опорной реакции:

\[R_A = \frac{3}{8} q l; \quad R_B = \frac{5}{8} q l; \quad M_B = \frac{1}{8} q l \]

при \(z \leq l \)

для \(0 \leq z \leq l / 2 \):

\[Q = q l \left(\frac{3}{8} - \frac{z}{l} \right); \quad M = q l z \left(\frac{3}{8} - \frac{1}{2} \cdot \frac{z}{l} \right) \]

для \(l / 2 \leq z \leq l \):

\[Q = q l \left(1 - \frac{z}{l} \right); \quad M = q l z \left(1 - \frac{1}{3} \cdot \frac{z}{l} \right) \]

\[f = - \frac{P l^3}{24 E J} \]

при \(a = 0,586 l \) наибольший прогиб при \(z = b \)

\[f = -0.0098 \frac{P l^3}{E J} \]

для \(0 \leq z \leq l \):

\[w(z) = -\frac{q l}{48 E J} \left(2 \cdot \frac{z^4}{l^4} - 3 \cdot \frac{z^3}{l^3} + \frac{z}{l} \right) \]

для \(z = 0,42 l \)

для \(z = 0 \):

\[f = -\frac{q l^3}{48 E J} \]

для \(z = 0,5 l \)

\[f = -\frac{q l^3}{289,8 E J} \]
Схема наружения балки.
Эпюры ω и M

Опорные реакции, поперечная сила Q,
изгибающий момент M, координата опасного
сечения z₀, максимальный момент Mₘₐₓ

\[M = q l^2 \left[\frac{11}{64} \frac{z}{l} - \frac{1}{4} \left(\frac{z}{l} - \frac{1}{3} \right) - \frac{1}{2} \left(\frac{z}{l} - \frac{1}{2} \right)^2 + \right. \]
\[+ \left. \frac{1}{3} \left(\frac{z}{l} - \frac{1}{2} \right)^3 \right] \]

\[z₀ = l, \quad Mₘₐₓ = -\frac{5}{64} q l^2 \]
\[z₀ = 0,415 \quad M'ₘₐₓ = \frac{3}{64} q l^2 \]

Уравнения упругой линии w (z),
угол поворота в конце сечения,
максимальный прогиб f (при постоянном EJ)

\[R_A = \frac{1}{10} ql; \quad R_B = \frac{2}{5} ql; \quad M_B = \frac{1}{15} q l^2 \]

\[0 < z < l \]

\[Q = \frac{q l^2}{10} \left(1 - \frac{z}{l} \right); \quad M = \frac{q l z}{2} \left(\frac{1}{5} - \frac{1}{3} \frac{z^2}{l^2} \right) \]

\[z₀ = l, \quad Mₘₐₓ = -\frac{q l^2}{15} \]
\[z₀' = 0,447l, \quad M'ₘₐₓ = \frac{q l^2}{15 \sqrt{5}} \]

\[f = -\frac{q l^4}{419.6 E J} \quad \text{при } z = 0,447l \]
\[w = -\frac{q l^4}{426.8 E J} \quad \text{при } z = l/2 \]
Любая нагрузка

\[f = - \frac{q t^3}{327.8 E J} \text{ при } z = 0.402 l \]
\[w = - \frac{q t^4}{349 E J} \text{ при } z = l/2 \]

Параметры со знаком * соответствуют статически определимой балке на двух опорах (см. рисунок)
<table>
<thead>
<tr>
<th>Схема нагружения балки</th>
<th>Схема нагружения балки</th>
<th>Схема нагружения балки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Виды V и M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>$0 < z < l/2$</td>
<td></td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td>$l/2 < z < l$</td>
<td></td>
</tr>
<tr>
<td>Схема нагружения балки</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Опорные реакции, поперечная сила Q, изгибающий момент M, координата опасного сечения x_0, максимальный момент M_{max}</th>
<th></th>
<th>Уравнения упругой линии $w(z)$, угол поворота в конце сечения, максимальный прогиб f (при постоянном EI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a < z < l$</td>
<td>$Q = -6M_0 \frac{ab}{I^2}$; $M = M_0 \frac{ab}{I^2} \left(2 - \frac{b}{a} - \frac{2}{I} + \frac{r^2}{I^2}\right)$</td>
<td>$1/3 < a < 2l/3$</td>
</tr>
<tr>
<td>$z_0 = 0$ $M_{max} = M_0 \frac{b}{2a - b}$</td>
<td>$z_0^{w} = a$ $M_{max}^{w} = -M_0 \left(1 - 4 \frac{a}{I} + 9 \frac{a^2}{I^2} - 6 \frac{a^3}{I^3}\right)$</td>
<td>$w_{max} (> 0)$ при $z = \frac{1}{3} \left(2 - \frac{b}{a}\right) l$</td>
</tr>
<tr>
<td>$z_0^{w} = a$ $M_{max}^{w} = M_0 \left(4 \frac{a}{I} - 9 \frac{a^2}{I^2} + 6 \frac{a^3}{I^3}\right)$</td>
<td>$z_0^{V} = l$ $M_{max}^{V} = -M_0 \frac{a}{I^2} (2b - a)$</td>
<td>$w_{max} (< 0)$ при $z = \frac{1}{3} \left(1 + \frac{a}{b}\right) l$</td>
</tr>
</tbody>
</table>

| $R_A = R_B = \frac{1}{2} P$; $M_A = M_B = \frac{1}{8} Pl$ | $R_A = R_B = \frac{1}{2} P$; $M_A = M_B = \frac{1}{8} Pl$ | $0 < z < l/2$ |
| $Q = \frac{1}{2} P$; $M = \frac{1}{2} P (4z - l)$ | $Q = \frac{1}{2} P$; $M = \frac{1}{2} P (4z - l)$ | $w(z) = -\frac{Pl}{48EI} \left(\frac{z^2}{I^2} - \frac{4z^3}{I^3}\right)$ |
\[z_0 = \frac{l}{2}, \quad M_{\text{max}} = \frac{1}{8} Pl \]

\[z_0' = 0, \quad z_0'' = \frac{l}{2}, \quad M_{\text{max}}' = M_{\text{max}}'' = -\frac{1}{8} Pl \]

\[
R_A = P \frac{b^3 (3a + b)}{l^3} ; \quad R_B = P \frac{a^3 (3b + a)}{l^3} ; \\
M_A = P \frac{b}{l^2} ; \quad M_B = Pb \frac{a}{l^2} ;
\]

\[
0 < z < a
\]

\[
Q = P \frac{b^3 (3a + b)}{l^3} ; \quad M = Pa \frac{b^3}{l^2} \left(\frac{3a + b}{al} \frac{z}{z - 1} \right) \]

\[
a < z < l
\]

\[
Q = -P \frac{a^2 (3b + a)}{l^3} ; \\
M = Pa \frac{a^2}{l^2} \left(\frac{3a + b}{al} \frac{z}{z - a} \frac{l^3 (z - a)}{b^3 a} - 1 \right)
\]

\[
z_0' = 0, \quad M_{\text{max}}' = -P \frac{ab^3}{l^3} ; \\
z_0'' = a, \quad M_{\text{max}}'' = 2P \frac{a^2 b^3}{l^3} ; \\
z_0''' = l, \quad M_{\text{max}'''} = -P \frac{ba^3}{l^3}
\]

если \(a < b \) \(|M_{\text{max}}'| > |M_{\text{max}}''| > |M_{\text{max}}'''| \)

если \(a > b \) \(|M_{\text{max}}'| > |M_{\text{max}}''| > |M_{\text{max}}'''| \)

наибольшее значение \(|M_{\text{max}}'| = \frac{1}{2} \frac{Pl}{3a} \)

при \(a = \frac{l}{3} \)

\[
f = -\frac{P b^3}{192EJ} \quad \text{при} \quad z = \frac{l}{2}
\]

\[
0 < z < a
\]

\[
w(z) = -\frac{P a b^3 z^3}{6 E J} \left(3 - 3 \frac{z}{l} - \frac{b}{a} \frac{z}{l} \right)
\]

при \(z = \frac{2a}{3a + b} \)

\[
f = -\frac{2}{3} \frac{P}{E J} \frac{a^2 b^3}{3a + b} \quad \text{при} \quad z = \frac{2a}{3a + b}
\]

при \(z = \frac{l}{3} \frac{2b}{3a + b} \)

\[
w = -\frac{P a^3 b^3}{3 E J l^3} \quad \text{при} \quad z = a
\]

\[
f = -\frac{2}{3} \frac{P}{E J} \frac{a^2 b^3}{3a + b} \quad \text{при} \quad z = \frac{2a}{3a + b}
\]

при \(z = \frac{l}{3} \frac{2b}{3a + b} \)

\[
w = -\frac{P a^3 b^3}{3 E J l^3} \quad \text{при} \quad z = a
\]
<table>
<thead>
<tr>
<th>Схема нагружения балки, Эноры (Q) и (M)</th>
<th>Опорные реакции, поперечная сила (Q), изгибающий момент (M), координата опасного сечения (z_0), максимальный момент (M_{max})</th>
<th>Уравнения упругой линии (w(z)), углов поворота в конце сечения, максимальный прогиб (f) (при постоянном (EJ))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| \(R_A = R_B = \frac{q l}{2} \); \(M_A = M_B = \frac{q l^2}{12} \)
\(0 \leq z \leq l \)
\(Q = \frac{q l}{2} \left(1 - 2 \frac{z}{l} \right) \); \(M = \frac{q l^2}{2} \left(\frac{z}{l} - \frac{z^2}{l^2} - \frac{1}{6} \right) \)
\(z_0 = 0 \); \(z_0^* = l \); \(M_{max} = M_{max}^* = -q l^2 \); \(\frac{1}{2} \) \(M_{max}^* = \frac{q l^2}{24} \)
\(w(z) = -\frac{q l^2 z^2}{24EJ} \left(1 - \frac{z}{l} \right)^2 \)
\(f = -\frac{q l^4}{384EJ} \) при \(z = l/2 \) |
\[
\begin{align*}
Z^* - 0; \quad Z^* - 1; \quad M^*_{\text{max}} = \frac{M^*_{\text{max}}}{q_0\cdot q l^2} = \frac{q l^2}{32} \\
Z_0^* = l/2
\end{align*}
\]

\[
\begin{align*}
R_A = 3 \frac{q l^2}{20}; \quad R_B = 7 \frac{q l}{20}, \quad M_A = \frac{q l^2}{30}; \quad M_B = \frac{q l^2}{20} \\
0 \leq z \leq l \\
Q = \frac{1}{2} q l \left(\frac{3}{20} l - \frac{z^2}{l^2} \right) \\
M = q l^2 \left(\frac{3}{20} l - \frac{1}{6} \frac{z^2}{l^2} - \frac{1}{30} \right) \\
Z_1^* = 0; \quad M_{\text{max}} = \frac{q l^2}{30}; \\
Z_2^* = l; \quad M_{\text{max}} = \frac{q l^2}{20}; \\
Z_0^* = 0.548l; \quad M_{\text{max}} = 45.5
\end{align*}
\]

\[
\begin{align*}
I = -\frac{q l^4}{768 E l^4} \quad \text{при} \quad z = 0.525l \\
w = -\frac{q l^4}{708 E l^4} \quad \text{при} \quad z = l/2
\end{align*}
\]

\[
R_A = \tilde{R}_A - \frac{M_A - M_B}{l}; \\
R_B = \tilde{R}_B + \frac{M_A - M_B}{l}
\]

\[
M_A = \frac{2E l}{l} \left(\tilde{\theta}_A - \tilde{\theta}_B \right); \quad M_B = \frac{2E l}{l} \left(\tilde{\theta}_B - \tilde{\theta}_A \right)
\]

Параметры со знаком * соответствуют статически определимой балке на двух опорах (см. рисунок)
Аналогично могут быть написаны в канонической форме уравнения перемещений для любой n раз статически неопределимой системы

$$
\begin{align*}
\delta_{11}X_1 + \delta_{12}X_2 + \delta_{13}X_3 + \cdots + \delta_{1n}X_n + \Delta_{1P} &= 0, \\
\delta_{21}X_1 + \delta_{22}X_2 + \delta_{23}X_3 + \cdots + \delta_{2n}X_n + \Delta_{2P} &= 0, \\
\vdots \\
\delta_{n1}X_1 + \delta_{n2}X_2 + \delta_{n3}X_3 + \cdots + \delta_{nn}X_n + \Delta_{nP} &= 0.
\end{align*}
\tag{13.12}
$$

Рис. 267

Рис. 268

Рис. 269

Перемещения Δ_{iP} и δ_{ii}, входящие в канонические уравнения, следует определять по методу Мора. При расчете рам и балок, для которых отношение высоты стержня к его длине, как правило, меньше 0.1, в общей формуле Мора ограничиваются сохранением интегралов учитывающих лишь изгибающие моменты. При этом прикладываем к основной системе единичные нагрузки $X_1 = 1$, $X_2 = 1$, ..., $X_n = 1$, а также внешние нагрузки и строят соответствующие эпюры моментов, как это показано применительно к трижды статически неопределимой системе (рис. 268) на рис. 269. Ординаты эпюры изгибающих моментов от заданной нагрузки P (состояние P) и каждой единичной силы $X_1 = 1$.

354
(состояние 1), \(\overline{X_2} = 1 \) (состояние 2) и т. д. обозначим соответственно через \(M_P, \overline{M_1}, \overline{M_2}, \ldots, \overline{M_n} \). На основании (12.29) находим
\[
\Delta_{1P} = \int_s \frac{\overline{M_1} M_P ds}{EJ}; \quad \Delta_{2P} = \int_s \frac{\overline{M_2} M_P ds}{EJ}; \quad \ldots; \quad \Delta_{nP} = \int_s \frac{\overline{M_n} M_P ds}{EJ}. \quad (13.13)
\]

Удельные перемещения, имеющие одинаковые индексы (главные коэффициенты канонических уравнений), определяют по формулам
\[
\delta_{11} = \int_s \frac{\overline{M_1} M_1 ds}{EJ}; \quad \delta_{22} = \int_s \frac{\overline{M_2} M_2 ds}{EJ}; \quad \ldots; \quad \delta_{nn} = \int_s \frac{\overline{M_n} M_n ds}{EJ}, \quad (13.14)
\]
a имеющие разные индексы (побочные коэффициенты), по формулам
\[
\delta_{12} = \int_s \frac{\overline{M_1} M_2 ds}{EJ}; \quad \delta_{13} = \int_s \frac{\overline{M_1} M_3 ds}{EJ}; \quad \ldots; \quad \delta_{ik} = \int_s \frac{\overline{M_i} M_k ds}{EJ}. \quad (13.15)
\]
Эти перемещения могут быть положительными или отрицательными, а также равными нулю.
На основании теоремы о взаимности перемещений
\[
\delta_{ik} = \delta_{ki}.
\]

Для систем, состоящих из прямолинейных элементов, вычисления перемещений удобно производить по способу Верещагина. Например, для статически неопределяемой системы (рис. 266, a) имеем (см. рис. 266, a, e, d, e)
\[
\Delta_{1P} = \frac{\omega_P \overline{M}_{CP}}{EJ}; \quad \delta_{11} = \frac{\omega_1 \overline{M}_{C_1}}{EJ};
\]
\[
\omega_P = \frac{pl^2}{8}; \quad \overline{M}_{CP} = \frac{5}{6} l;
\]
\[
\omega_1 = \frac{l^2}{2}; \quad \overline{M}_{C_1} = \frac{2}{3} l.
\]
Следовательно,
\[
\Delta_{1P} = -\frac{5}{48} \frac{pl^3}{EJ}; \quad \delta_{11} = \frac{l^3}{3EJ}.
\]
Из формулы (13.10) находим
\[
X_1 = -\frac{\Delta_{1P}}{\delta_{11}} = \frac{5}{16} P.
\]

Если учитывать влияние разности температур, то порядок расчета сохраняется прежним, а свободные члены канонических уравнений при этом будут представлять собой перемещения в основной системе не только от заданной нагрузки, но и от изменения температуры:
\[
\delta_{11} X_1 + \delta_{12} X_2 + \cdots + \delta_{1n} X_n + \Delta_{1P} + \Delta_{1t} = 0; \quad (13.16)
\]
\[
\delta_{n1} X_1 + \delta_{n2} X_2 + \cdots + \delta_{nn} X_n + \Delta_{nP} + \Delta_{nt} = 0,
\]
где \(\Delta_{tt} \) — перемещение в основной системе по направлению силы \(X_t \), вызванное разностью температур.
После определения коэффициентов \(\delta_{ij} \) и свободных членов \(\Delta_i \) и \(\Delta_n \) решаем систему канонических уравнений (13.16) и находим лишние неизвестные \(X_1, X_2, \ldots, X_n \). Далее обычным способом строим эпюры внутренних сил \((N, Q \text{ и } M) \). Построение удобно производить методом суммирования по схеме

\[
\begin{align*}
M &= M_1X_1 + M_2X_2 + \cdots + M_P; \\
Q &= Q_1X_1 + Q_2X_2 + \cdots + Q_P; \\
N &= N_1X_1 + N_2X_2 + \cdots + N_P. \\
\end{align*}
\]

Отметим, что вид канонических уравнений остается неизменным при любом возможном варианте основной системы, изменяется лишь смысл лишних неизвестных и геометрический смысл перемещений.

В табл. 33, 34, 35 приведены расчетные формулы для определения изгибающего момента в характерных сечениях некоторых видов статически неопределимых рам для простейших случаев их нагружения.

13.3. Многоопорные неразрезные балки.
Уравнение трех моментов

Неразрезными называются балки, лежащие более чем на двух опорах (см., например, рис. 270, a). Число лишних связей в неразрезной балке, а следовательно, и лишних реакций равно числу промежуточных опор. Иногда крайняя опора выполняется в виде защемления.

![Рис. 270](image_url)

В этом случае степень статической неопределенности балки увеличивается на единицу.

При выборе основной системы за лишние связи целесообразно принимать не промежуточные опоры и лишние неизвестные реакции в них (рис. 270, б), что привело бы к излишне громоздким вычислениям при определении лишних неизвестных, а изгибающие моменты на промежуточных опорах. В этом случае, очевидно, основной системой будет система однопролетных балок, соединенных на опорах шарнирами. Тогда эквивалентная система при расчете по методу сил будет представлять собой ряд простых шарниро-опертых балок, нагруженных заданной нагрузкой и неизвестными изгибающими моментами по концам (рис. 271):

\[
M_1 = X_1; \quad M_2 = X_2; \ldots; \quad M_{n+1} = X_{n+1}; \ldots
\]

Дополнительное уравнение перемещений для каждой промежуточной опоры должно выражать условие равенства нулю взаимного
угла поворота опорных сечений смежных балок. Поскольку каждая из двухопорных балок основной системы под действием внешних нагрузок в пролете и концевых моментов деформируется независимо от другой, то торцы двух смежных балок, примыкающих к одной опоре, например n-й (рис. 272), могут поворачиваться на некоторый угол $\Delta_{n}^{\text{лев}}$ и $\Delta_{n}^{\text{прав}}$. Так как в исходной статически неопределимой неразрезной балке

![Рис. 271](image)

каждая пара таких сечений представляет собой одно сечение, то из условий сплошности их взаимный угол поворота должен быть равен нулю. Отсюда для каждой промежуточной опоры

$$\Delta_{n}^{\text{лев}} = \Delta_{n}^{\text{лев}} + \Delta_{n}^{\text{прав}} = 0. \quad (13.18)$$

Так как основная система состоит из отдельных, не связанных между собой однопролетных балок, то при раскрытии условия (13.18) достаточно рассмотреть примыкающие к n-й опоре два пролета l_{n} и l_{n+1}. Тогда условие (13.18), записанное в канонической форме, принимает вид

$$\delta_{n-1} X_{n-1} + \delta_{n} X_{n} + \delta_{n+1} X_{n+1} + \Delta_{n} = 0. \quad (13.19)$$

В соответствии с построениями, приведенными на рис. 273, а, б, в, г,

![Рис. 272](image)

$$\Delta_{n} = \frac{1}{EJ_{n}} \omega_{n} \frac{a_{n}}{l_{n}} + \frac{1}{EJ_{n+1}} \omega_{n+1} \frac{b_{n+1}}{l_{n+1}}; \quad (13.20)$$

$$\delta_{n, n-1} = \frac{1}{EJ_{n}} \frac{l_{n}}{2} \cdot \frac{1}{3} = \frac{l_{n}}{6EJ_{n}}; \quad (13.21)$$

$$\delta_{n} = \frac{1}{EJ_{n}} \frac{l_{n}}{2} \cdot \frac{2}{3} + \frac{1}{EJ_{n+1}} \frac{l_{n+1}}{2} \cdot \frac{1}{3} = \frac{l_{n}}{3EJ_{n}} + \frac{l_{n+1}}{3EJ_{n+1}}; \quad (13.22)$$

$$\delta_{n, n+1} = \frac{1}{EJ_{n+1}} \frac{l_{n+1}}{2} \cdot \frac{1}{3} = \frac{l_{n+1}}{6EJ_{n+1}}. \quad (13.23)$$

351
Подставляя (13.20) — (13.23) в (13.19), получаем

\[X_{n-1} \frac{l_n}{J_n} + 2X_n \left(\frac{l_n}{J_n} + \frac{l_{n+1}}{J_{n+1}} \right) + X_{n+1} \frac{l_{n+1}}{J_{n+1}} = -6 \left(\frac{\omega_n a_n}{l_n} + \frac{\omega_{n+1} b_{n+1}}{l_{n+1}} \right). \]

(13.24)

Заменив обозначение лишних неизвестных \(X_i \) на \(M_i \), получим уравнение трех моментов (уравнение Клаузова):

\[M_{n-1} \frac{l_n}{J_n} + 2M_n \left(\frac{l_n}{J_n} + \frac{l_{n+1}}{J_{n+1}} \right) + M_{n+1} \frac{l_{n+1}}{J_{n+1}} = -6 \left(\frac{\omega_n a_n}{l_n} + \frac{\omega_{n+1} b_{n+1}}{l_{n+1}} \right). \]

(13.25)

При расчете неразрезных балок составляют столько уравнений трех моментов, сколько имеется промежуточных опор. Решив полученную систему уравнений, определяют лишние неизвестные моменты \(M_i \) на опорах. Зная концевые моменты эквивалентной системы, все дальнейшие расчеты выполняют обычным методом, как при расчете любой статически определимой системы.

Для балок постоянного сечения (\(J = \text{const} \)) уравнение трех моментов (13.25) упрощается:

\[M_{n-1} l_n + 2M_n (l_n + l_{n+1}) + M_{n+1} l_{n+1} = -6 \left(\frac{\omega_n a_n}{l_n} + \frac{\omega_{n+1} b_{n+1}}{l_{n+1}} \right). \]

(13.26)

Рис. 274

Уравнения трех моментов для второй и предпоследней опор неразрезной балки, очевидно, будут содержать только два момента.

Уравнения трех моментов используются и при расчете неразрезной балки, один конец которой жестко заделан. В этом случае составляют уравнение трех моментов также и для защемленного конца, ставя там, как бы промежуточную опору, и в сторону заделки вводят фиктивный пролет. Если заделан левый конец балки, в уравнении трех моментов должны быть положены равными нулю \(W_{n-1} \), \(l_n \), а член \(6 \omega_n a_n/l_n \) будет отсутствовать. Если не все опоры неразрезной балки находятся на одном уровне, а имеет место смещение некоторых опор, то в балке могут возникать значительные начальные напряжения. Эти напряжения зависят от разности в уровнях опор и жесткости балки, увеличиваясь пропорционально указанным величинам.

Влияние смещения опор на напряженность неразрезной балки может быть оценено следующим образом. Пусть имеет место картина смещения опор, приведенная на рис. 274. Углы поворота левого и правого пролетов относительно опоры \(n \) будут

\[\theta_n = \frac{y_1 - y_{n-1}}{l_n}, \quad \theta_{n+1} = \frac{y_{n+1} - y_n}{l_{n+1}}. \]

Угол поворота считаем положительным, если сечение поворачиваеться по часовой стрелке. Очевидно, взаимный угол поворота торцевых сечений на опоре \(n \)

\[\Delta_n = \theta_{n+1} - \theta_n \]

(13.27)

Теперь каноническое уравнение при расчете на смещение опор, в котором роль \(\Delta_{n \text{р}} \) играет \(\Delta_n \), примет вид

\[\delta_{n-1} X_{n-1} + \delta_{n} X_{n} + \delta_{n+1} X_{n+1} + \Delta_n = 0. \]

(13.28)
В случае балки постоянной жесткости с учетом (13.21) — (13.23) и (13.27) уравнение трех моментов (13.28) окончательно можем записать в виде

$$M_{n-1}l_n + 2M_n (l_n + l_{n+1}) + M_{n+1}l_{n+1} = -6EJ (\theta_{n+1} - \theta_n). \quad (13.29)$$

Если кроме смещений опор действуют внешние нагрузки, в правой части уравнения (13.29) должны быть сохранены члены, содержащиеся в правой части уравнения (13.26).

13.4. Расчет статически неопределенных криволинейных стержней

При расчете статически неопределенных упругих систем, содержащих криволинейные стержни, так же, как и при расчете любых статически неопределенных систем, рекомендуется пользоваться каноническими уравнениями метода сил. При этом перемещения, входящие в канонические уравнения, следует вычислять по методу Мора.

![Рисунок 275](image)

В качестве примера рассмотрим круговое кольцо постоянного поперечного сечения, растягиваемое двумя равными и противоположно направленными силами P (рис. 275, a). Эта система, так и всякий замкнутый контур, является тяжелой статически неопределимой. Выберем основную систему, разрезав кольцо по сечению A_2 (рис. 275, b). Из условия симметрии следует, что поперечная сила в этом сечении $X_2 = 0$. Разрезав кольцо по диаметру A_1 — A_3 (рис. 275, c), из условий равновесия отсеченной части находим значение нормальной силы $X_3 = P/2$. Неназванный изгибающий момент X_1 найдем из рассмотрения эквивалентной системы (рис. 275, d).

![Рисунок 276](image)

Каноническое уравнение перемещений, выражающее равенство нулю взаимного угла поворота в сечении A_2, будет

$$\delta_{11}X_1 + \Delta_{1P} = 0, \quad (13.30)$$

где

$$\Delta_{1P} = \int \frac{\bar{M}_1 M_1 ds}{EJ}; \quad (13.31)$$

$$\delta_{11} = \int \frac{\bar{M}_1 M_1 ds}{EJ}. \quad (13.32)$$

359
При этом M_p и M_1 согласно рис. 276, а, б могут быть выражены формулами

$$M_p = -\frac{PR}{2} (1 - \cos \varphi) \left(0 \leq \varphi \leq \frac{\pi}{2}\right); \quad M_1 = -1.$$

Подставляя эти выражения для M_p и M_1 в (13.31) и (13.32), получаем

$$\Delta_{1p} = 4 \int_0^{\pi/2} \frac{PR^2 (1 - \cos \varphi) d\varphi}{2EJ} = \frac{2PR^2}{EJ} \left(\frac{\pi}{2} - 1\right);$$

$$\delta_{11} = 4 \int_0^{\pi/2} \frac{R d\varphi}{LJ} = \frac{2\pi R}{L}.$$

Рис. 277

Теперь уравнение (13.30) может быть переписано так:

$$\frac{2\pi R}{LJ} X_1 + \frac{2PR^2}{EJ} \left(\frac{\pi}{2} - 1\right) = 0,$$

откуда

$$X_1 = -\frac{2PR^2 \left(\frac{\pi}{2} - 1\right)}{2\pi R} = -0,182PR.$$

Таким образом, изгибающий момент в сечении A

$$M_A = -0,182PR$$

и направлен в сторону, противоположную принятой ранее.

Изгибающий момент в произвольном сечении можно выразить формулой

$$M(\varphi) = -\frac{PR}{2} (1 - \cos \varphi) + M_A;$$

максимальный момент

$$M_{\text{max}} = M_B = -0,318PR.$$

Поперечная сила в любом сечении выражается формулой $Q(\varphi) = 0,5P \sin \varphi$, осевая сила $N(\varphi) = 0,5P \cos \varphi$. На рис. 277 приведены впоры M, Q и N.

360
В табл. 36 приведены расчетные формулы для определения усилий и перемещений в различных случаях нагружения кольца.

13.5. Определение перемещений в статически неопределенных системах

После определения значений лишних неизвестных усилий и построения эпюр перемещения в статически неопределенных системах можно найти обычными способами. При этом в каждом конкретном случае следует использовать тот метод, который наиболее просто приводит к результатам. Например, прогибы и углы поворота сечений статически неопределенных балок, несущих сложную нагрузку, рекомендуется определять по методу начальных параметров. Метод Мора, являющийся наиболее универсальным, обычно используют при определении перемещений в балках, рамках и фермах.

Используя формулу Мора

$$\Delta_{1P} = \sum s \int \frac{\bar{M}_i M_P ds}{EJ} + \sum s \int \frac{\bar{N}_i N_P ds}{EF} + \sum s \int k \frac{\bar{Q}_i Q_P ds}{GF}, \quad (13.34)$$

следует рассматривать окончательные эпюры M, N, Q от силовых факторов статически неопределимой системы, а также эпюры $\bar{M}_i, \bar{N}_i, \bar{Q}_i$ от единичного силового фактора, соответствующего искомому перемещению. При этом для уставновки эпюр \bar{M}_i, \bar{N}_i и \bar{Q}_i целесообразно единичную нагрузку прикладывать к основной статически определимой системе.

В качестве примера вычислим взаимные перемещения точек $A_1 - A_2$ и $B_1 - B_2$ соответственно в горизонтальном и вертикальном направлениях для статически неопределимой системы, представляющей собой одноконтурную раму, под действием сил P, приложенных по схеме, приведенной на рис 278, а. Прежде всего определим лишние неизвестные эти транжи статически неопределенной системы. Выберем основную систему, разрезав отку на стек по оси симметрии (рис. 278, б). Вследствие симметрии нагрузки в месте разреза поперечная сила $X_2 = 0$. Из рассмотрения условий равновесия половины рамы (рис 278, в) находим

$$2X_3 = P, \quad X_3 = \frac{P}{2}.$$

Лишний неизвестный момент X_1 определяется из следующего канонического уравнения:

$$\delta_{11} X_1 + \Delta_{1P} = 0, \quad (13.35)$$

Здесь Δ_{1P} — перемещение в направлении действия усилия X_1 от сил P и $X_3 = P/2$.

Для определения перемещений Δ_{1P} и δ_{11} строим соответствующие эпюры (рис 278, г, д) и, пользуясь способом Верещагина, находим

$$\Delta_{1P} = \sum s \int \frac{\bar{M}_1 M_P ds}{EJ} = \frac{2}{EJ_1} \frac{P l_1^2}{8} = \frac{P l_1^2}{4EJ_1}, \quad (13.36)$$

$$\delta_{11} = \sum s \int \frac{\bar{M}_1 N_1 ds}{EJ} = \frac{2l_1}{EJ_1} + \frac{2l_2}{EJ_2}. \quad (13.37)$$

361
Подставив (13.36) и (13.37) в (13.35), получим

\[
\frac{2}{E} \left(\frac{l_1}{J_1} + \frac{l_2}{J_2} \right) X_1 + \frac{Pl^2}{4EJ_1} = 0;
\]

\[
X_1 = -\frac{Pl^2}{4J_1} \left[2 \left(\frac{l_1}{J_1} + \frac{l_2}{J_2} \right) \right]^{-1}.
\]

Рис. 278

При \(l_1 = l_2 = l \) и \(J_1 = J_2 = J \)

\[
X_1 = -\frac{Pl}{16}.
\]

На рис. 278, е, ж, з построены эпюры \(M \), \(Q \) и \(N \) для рассмотренной рамы.

Для определения взаимного перемещения точек \(A_1, A_2 \) в горизонтальном направлении прикладываем к основной системе в этих точках единичные силы (рис. 279, б) \(\overline{X}_i = 1 \). Перемножая эпюру \(M_p \), которую удобнее представить в виде, показанном на рис. 279, а, на эпюру \(\overline{M}_m \) находим (при \(l_1 = l_2 = l \) и \(J_1 = J_2 = J \))

\[
\Delta_{A_1, A_2} = \Delta_t = \sum_s \frac{\overline{M}_i M_p ds}{EJ} = EJ \left(-\frac{Pl^2}{16} \frac{l}{2} + \frac{Pl^2}{8} \frac{l}{2} - 2 \frac{Pl^2}{32} \right) = \frac{Pl^2}{64EJ}.
\]

362
Чтобы определить взаимное вертикальное перемещение точек $B_1 - B_2$, прикладываем к основной системе в этих точках единичные силы $X_k = 1$ (рис. 279, а). Перемножая эпюры M_P и M_k, находим

$$\Delta_{B_1 - B_2} = \Delta_k = \sum_s \frac{\bar{M}_k \bar{M}_P ds}{EJ} = \frac{1}{EJ} \left(\frac{P l^3}{16} \frac{1}{2} - \frac{P l^2}{16} \frac{1}{6} \cdot 2 + \frac{P l^2}{8} \frac{1}{16} \cdot 2 \right) = \frac{5 P l^3}{192 EJ}.$$

В случае действия на статически неопределимую систему температуры к перемещениям основной системы, нагруженной найденными лишними неизвестными, следует добавить температурные перемещения.

Рис. 279

При этом формула (13.34) с учетом (12.36) примет вид

$$\Delta_{IP} = \sum_s \frac{\bar{M}_t \bar{M}_t ds}{EJ} + \sum_s \frac{\bar{N}_t \bar{N}_t ds}{EF} + \sum_s \frac{\bar{Q}_t \bar{Q}_t ds}{GF} +$$

$$+ \sum_s \frac{T_t \alpha (t_a + t_b)}{2} ds + \sum_s \frac{\bar{M}_t \alpha (t_a - t_b)}{h} ds,$$

где M_t, N_t, Q_t — эпюры от лишних неизвестных, обусловленных действием температуры.

В табл. 31, 32, 36 приведены выражения для перемещений в статически неопределимых однопролетных балках и кольце для различных случаев их нагружения.

13.6. О расчёте пространственных рамных систем

Как известно, в самом общем случае в сечении стержня действуют шесть внутренних силовых факторов: N_2, Q_x, Q_y, M_x, M_y и M_z.

Для неподвижного закрепления сечения нужно наложить шесть связей, усилия в которых могут быть найдены из шести уравнений равновесия твердого тела.

Количество связей в пространственной системе, превышающее указанное число, дает степень статической неопределенности. Так, пространственная рама, показанная на рис. 280, а, является системой
шесть раз статически неопределимой, так как из уравнений равновесия можно определить лишь реакции одной жесткой опоры. Один из вариантов основной системы вышеуказанной рамы приведен на рис. 280, б. Для определения шести неизвестных усилий необходимо решить шесть канонических уравнений обычного вида.

![Рис. 280](image1)

Пространственная рама, показанная на рис. 281, а, является системой 24 раза статически неопределимой. Основная система (рис. 231, б) содержит четыре разреза, в каждом из которых имеем шесть неизвестных усилий.

В конструкциях встречаются плоские рамы, подверженные действию пространственных нагрузок. В плоских рамках, нагруженных перпендикулярно их плоскости (рис. 282, а), силы, факторы, характеризующие работу рам в ее же плоскости, равны нулю. Следовательно, из шести неизвестных (рис. 282, б) три равны нулю, т. е. $X_4 = X_7 = X_6 = 0$. Это обстоятельство упрощает расчет плоских рам.

При расчетах плоских рам пространственные нагрузки раскладывают на составляющие, действующие в плоскостях рамы и перпендикулярно к ней и, используя принцип независимости действия сил, рассчитывают систему отдельно для каждой из нагрузок, действующей в разных плоскостях.

В качестве примера приведем расчет по методу сил рамы, показанной на рис. 282, а. Из соображений симметрии выбираем основную систему в виде, приведенном на рис. 283. Этот вариант удобнее, чем представленный на рис. 282, а, так как кручущий момент X_9 и поперечный
силы X_3, т. е. кососимметричные силовые факторы, оказываются равными нулю. Неизвестный изгибающий момент X_1 легко определить из канонического уравнения

$$
\delta_{11} X_1 + \Delta_{1P} = 0.
$$

(13.39)

Для определения перемещений Δ_{1P} и δ_{11} строим эпюры изгибающих и крутящих моментов для P-го (рис. 284, a) и единичного $\bar{X}_1 = 1$ (рис. 284, b) состояний. Эпюры крутящих моментов показаны штриховыми линиями.

Пренебрегая влиянием осевых и поперечных сил, формулы Мора для определения перемещений записываем в виде

$$
\Delta_{1P} = \sum_s \int \frac{\bar{M}_{x1} M_{xp} ds}{EJ_x} + \sum_s \int \frac{\bar{M}_{y1} M_{yp} ds}{EJ_y} + \sum_s \int \frac{\bar{M}_{z1} M_{zp} ds}{GJ_k};
$$

(13.40)

$$
\delta_{11} = \sum_s \int \frac{\bar{M}_{x1} M_{x1} ds}{GJ_x} + \sum_s \int \frac{\bar{M}_{y1} M_{y1} ds}{GJ_y} + \sum_s \int \frac{\bar{M}_{z1} M_{z1} ds}{GJ_k}.
$$

(13.11)

Рис. 284

Учитывая, что единичные эпюры ограничены прямыми линиями перемещения Δ_{1P} и δ_{11} можем определять по способу Верещагина

$$
\Delta_{1P} = -\frac{1}{EJ_1} \frac{ql_1^2}{8} \frac{1}{3} \frac{l_1}{2} \cdot 1 \cdot 2 - \frac{1}{GJ_k} \frac{ql_1^2}{8} l_2 \cdot 1 \cdot 2 =
$$

$$
= -\frac{ql_1^2}{24EJ_1} \left(1 + 6 \frac{EJ_1}{GJ_k} \frac{l_2}{l_1} \right);
$$

$$
\delta_{11} = \frac{l_1}{EJ_1} + \frac{2l_2}{GJ_k} = \frac{l_1}{EJ_1} \left(1 + 2 \frac{EJ_1}{GJ_k} \frac{l_2}{l_1} \right).
$$

На основании (13.39) найдем

$$
X_1 = -\frac{\Delta_{1P}}{\delta_{11}} = \frac{ql_1^2}{24} \frac{1 + 6 \frac{EJ_1}{GJ_k} \frac{l_2}{l_1}}{1 + 2 \frac{EJ_1}{GJ_k} \frac{l_2}{l_1}} = \frac{ql_1^2}{24},
$$

365
где

$$\beta = \frac{1 + 6 \frac{EJ_1}{GJ_k} \frac{l_2}{l_1}}{1 + 2 \frac{EJ_1}{GJ_k} \frac{l_2}{l_1}}.$$

Окончательные эпюры M, $M_{кр}$ и Q приведены на рис. 285.

Рис. 285
Таблица 32. Расчетные формулы, учитывающие смещение опор и изменение температуры в статически неопределенных балках (при постоянном EJ)

<table>
<thead>
<tr>
<th>Схема балки</th>
<th>Опорные реакции, поперечная сила Q и изгибающий момент M, координата опасного сечения z_0 и максимальный момент M_{max}</th>
<th>Уравнение упругой линии $w(z)$, угол поворота в концевом сечении θ и максимальный прогиб f</th>
</tr>
</thead>
</table>
| ![Схема балки 1](image1) | $R_A = \frac{3EJ_0}{l^2}; \quad R_B = \frac{3EJ_0}{l^2}; \quad M_B = \frac{3EJ_0}{l^2}$
$0 < z < l$
$Q = -\frac{3EJ_0}{l^2}; \quad M = -\frac{3EJ_0}{l^2} z$
$z_0 = 0; \quad M_{max} = \frac{3EJ_0}{l}$ | $w(z) = -\frac{f_0}{2} \left(2 - 3 \frac{z^2}{l} + \frac{z^4}{l^2}\right)$
$f = -f_0$ при $z = 0$
$\theta = \frac{3f_0}{2l}$ при $z = 0$

| ![Схема балки 2](image2) | $R_A = \frac{3EJ_0}{l^2}; \quad R_B = \frac{3EJ_0}{l^2}; \quad M_A = \frac{3EJ_0}{l}$
$0 < z < l$
$Q = -\frac{3EJ_0}{l^2}; \quad M = -\frac{3EJ_0}{l^2} (l - z)$
$z_0 = 0; \quad M_{max} = \frac{3EJ_0}{l}$ | $w(z) = -\frac{f_0}{2} \left(2 \frac{z^2}{l} - 3 \frac{z^4}{l^2} + \frac{z^6}{l^3}\right)$
$f = -0,193 f_0$ при $z = 0,422l$
$\theta = -\theta_0$ при $z = 0$
$\theta = \frac{1}{2} \theta_0$ при $z = l$ |
<table>
<thead>
<tr>
<th>Схема балки</th>
<th>Опорные реакции, поперечная сила Q и изгибающий момент M, координата опасного сечения z_o и максимальный момент M_{max}</th>
<th>Уравнение упругой линии $w(z)$, угол поворота и конечный прогиб f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$R_A = R_B = \frac{12EI}{l^3} I_0$; $M_A = M_B = \frac{6EI}{l^3} I_0$; $0 < z < l$
$Q = -\frac{12EI}{l^3} I_0$; $M = \frac{6EI}{l^3} \left(1 - \frac{2z}{l}\right)$; $z_o = 0$; $M_{\text{max}} = \frac{6EI}{l^3} I_0$; $z_o = 1$; $M_{\text{max}} = -\frac{6EI}{l^3} I_0$</td>
<td>$0 < z < l$
$w(z) = -\frac{1}{E} \left[1 - \left(3 - 2 \frac{z}{l}\right)^2\right]$; $f = -I_0$ при $z = 0$</td>
</tr>
<tr>
<td></td>
<td>$R_A = R_B = \frac{6EI_0}{l^2}$; $M_A = \frac{4EI_0}{l}$; $M_B = \frac{2EI_0}{l}$; $0 < z < l$
$Q = -\frac{6EI_0}{l^2}$; $M = \frac{6EI_0}{l} \left(2 - \frac{3z}{l}\right)$; $z_o = 0$; $M_{\text{max}} = \frac{4EI_0}{l}$; $z_o = 1$; $M_{\text{max}} = -\frac{2EI_0}{l}$</td>
<td>$0 < z < l$
$w(z) = -\frac{3}{l} \left(\frac{z^3}{3} - 2 \frac{z^2}{l} + \frac{z}{l}\right)$; $f = -\frac{4I_0}{27l}$ при $z = l/3$; $\theta = -\theta_0$ при $z = 0$</td>
</tr>
</tbody>
</table>
По высоте сечения балки температура изменяется линейно

\[R_A = R_B = \frac{3\alpha \Delta t E J}{2h} \quad M_B = \frac{3\alpha \Delta t E J}{2h} \quad 0 \leq z \leq l \]

\[Q = \frac{3\alpha \Delta t E J}{2h} \quad M = \frac{3\alpha \Delta t E J}{2h} z \]

\[z_0 = l \quad M_{\text{max}} = \frac{3\alpha \Delta t E J}{2h} \]

(\(\Delta t \) — разность температур верхнего и нижнего волокон балки)

По высоте сечения балки температура изменяется линейно

\[R_A = R_B = 0; \quad M_B = \frac{\alpha \Delta t E J}{h} \quad 0 \leq z \leq l \]

\[Q = 0 \quad M = \frac{\alpha \Delta t E J}{h} = \text{const} \]

(\(\alpha \) — коэффициент линейного расширения материала балки; \(\Delta t \) — разность температур верхнего и нижнего волокон балки)
Таблица 33 Изгибающие моменты в Г-образной раме \(k = \frac{J_2 h}{J_1 l} \)

<table>
<thead>
<tr>
<th>Схема нагрузки и эпюра (M)</th>
<th>Изгибающий момент (M) в характерных сечениях</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ригель и стойка шарнирно оперты</td>
<td>(n = 1 + k)</td>
</tr>
</tbody>
</table>

\[
M_B = \frac{\alpha (1 + \alpha)}{2n} aP
\]
\[
M_P = \alpha \left[1 - \frac{\alpha (1 + \alpha)}{2n} \right] ;
\]
\[
\alpha = \frac{b}{l}
\]

\[
M_B = \frac{ql^2}{8n}
\]

\[
M_B = \frac{\alpha (2 - \alpha) k b}{2n} p ;
\]
\[
\alpha = \frac{a}{h}
\]

\[
M_B = \left[3 \alpha (2 - \alpha) - 2 \right] \frac{kM}{2n} ;
\]
\[
\alpha = \frac{a}{h}
\]

\[
M_B = \frac{qkh^2}{8n}
\]
Схема нагрузки и эпюра M

<table>
<thead>
<tr>
<th>Погибающий момент M в характерных сечениях</th>
</tr>
</thead>
</table>

$M_B = 3 \frac{EJ_2f}{nhl}$

Горизонтальное смещение опоры C

$M_B = 3 \frac{EJ_2f}{nl^2}$

Вертикальное смещение опоры C

Значения M те же, что и при вертикальном смещении опоры C, но с противоположными знаками

$M_B = 3 \frac{EJ_2}{nh} \left(1 + \frac{h^2}{l^2} \right) \alpha \Delta t$

α — коэффициент линейного расширения

Нагрев на Δt

Ригель шарнирно оперт, стойка защемлена

$n = 4 + 3k$
Продолжение табл. 33

Схема нагрузки и энора M

<table>
<thead>
<tr>
<th>Изгибающий момент M в характерных сечениях</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_A = \frac{\alpha (1 + \alpha)}{n} qP$, $M_B = \frac{2\alpha (1 + \alpha)}{n} qP$</td>
</tr>
<tr>
<td>$M_P = \alpha \left[1 - \frac{2\alpha (1 + \alpha)}{n} \right] qP$, $\alpha = \frac{b}{l}$</td>
</tr>
<tr>
<td>$M_A = \frac{ql^2}{4n}$; $M_B = \frac{ql^2}{2n}$</td>
</tr>
<tr>
<td>$M_A = \left[2 + (2 + 3k) \alpha \right] \frac{ab}{n} P$</td>
</tr>
<tr>
<td>$M_B = \frac{3ak (1 - \alpha) b}{n}$</td>
</tr>
<tr>
<td>$M_P = \alpha bp - \alpha M_A - (1 - \alpha) M_B$; $\alpha = \frac{a}{h}$</td>
</tr>
<tr>
<td>$M_A = \left[\alpha (2 - 3\alpha) - \frac{2}{n} (1 - \alpha) (3\alpha - 1) \right] M$</td>
</tr>
<tr>
<td>$M_B = 3 (1 - \alpha) (3\alpha - 1) \frac{kM}{n}$, $\sigma = \frac{a}{h}$</td>
</tr>
<tr>
<td>$M_A = \frac{q (2 - k) h^3}{4n}$; $M_B = \frac{qh^2}{4n}$</td>
</tr>
<tr>
<td>Схема нагрузки и эпюра M</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Горизонтальное смещение опоры C</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$M_A = 6 \left(2 + 3k\right) \frac{EJ_1l}{nh^2}$; $M_B = 18 \frac{EJ_2l}{nhl}$</td>
</tr>
<tr>
<td>Вертикальное смещение опоры C</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$M_A = 6 \frac{EJ_2l}{nl^2}$; $M_B = 12 \frac{EJ_2l}{nl^2}$</td>
</tr>
<tr>
<td>Вертикальное смещение опоры A</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Значения M те же, что и при вертикальном смещении опоры C, но с противоположными знаками</td>
</tr>
<tr>
<td>Поворот опоры A на угол θ</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$M_A = 12 (1 + k) \frac{EJ_1l}{nh} \theta$; $M_B = 6 \frac{EJ_2l}{nl} \theta$</td>
</tr>
<tr>
<td>Нагрев на Δt</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$M_A = 6 \frac{EJ_2l}{nh} \left(3 + \frac{2}{k} + \frac{h^2}{l^2}\right) \alpha \Delta t$</td>
</tr>
<tr>
<td>$M_B = 6 \frac{EJ_2l}{nh} \left(3 + 2 \frac{h^2}{l^2}\right) \alpha \Delta t$</td>
</tr>
</tbody>
</table>

α — коэффициент линейного расширения
Ригель и стойка защемлены

\[n = 1 + k \]

<table>
<thead>
<tr>
<th>Схема нагрузки и эпюра (M)</th>
<th>Изгибающий момент (M) в характерных сечениях</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_A = \frac{\alpha^2 a}{2n} P; \ M_B = \frac{\alpha^2 a}{n} P)</td>
<td>(M_C = [(2 - \alpha)(k + 2(1 - \alpha))\frac{aa}{2n} P)</td>
</tr>
<tr>
<td>(M_P = \alpha a P - \alpha M_B - (1 - \alpha) M_C; \ \alpha = \frac{b}{l})</td>
<td></td>
</tr>
</tbody>
</table>

\[
M_A = \frac{q l^2}{24n}; \quad M_B = \frac{q l^2}{12n}
\]

\[
M_C = (2 + 3k) \frac{q l^2}{24n}
\]

\(M_A = [1 + \alpha(1 + 2k)] \frac{ab}{2n} P \)	\(M_B = \alpha k (1 - \alpha) \frac{b}{n} P \)	\(M_C = \alpha k (1 - \alpha) \frac{b}{2n} P; \ \alpha = \frac{a}{h} \)

\(M_A = \left[\alpha (2 - 3\alpha) - \frac{(1 - \alpha)(3\alpha - 1)}{2n} \right] \)	\(M_B = (1 - \alpha)(3\alpha - 1) \frac{kM}{n} \)	\(M_C = (1 - \alpha)(3\alpha - 1) \frac{kM}{2n}; \ \alpha = \frac{a}{h} \)
Схема нагружения и опора M | Изгибающий момент M в характерных сечениях

| q | $M_A = \frac{q(3+2k)h^2}{24n}; \quad M_B = \frac{qkh^2}{12n}; \quad M_C = \frac{qkh^2}{24n}$ |
| Горизонтальное смещение опоры C |
| f | $M_A = 3(1+2k)\frac{EJ_1 f}{nh^2}; \quad M_B = \frac{6EJ_2 f}{nhl}; \quad M_C = \frac{3EJ_2 f}{nhl}$ |
| Вертикальное смещение опоры C |
| l | $M_A = 3\frac{EJ_2 f}{nl^2}; \quad M_B = \frac{6EJ_2 f}{nl^2}; \quad M_C = 3(2+k)\frac{EJ_2 f}{nl^2}$ |
| Вертикальное смещение опоры A |
| Поворот опоры A на угол θ |
| θ | $M_A = (3+4k)\frac{EJ_1}{nh}\theta; \quad M_B = 2\frac{EJ_3}{nl}\theta; \quad M_C = \frac{EJ_3}{nl}\theta$ |
| Нагрев на Δt |
| Δt | $M_A = \frac{3EJ_2}{nh}\left(2 + \frac{1}{k} + \frac{h^2}{l^2}\right)\alpha\Delta t; \quad M_B = \frac{6EJ_3}{nh}\left(1 + \frac{h^2}{l^2}\right)\alpha\Delta t; \quad M_C = \frac{3EJ_3}{nh}\left[1 + (2+k)\frac{h^2}{l^2}\right]\alpha\Delta t$ |

α — коэффициент линейного расширения
Таблица 34. Изгибающие моменты в П-образной раме \(k = \frac{J_2 h}{J_1 l} \)

<table>
<thead>
<tr>
<th>Схема нагрузки и эпюра (M)</th>
<th>Изгибающий момент (M) в характерных сечениях</th>
</tr>
</thead>
<tbody>
<tr>
<td>Стойки шарнирно оперты</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n = 3 + 2k)</td>
</tr>
<tr>
<td></td>
<td>![Diagram of a moment diagram]</td>
</tr>
<tr>
<td></td>
<td>(M_B = M_C = \frac{3ab}{2nl} P; \quad M_P = \frac{(3 + 4k) ab}{2nl} P)</td>
</tr>
<tr>
<td></td>
<td>![Diagram of a moment diagram]</td>
</tr>
<tr>
<td></td>
<td>(M_B = M_C = \frac{(3 - 2\alpha) \alpha^2 q l^2}{4n}); (\alpha = \frac{a}{l})</td>
</tr>
<tr>
<td></td>
<td>![Diagram of a moment diagram]</td>
</tr>
<tr>
<td></td>
<td>(M_B = M_C = \frac{q l^2}{4n}); (M_{\text{max}} = (1 + 2k) \frac{q l^2}{8n})</td>
</tr>
<tr>
<td></td>
<td>![Diagram of a moment diagram]</td>
</tr>
<tr>
<td></td>
<td>(M_B = M_C = \frac{1}{2} hP)</td>
</tr>
<tr>
<td>Схема нагрузки и приюра M</td>
<td>Изгибающий момент M в характерных сечениях</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>$M_B = \left[1 - \frac{(2 - \alpha) \alpha k}{n}\right] \frac{a}{2} P$</td>
</tr>
<tr>
<td></td>
<td>$M_C = \left[1 + \frac{(2 - \alpha) \alpha k}{n}\right] \frac{a}{2} P$</td>
</tr>
<tr>
<td></td>
<td>$M_P = (1 - \alpha)(Pb + M_B)$; $\alpha = \frac{b}{h}$</td>
</tr>
<tr>
<td></td>
<td>$M_B = \frac{3 + (1 + 3\alpha^2) k}{2n} M$</td>
</tr>
<tr>
<td></td>
<td>$M_C = \frac{3(1 + (1-\alpha^2) k)}{2n} M$; $\alpha = \frac{a}{h}$</td>
</tr>
<tr>
<td></td>
<td>$M_B = (2 + k) \frac{3qh^4}{8n}$</td>
</tr>
<tr>
<td></td>
<td>$M_C = (6 + 5k) \frac{qh^4}{8n}$</td>
</tr>
<tr>
<td></td>
<td>$M_B = M_C = \frac{7kqi^2}{60n}$</td>
</tr>
</tbody>
</table>

Нагрев на Δt

$M_B = M_C = \frac{3EJ_2 \alpha \Delta t}{nh}$

α — коэффициент линейного расширения
Схема нагрузки и эпюра M | Изгибающий момент M в характерных сечениях

Стойки защемлены

$n_1 = 2 + k \quad n_2 = 1 + 6k$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_A = \left(\frac{1}{2n_1} - \frac{2\alpha - 1}{2n_2} \right) \alpha aP$</td>
<td>$M_A = \alpha^2 \left[\frac{3 - 2\alpha}{n_1} - \frac{3(1 - \alpha)^2}{n_2} \right] \frac{q l^2}{12}$</td>
</tr>
<tr>
<td>$M_B = \left(\frac{1}{n_1} + \frac{2\alpha - 1}{2n_2} \right) \alpha aP$</td>
<td>$M_B = \alpha^2 \left[\frac{3 - 2\alpha}{n_1} + \frac{3(1 - \alpha)^2}{n_2} \right] \frac{q l^2}{12}$</td>
</tr>
<tr>
<td>$M_C = \left(\frac{1}{n_1} - \frac{2\alpha - 1}{2n_2} \right) \alpha aP$</td>
<td>$M_C = \alpha^2 \left[\frac{2(3 - 2\alpha)}{n_1} - \frac{3(1 - \alpha)^2}{n_2} \right] \frac{q l^2}{12}$</td>
</tr>
<tr>
<td>$M_D = \left(\frac{1}{2n_1} + \frac{2\alpha - 1}{2n_2} \right) \alpha aP$;</td>
<td>$M_D = \alpha^2 \left[\frac{2(3 - 2\alpha)}{n_1} + \frac{3(1 - \alpha)^2}{n_2} \right] \frac{q l^2}{12}$</td>
</tr>
<tr>
<td>$\alpha = \frac{a}{l}$</td>
<td>$\alpha = \frac{a}{l}$</td>
</tr>
</tbody>
</table>

$M_A = M_D = \frac{q l^2}{12n_1}; \quad M_B = M_C = \frac{q l^2}{6n_1}$

$M_{\text{max}} = \frac{2 + 3k}{24n_1} \cdot q l^2$
Продолжение табл. 34

<table>
<thead>
<tr>
<th>Схема нагрузки и эпюра M</th>
<th>Изгибающий момент M в характерных сечениях</th>
</tr>
</thead>
</table>

- $M_A = M_D = \frac{1 + 3k}{2n_2} hP$
- $M_B = M_C = \frac{3k}{2n_2} hP$

$$M_A = \left\{1 - \frac{3(1 - \alpha)k}{n_2} + \frac{\alpha[1 + \alpha(1 + k)]}{n_1} \right\} \frac{a}{2} P$$

$$M_B = \left[\frac{3(1 - \alpha)k}{n_2} - \frac{\alpha(1 - \alpha)k}{n_1}\right] \frac{a}{2} P$$

$$M_D = \left\{1 - \frac{3(1 - \alpha)k}{n_2} - \frac{\alpha[1 + \alpha(1 + k)]}{n_1} \right\} \frac{a}{2} P$$

$$M_C = \left[\frac{3(1 - \alpha)k}{n_2} + \frac{\alpha(1 - \alpha)k}{n_1}\right] \frac{a}{2} P;$$

$$\alpha = \frac{b}{h}$$

$$M_A = \left[-\frac{3\alpha(2 - \alpha)}{2} + 1 - \frac{\alpha(2 - 3\alpha)k}{2n_1} - \left(\frac{6\alpha k}{n_2} - 1\right)\right] \frac{M}{2}$$

$$M_B = \alpha k \left(-\frac{2 - 3\alpha}{2n_1} + \frac{3}{n_2}\right) M$$

$$M_C = \alpha k \left(\frac{2 - 3\alpha}{2n_1} + \frac{3}{n_2}\right) M$$

$$M_D = \left[\frac{3\alpha(2 - \alpha)}{2} - 1 + \frac{\alpha(2 - 3\alpha)k}{2n_1} - \left(\frac{6\alpha k}{n_2} - 1\right)\right] \frac{M}{2};$$

$$\alpha = \frac{a}{h}$$

379
Схема нагрузки в эпюра М | Изгибающий момент M в характерных сечениях

\[
M_A = \left(k + \frac{3}{6n_1} + \frac{1 + 4k}{n_2} \right) \frac{qh^2}{4}
\]
\[
M_B = \left(\frac{2}{n_2} - \frac{1}{6n_1} \right) k \frac{qh^2}{4}
\]
\[
M_C = \left(\frac{1}{6n_1} + \frac{2}{n_2} \right) \frac{qh^2}{4}
\]
\[
M_D = \left(\frac{1 + 4k}{n_2} - \frac{3 + k}{6n_1} \right) \frac{qh^2}{4}
\]

На фигурах Δt

\[
M_A = M_D = \frac{8 + 3k}{n_1} \frac{qh^2}{60}
\]
\[
M_B = M_C = \frac{qh^2}{30n_1}
\]

Т а б л и ц а 35. Изгибающие моменты в замкнутой раме
\[
(k = \frac{J_2h}{J_1l}; \; p = \frac{J_2}{J_3}; \; n = 1 + p + 6k; \; m = \left(2 + k \right) + \frac{p}{k} \left(3 + 2k \right))
\]

Схема нагрузки | Изгибающие моменты в узлах рамы (положительные моменты вызывают растяжение с внутренней стороны рамы)

\[
M_A, D = \alpha \left(1 - \alpha \right) \left(\frac{1}{m} = \frac{1 - 2\alpha}{n} \right) \frac{Pl}{2}
\]
\[
M_B, C = -\alpha \left(1 - \alpha \right) \left(\frac{2k + 3p}{km} \pm \frac{1 - 2\alpha}{n} \right) \frac{Pl}{2}
\]
\[
\alpha = \frac{a}{l}
\]
Схема нагрузки

\[V_{A, D} = \alpha (1 - \alpha) p \left(\frac{3 + 2k}{km} \mp \frac{1 - 2\alpha}{n} \right) \frac{Pl}{2} \]

\[M_{B, C} = -\alpha (1 - \alpha) p \left(\frac{1}{m} \mp \frac{1 - 2\alpha}{n} \right) \frac{Pl}{2}; \]

\[\alpha = \frac{a}{l} \]

\[M_{A, D} = \left\{ \begin{array}{l}
\frac{1 - \alpha}{m} [\alpha (1 + k) - (2 + k)] \mp \\
\mp \frac{1}{n} [1 + 3k (2 - \alpha)] \end{array} \right\} \frac{Ph}{2} \]

\[M_{B, C} = \alpha \left\{ \frac{1 - \alpha}{m} [\alpha (k + p) + p] \pm \\
\pm \frac{1}{n} (3\alpha k + p) \right\} \frac{Ph}{2}; \]

\[\alpha = \frac{a}{h} \]

\[V_{A} = V_{D} - \frac{q l^2}{12m}; \]

\[M_{B} = V_{C} = -\frac{q l^2}{12} \frac{2k + 3p}{km} \]
Изгибающие моменты в узлах рамы (положительные моменты вызывают растяжение с внутренней стороны рамы)

<table>
<thead>
<tr>
<th>Схема нагрузки</th>
<th>$M_A = M_D = \frac{3 + 2k}{km} \frac{p}{12} q l^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M_B = M_C = -\frac{p}{m} \frac{q l^2}{12}$</td>
</tr>
</tbody>
</table>

$$M_{A, D} = \alpha^2 \left[\frac{3 - 2\alpha}{m} \pm \frac{3 - (1 - \alpha)^2}{n} \right] \frac{ql^2}{12}$$

$$M_{B, C} = -\alpha^2 \left[\frac{1}{km} (3 - 2\alpha) (2k + 3p) \pm \frac{3}{n} (1 - \alpha)^2 \right] \frac{ql^2}{12}$$

$\alpha = \frac{a}{l}$

$$M_{A, D} = \alpha^2 p \left[\frac{1}{km} (3 - 2\alpha) (2k + 3) \pm \frac{3}{n} (1 - \alpha)^2 \right] \frac{ql^2}{12}$$

$M_{B, C} = -\alpha^2 p \left[\frac{3 - 2\alpha}{m} \pm \frac{3 - (1 - \alpha)^2}{n} \right] \frac{ql^2}{12}$

$\alpha = \frac{a}{l}$

$$M_{A, D} = -\left(\frac{3 + k}{6m} \pm \frac{1 + 4k}{n} \right) \frac{q h^2}{4}$$

$$M_{B, C} = -\left(\frac{k + 3p}{6m} \pm \frac{2k + p}{n} \right) \frac{q h^2}{4}$$
Изгибающие моменты в узлах рамы (положительные моменты вызывают растяжение с внутренней стороны рамы)

\[
M_A = M_B = M_C = M_D = - \frac{1 + k}{1 + k} \frac{ql^3}{12}
\]
при \(J_2 = J_3 \)

\[
M_A = M_D = - \frac{8 + 3k}{60} \frac{qh^2}{m}
\]

\[
M_B = M_C = - \frac{7 + 2k}{60} \frac{qh^2}{m}
\]

\[
M_{A,D} = - \left(\frac{1}{m} \mp \frac{1}{n} \right) \frac{M}{2}
\]

\[
M_{B,C} = \left(\frac{3p + 2k}{km} \pm \frac{1}{n} \right) \frac{M}{2}
\]

\[
M_{A,D} = -p \left(\frac{3 + 2k}{km} \pm \frac{1}{n} \right) \frac{M}{2}
\]

\[
M_{B,C} = -p \left(\frac{2 + k}{km} \mp \frac{1}{n} \right) \frac{M}{2}
\]
Таблица 6. Усилия и перемещения при нагружении кольца в его

<table>
<thead>
<tr>
<th>Схема</th>
<th>N</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>qR</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{2} P \sin \varphi$</td>
<td>$\frac{1}{2} P \cos \varphi$</td>
</tr>
<tr>
<td></td>
<td>$0 \leq \varphi \leq \pi/2$</td>
<td>$0 \leq \varphi \leq \pi/2$</td>
</tr>
<tr>
<td></td>
<td>$P (r, 318 \cos \varphi + \sin \varphi)$</td>
<td>$-P (0.318 \sin \varphi - \cos \varphi)$</td>
</tr>
<tr>
<td></td>
<td>$\pi/2 \leq \varphi \leq \pi$</td>
<td>$\pi/2 \leq \varphi \leq \pi$</td>
</tr>
<tr>
<td></td>
<td>$P \cdot 0.318 \cos \varphi$</td>
<td>$-P \cdot 0.318 \sin \varphi$</td>
</tr>
<tr>
<td></td>
<td>$0 \leq \varphi \leq \alpha$</td>
<td>$0 \leq \varphi \leq \alpha$</td>
</tr>
<tr>
<td></td>
<td>$P (0.318 \sin^2 \alpha \cos \varphi + \sin \varphi)$</td>
<td>$P (\cos \varphi -$</td>
</tr>
<tr>
<td></td>
<td>$\alpha \leq \varphi \leq \pi$</td>
<td>$-0.318 \sin^2 \alpha \sin \varphi)$</td>
</tr>
<tr>
<td></td>
<td>$P \cdot 0.318 \sin^2 \alpha \cos \varphi$</td>
<td>$\alpha \leq \varphi \leq \pi$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-P \cdot 0.318 \sin^2 \alpha \sin \varphi$</td>
</tr>
</tbody>
</table>
момент в сечении кольца, определяемом углом \(\varphi \) (на рисунке показаны на впереди лежащее сечение кольца в направлении возрасания угла), осей \(x \) и \(y \) (положительное значение соответствует увеличению диаметра), момент инерции сечения кольца

<table>
<thead>
<tr>
<th>(M)</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\delta_x = \delta_y = \frac{qR^3}{EF})</td>
</tr>
<tr>
<td>(-PR \left(0,3183 - \frac{1}{2} \sin \varphi \right))</td>
<td>(\delta_x = -0,137 \frac{PR^3}{EJ}) (\delta_y = 0,149 \frac{PR^3}{EJ})</td>
</tr>
<tr>
<td>0 (\leq \varphi \leq \pi/2) (PR \left(0,3183 \cos \varphi + \sin \varphi - 0,8183 \right))</td>
<td>(\delta_x = -0,1366 \frac{PR^3}{EJ}) (\delta_y = 0,1488 \frac{PR^3}{EJ})</td>
</tr>
<tr>
<td>(\pi/2 \leq \varphi \leq \pi) (PR \left(0,1817 + 0,3183 \cos \varphi \right))</td>
<td>(\delta_x = \frac{PR^3}{EJ} \left[\frac{1}{2} \left(\sin^2 \alpha + 2 \right) + 0,6366 \left(\alpha \sin \alpha + \cos \alpha - 1 \right) - 2 \sin \alpha \right]) (\delta_y = \frac{PR^3}{EJ} \left[\frac{1}{2} \left(\sin \alpha \cos \alpha + \alpha \right) + 0,6366 \left(\alpha \sin \alpha + \cos \alpha - 1 \right) - \sin \alpha \right])</td>
</tr>
<tr>
<td>Схема</td>
<td>N</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>0 ≤ φ ≤ α</td>
<td>$P \cdot 0,3183 \cos \varphi (\sin^2 \beta - \sin^2 \alpha)$</td>
</tr>
<tr>
<td>α ≤ φ ≤ β</td>
<td>$P \cdot 0,3183 \cos \varphi (\sin^2 \beta - \sin^2 \alpha) + \sin \varphi$</td>
</tr>
<tr>
<td>β ≤ φ ≤ π</td>
<td>$P \cdot 0,3183 \cos \varphi (\sin^2 \beta - \sin^2 \alpha)$</td>
</tr>
</tbody>
</table>

| 0 ≤ φ ≤ α | $P \cdot 0,3183 (\alpha - \sin \alpha \cos \alpha) - 1] \cos \varphi$ | 0 ≤ φ ≤ α | $P \cdot 0,3183 (\sin \alpha \cos \alpha - \alpha) + 1] \sin \varphi$ |
| α ≤ φ ≤ π | $P \cdot 0,3183 (\alpha - \sin \alpha \cos \alpha) \cos \varphi$ | α ≤ φ ≤ π | $P \cdot 0,3183 (\sin \alpha \cos \alpha - \alpha) \sin \varphi$ |

| 0 ≤ φ ≤ α | $P \cdot 2 \sin \alpha \cos \varphi$ | 0 ≤ φ ≤ α | $P \cdot 2 \sin \alpha \sin \varphi$ |

| 0 ≤ φ ≤ π | $M_0/R \cdot 0,6366 \cos \varphi$ | 0 ≤ φ ≤ π | $M_0/R \cdot 0,6366 \sin \varphi$ |
Продолжение табл. 36

<table>
<thead>
<tr>
<th>M</th>
<th>δ</th>
</tr>
</thead>
</table>
| $0 \leq \varphi \leq \alpha$
$PR \{0,3183 (\beta \sin \beta + \cos \beta - \alpha \sin \alpha - \cos \alpha - \sin^2 \alpha \cos \varphi + \sin^2 \beta \cos \varphi) - \sin \beta + \sin \alpha\}$
$\alpha \leq \varphi \leq \beta$
$PR \{0,3183 (\beta \sin \beta + \cos \beta - \alpha \sin \alpha - \cos \alpha - \sin^2 \alpha \cos \varphi + \sin^2 \beta \cos \varphi) - \sin \beta + \sin \varphi\}$
$\beta \leq \varphi \leq \pi$
$PR \{0,3183 (\beta \sin \beta + \cos \beta - \alpha \sin \alpha + \cos \alpha - \sin^2 \alpha \times \cos \varphi + \sin^2 \beta \cos \varphi)\}$ | $\delta_x = \frac{PR^3}{EJ} \left[\frac{1}{2} \sin^2 \alpha + \sin \beta \right] + 0,6366 (\beta \sin \beta + \cos \beta - \alpha \sin \alpha - \cos \alpha + 1 - 2 \sin \beta)$
$\delta_y = \frac{PR^3}{EJ} \left[\frac{1}{2} (\sin \beta \cos \beta + \beta - \sin \alpha \cos \alpha - \alpha) + 0,6366 (\beta \sin \beta + \cos \beta - \alpha \sin \alpha - \cos \alpha) \right.$
$\left. + \sin \alpha - \sin \beta\right]$
$\delta_x = \frac{PR^3}{EJ} \left[0,6366 (\sin \alpha - \alpha \cos \alpha) + \frac{1}{2} (\sin \alpha \cos \alpha - \alpha)\right]$
$\delta_y = \frac{PR^3}{EJ} \left[0,6366 (\sin \alpha - \alpha \cos \alpha) + \cos \alpha + \frac{1}{2} \sin^2 \alpha - 1\right]$ |
| $0 \leq \varphi \leq \alpha$
$PR \{0,3183 (\sin \alpha - \alpha \cos \alpha + \alpha \cos \varphi - \sin \alpha \cos \alpha \cos \varphi) - \cos \varphi - \cos \alpha\}$
$\alpha \leq \varphi \leq \pi$
$PR \cdot 0,3183 (\sin \alpha - \alpha \cos \alpha + \alpha \cos \varphi - \sin \alpha \cos \alpha \cos \varphi)$ | Радиальное перемещение точки приложения силы от центра
$\frac{PR^3}{2EJ} \left[\frac{1}{\sin^2 \alpha} \left(\frac{\alpha}{2} + \frac{\sin 2 \alpha}{4} \right) - \frac{1}{\alpha}\right]$
Радиальное перемещение в точках
$\varphi = 0, 2 \alpha, 4 \alpha, \ldots$ (к центру)
$\frac{PR^3}{2EJ} \left(\frac{2}{\alpha} - \frac{1}{\sin \alpha} - \frac{\alpha \cos \alpha}{\sin^2 \alpha}\right)$ |
| $0 \leq \varphi \leq \pi/2$
$M_0 \left(0,6366 \cos \varphi - \frac{1}{2} \right)$
$\pi/2 \leq \varphi \leq \pi$
$M_0 \left(0,6366 \cos \varphi + \frac{1}{2} \right)$ | $\delta_x = 0$
$\delta_y = 0$ |
\[P = 2qR \sin \alpha \]

\[Q = \frac{M_0}{R} 0,6366 \sin \alpha \cos \varphi \]

\[0 \leq \varphi \leq \pi \]

\[N = \frac{M_0}{R} 0,6366 \sin \alpha \sin \varphi \]

\[0 \leq \varphi \leq \pi \]

\[0 \leq \varphi \leq \alpha \]

\[-qR \left(\frac{1}{3\pi} \sin^3 \alpha \cos \varphi + \sin \alpha \sin \varphi \right) \]

\[+ \frac{1}{3\pi} \sin^3 \alpha \cos \varphi + \sin^2 \varphi \]

\[\alpha \leq \varphi \leq \pi \]

\[qR \left(\frac{1}{3\pi} \sin^3 \alpha \sin \varphi - \sin \alpha \cos \varphi \right) \]

\[-\sin \alpha \cos \varphi \]

\[\alpha \leq \varphi \leq \pi \]

\[qR \left(\frac{1}{3\pi} \sin^3 \alpha \sin \varphi - \sin \varphi \cos \varphi \right) \]

\[0 \leq \varphi \leq \alpha \]

\[-qR [\sin \alpha \sin \varphi + (1 + \cos \alpha) \cos \varphi] - N(\pi) \cos \varphi \]

\[\alpha \leq \varphi \leq \pi \]

\[qR (1 + \cos \varphi) - N(\pi) \cos \varphi \]

\[N(\pi) = -\frac{qR}{\pi} (\pi - \sin \alpha + \alpha \cos \alpha) \]

\[-qR [\sin \alpha \cos \varphi - (1 + \cos \alpha) \sin \varphi] + \]

\[+ N(\pi) \sin \varphi \]

\[\alpha \leq \varphi \leq \pi \]

\[qR \sin \varphi + N(\pi) \sin \varphi \]
\[M \]
\[
\begin{array}{l}
0 \leq \varphi \leq \alpha \\
M(0) = qR^2 \left[\sin \alpha \sin \varphi - \frac{1}{3\pi} \sin^3 \alpha (1 - \cos \varphi) \right] \\
M(0) = qR^2 \left[\frac{1}{4} + \frac{1}{3\pi} \sin^3 \alpha (1 - \cos \varphi) - \frac{1}{2} \left(\sin^2 \alpha - \sin^2 \varphi \right) \right] \\
\end{array}
\]

\[\delta \]
\[
\begin{array}{l}
\delta_x = \frac{M_0 R^2}{E J} \left[\frac{1}{4} - \frac{\sin \alpha}{2} + \frac{\sin^3 \alpha}{2} \right] - \frac{\sin^3 \alpha}{12} - \frac{1}{\pi} \left(\frac{\alpha}{4} - \sin \alpha + \frac{3}{4} \sin \alpha \cos \alpha + \frac{1}{2} \alpha \sin^2 \alpha \right) \\
\delta_y = \frac{M_0 R^2}{E J} \left[\frac{1}{12} + \frac{\sin^2 \alpha}{4} - \frac{\alpha \sin \alpha}{4} \right] - \frac{\sin^2 \alpha \cos \alpha}{12} - \frac{\cos \alpha}{6} - \frac{1}{\pi} \left(\frac{\alpha \sin^2 \alpha}{2} + \frac{3}{4} \sin \alpha \cos \alpha + \frac{\alpha}{4} - \sin \alpha \right) \\
\end{array}
\]
<table>
<thead>
<tr>
<th>Схема</th>
<th>(N)</th>
<th>(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0 \leq \varphi \leq \alpha)
 (-qR \sin^2 \varphi)
 (\alpha \leq \varphi \leq \pi - \alpha)
 (-qR \sin \alpha \sin \varphi)</td>
<td>(0 \leq \varphi \leq \alpha)
 (qR \sin \varphi \cos \varphi)
 (\alpha \leq \varphi \leq \pi - \alpha)
 (qR \sin \alpha \cos \varphi)</td>
</tr>
<tr>
<td>M</td>
<td>δ</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>$0 \leq \varphi \leq \alpha$</td>
<td>$\delta_x = \frac{qR^4}{EJ} \left[-\sin \alpha - \frac{\sin^3 \alpha}{3} + \right.$</td>
<td></td>
</tr>
<tr>
<td>$M(0) = \frac{qR^2}{\pi} \left(\sin \alpha \sin \varphi - \frac{1}{2} \sin^2 \alpha \right)$</td>
<td>$\left. + \frac{1}{\pi} (\alpha + 3 \sin \alpha \cos \alpha + 2 \alpha \sin^2 \alpha) \right] \right.$</td>
<td></td>
</tr>
<tr>
<td>$M(0) = \frac{qR^2}{\pi} \left[\frac{1}{\pi} \left(\frac{\alpha}{2} + \alpha \sin^2 \alpha + \frac{3}{2} \sin \alpha \cos \alpha \right) - \frac{1}{2} \sin^2 \alpha \right]$</td>
<td>$\delta_y = -\frac{qR^4}{EJ} \left[\sin^2 \alpha - \frac{\sin^2 \alpha \cos \alpha}{3} - \right.$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\left. - \alpha \sin \alpha - \frac{2 \cos \alpha}{3} + \frac{2}{3} + \frac{\pi \sin \alpha}{2} - \right.$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\left. - \frac{1}{\pi} (2 \alpha \sin^2 \alpha + 3 \sin \alpha \cos \alpha + \alpha) \right]$</td>
<td></td>
</tr>
</tbody>
</table>
14.1. Определение напряжений в брусьях большой кривизны

К кривым брусам относятся грузоподъемные крюки, проушины, ввенья цепей, ободы шкивов и колес, арки и т. п. Оси этих брусьев являются плоскими кривыми. В поперечных сечениях плоского кривого бруса в общем случае действуют три внутренних силовых фактора M, Q и N, правило определения которых такое же, как и в брусах с прямой осью. Дифференциальные зависимости между M, Q и O были приведены в разделе 3.9.

Рис 286

Представляют большой практический интерес кривые брусья, имеющие продольную плоскость симметрии (рис 286, a, b), в которой обычно действуют внешние нагрузки.

Распределение нормальных напряжений в поперечных сечениях кривых брусьев иное, чем в брусьях с прямой осью. Это различие при прочих равных условиях тем больше, чем больше кривизна бруса, характеризуемая отношением высоты поперечного сечения h к кривизне R его оси. В связи с этим принято различать брусья малой кривизны, у которых $h/R < 1/5$, и брусья большой кривизны, у которых $h/R > 1/5$.

При изгибе брусьев малой кривизны нормальные напряжения с достаточной степенью точности можно определять по формуле Навье (10.6), выведенной для балок с прямой осью. Максимальные напряжения, подсчитанные по формуле Навье для бруса прямоугольного сечения с отношением $h/R = 1/15$, отличаются на 2% от напряженений.
численных по формулам для бруса большой кривизны; при \(h/R = 1/10 \) — на 3,5 %, при \(h/R = 1/5 \) — на 7 %.

Рассмотрим случай чистого изгиба бруса большой кривизны \((h'/R > 1/5) \) (рис. 286). Предполагаем, что радиус \(r_n \) нейтрального слоя неизвестен и не совпадает с радиусом \(R \) оси стержня.

При выводе формулы для определения нормальных напряжений в брусе большой кривизны исходят из тех же гипотез, что и при выводе формулы Навье, т. е. пользуются гипотезой плоских сечений и гипотезой о том, что продольные волокна материала не давят одно на другое. Выбираем направление осей сечения \(x \) и \(y \), как показано на рис. 286 (при этом ось \(x \) считается совпадающей с нейтральной линией, положение которой пока неизвестно). Направление \(y \) к центру кривизны принято за положительное.

Рассмотрим статическую сторону задачи и запишем условие равновесия применительно к элементу бруса (рис. 287, a), оставшемуся после удаления отсеченных частей. Для нашего случая, когда в сечении действует один силовой фактор \(M_x \), будем иметь

\[
\int \sigma dF = 0; \quad (14.1)
\]

\[
\int \sigma y dF = M. \quad (14.2)
\]

В случае симметрии \(F \)

\[
M_y = \int \sigma x dF = 0.
\]

Рассмотрим геометрическую сторону задачи. Относительное удлинение произвольно выделенного элементарного участка \(AB \), находящегося...
шегося на расстоянии y от нейтральной линии (рис. 287, б) и получившего в результате деформации уширение $y \Delta d\varphi$, равно

$$
e = \frac{y \Delta d\varphi}{(r_n - y) d\varphi}, \quad (14.3)$$

где $(r_n - y) d\varphi$ — длина элемента до деформации.

Из рассмотрения физической стороны задачи, определяемой законом Гука

$$
\sigma = E \varepsilon = \frac{E \Delta d\varphi}{d\varphi} \cdot \frac{y}{r_n - y}, \quad (14.4)
$$

условие (14.1) перепишем в виде

$$
\int \sigma dF = \int \frac{E \Delta d\varphi}{d\varphi} \cdot \frac{y dF}{r_n - y} = 0
$$

Так как

$$
\frac{E \Delta d\varphi}{d\varphi} \neq 0,
$$

то

$$
\int \frac{y dF}{r_n - y} = 0. \quad (14.5)
$$

Из (14.2) находим

$$
\int \sigma y dF = \frac{E \Delta d\varphi}{d\varphi} \int \frac{y^2 dF}{r_n - y} = M \quad (14.6)
$$

Так как

$$
\int \frac{y^2 dF}{r_n - y} = \int \frac{y^2}{r_n - y} dF = - \int \left(y - \frac{r_n}{r_n - y} \right) dF =
$$

$$
= - \int y dF + r_n \int \frac{y dF}{r_n - y} = -S_x + 0,
$$

или

$$
\int \frac{y^2 dF}{r_n - y} = -S_x = -(e) F = eF, \quad (14.7)
$$

можем представить (14.6) так:

$$
\frac{E \Delta d\varphi}{d\varphi} eF = M. \quad (14.8)
$$

Отсюда

$$
\frac{E \Delta d\varphi}{d\varphi} = \frac{M}{eF}, \quad (14.9)
$$

где e — расстояние от нейтральной линии до центра тяжести площадь поперечного сечения.

Подставив (14.8) в (14.4), найдем формулу для определения минимальных напряжений при изгибе

$$
\sigma = \frac{M_n}{eF (r_n - y)}, \quad (14.10)
$$
\[\sigma = -\frac{My}{S_x (r_n - y)}. \] (14.10)

Здесь \(M \) — изгибающий момент в сечении; \(S_x \) — статический момент площади сечения кривого бруса относительно нейтральной линии.

Из анализа (14.9) или (14.10) видно, что нормальные напряжения по высоте распределяются по гиперболическому закону (рис. 288, б). Абсолютные величины напряжений в крайних волокнах сечения бруса согласно (14.9) определяются по формулам

\[\sigma_1 = \frac{Mh_1}{FeR_1}; \quad \sigma_2 = \frac{Mh_2}{FeR_2}. \] (14.11)

![Рис. 288](image)

где \(R_1 \) и \(R_2 \) — соответственно радиусы кривизны внутренних и внешних волокон кривого бруса; \(h_1 \) и \(h_2 \) — расстояния от нейтральной линии до этих волокон. Знак напряжения определяется по направлению изгибающего момента в сечении.

Формулы (14.9) — (14.11) могут быть использованы, если известна величина \(e \) или радиус нейтрального слоя \(r_n \), поскольку

\[e = R - r_n. \] (14.12)

где \(R \) — радиус слоя, в котором расположены центры тяжести сечения бруса. Радиус \(r_n \) определим из уравнения (14.5).

Продевая замену переменных \(r = r_n - y \) или \(y = r_n - r \), перепишем уравнение (14.5) в следующем виде:

\[\int_{F} \frac{ydF}{r_n - y} = \int_{F} \frac{r_n - r}{r} dF = 0, \]
\[r_n \int_P \frac{dF}{r} - F = 0. \]

Отсюда

\[r_n = \frac{F}{\int_P \frac{dF}{r}}. \] (14.1)

Так как для прямоугольного сечения \(F = bh \) (\(h \) — высота сечения; \(b \) — ширина сечения); \(dF = bdr \), формула (14.13) может быть записана в виде

\[r_n = \frac{bh}{\ln \frac{R_2}{R_1}} = \frac{h}{\ln \frac{R_2}{R_1}} = \frac{h}{2,303 \ln \frac{R_4}{R_1}}. \] (14.1)

Воспользовавшись рядом

\[\ln \frac{R_2}{R_1} = \ln \frac{R + \frac{h}{2}}{R - \frac{h}{2}} = \ln \frac{1 + \frac{h}{2R}}{1 - \frac{h}{2R}} = \frac{h}{R} \left[1 + \frac{1}{3} \left(\frac{h}{2R} \right)^2 + \frac{1}{5} \left(\frac{h}{2R} \right)^4 + \ldots \right], \]

получим

\[e = R - r_n = R - \frac{R}{1 + \frac{1}{3} \left(\frac{h}{2R} \right)^2 + \frac{1}{5} \left(\frac{h}{2R} \right)^4 + \ldots}. \]

В первом приближении

\[e = R \left(1 - \frac{1}{1 + \frac{1}{3} \left(\frac{h}{2R} \right)^2} \right) \approx \frac{h^2}{12R}. \] (14)

Во втором приближении

\[e = \frac{h^2}{12R} \left[1 + \frac{4}{15} \left(\frac{h}{2R} \right)^2 \right]. \] (14)

На основании" (14.13) аналогичным путем можно получить выражение для \(e \) в случае других форм поперечного сечения. В табл. приведены радиусы кривизны \(r_n \) нейтрального слоя для сечений линейной формы. Из (14.12) по известным \(r_n \) могут быть определены лишицы \(e \). Для некоторых форм поперечного сечения \(e \) можно определить по табл. 38.
14.2. Расчет на прочность

Условие прочности для стержня малой кривизны, когда в его сечении действуют изгибающий момент и нормальная сила (рис. 288, ε) имеет вид

\[\sigma_{\text{max}} = \frac{M}{W} + \frac{N}{F} \leq \sigma, \] \hspace{1cm} (14.17)

где \(F \) — площадь сечения; \(W \) — момент сопротивления сечения (см. раздел 2.8).

Для стержня большой кривизны на основании (14.9) условие прочности будет

\[\sigma_{\text{max}} = \frac{My}{Fe(r_n - y)} + \frac{N}{F} \leq \sigma. \] \hspace{1cm} (14.18)

При этом нужно рассматривать точки сечения, в которых суммарные напряжения от изгиба и растяжения будут наибольшими (рис. 288, е, ε). Для этих точек в формулу (14.18) следует подставлять \(y = h_1 \) или \(y = h_2 \) и соответственно \(r_n - y = R_1 \) или \(r_n - y = R_2 \).

Если брус большой кривизны изготовлен из материала, для которого допускаемые напряжения на растяжение \([\sigma_1] \) и сжатие \([\sigma_2] \) различны (некоторые чугуны, пластмассы и др.), то условия прочности должны выполняться для крайних точек сечения как в растянутой, так и в сжатой области.

14.3. Определение перемещений

Для определения перемещений в стержнях любой кривизны удобно пользоваться методом Мора (раздел 12.6)

В стержнях малой кривизны можно пренебречь продольной деформацией и деформацией сдвига. Тогда в случае плоского изгиба можно пользоваться формулой Мора в виде

\[\Delta_{LP} = \sum \int_\alpha^\beta \frac{M_i M_p ds}{EJ}. \] \hspace{1cm} (14.19)

При плоском изгибе бруса большой кривизны деформации элемента от действия усилий \(M_p \) и \(N_p \) тоже состоят из удлинения \(\Delta (ds) \) отрезка.
\[ds \text{ оси и относительного поворота } d\theta \text{ сечений, ограничивающих элемент (рис. 289, a, б). Взаимный угол поворота сечений } \Delta d\varphi = d\theta_1, \text{ вызванный изгибающим моментом, можно определить из (14.8),}
\]
\[d\theta_1 = \frac{M_P d\varphi}{ES} = \frac{M_P ds}{ERS_0}. \]

где \(S = |S_x| = eF. \)

Угол поворота сечений, вызванный осевыми силами вследствие неодинаковой длины волокон элемента (рис. 289, б), равен

\[d\theta_2 = \frac{N_P ds}{EFR_0}. \]

Полный угол поворота

\[d\theta = d\theta_1 + d\theta_2 = \frac{M_P ds}{ERS_0} + \frac{N_P ds}{EFR_0}. \quad (14.20) \]

Удлинение элемента в результате действия осевых сил

\[\Delta (ds)_1 = \frac{N_P ds}{EF}. \]

Удлинение, вызванное поворотом сечения на угол \(d\theta_1, \)

\[\Delta (ds)_2 = ed\theta_1 = \frac{M_P ds}{ERS_0} e = \frac{M_P ds}{EFR_0}. \]

Полное удлинение осевого волокна

\[\Delta (ds) = \Delta (ds)_1 + \Delta (ds)_2 = \frac{N_P ds}{EF} + \frac{M_P ds}{EFR_0}. \quad (14.21) \]

Подставляя (14.20) и (14.21) в формулу возможных перемещений (12.27), находим общую формулу для определения перемещений больших кривизны

\[\Delta_{IP} = \int \left[\frac{M_i M_P}{ESR_0} + \frac{N_i M_P}{EFR_0} + \frac{\bar{M}_i N_P}{EF} + \frac{\bar{N}_i N_P}{G F} \right] ds. \quad (14.22) \]

Обычно на практике пренебрегают влиянием поперечного в результатае чего последнее слагаемое в (14.22) не учитывается.

В табл. 39, 40 приведены выражения для определения перемещений свободного конца консольного кругового стержня постоянного поперечного сечения при различных схемах его нагружения, а в 41 — значения определенных интегралов, часто встречающихся в определении перемещений в кривых стержнях.
Таблица 37. Радиус кривизны нейтрального слоя r_n для сечений различной формы

<table>
<thead>
<tr>
<th>Сечение (C — центр тяжести)</th>
<th>Формула для определения r_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прямоугольник</td>
<td>$\frac{h}{ln \frac{R_2}{R_1}} = \frac{h}{1 + \frac{h}{2R} \ln \frac{1}{1 - \frac{h}{2R}}}$</td>
</tr>
<tr>
<td>y</td>
<td>$\ln \frac{R_2}{R_1} = \frac{h}{R} \left[1 + \frac{1}{3} \left(\frac{h}{2R} \right)^2 + \frac{1}{5} \left(\frac{h}{2R} \right)^4 + \cdots \right]$</td>
</tr>
<tr>
<td>x</td>
<td>$\frac{h(b_2 + b_1)}{2 \left[\frac{b_1 R_2 - b_2 R_1}{h} \ln \frac{R_2}{R_1} - (b_1 - b_2) \right]}$</td>
</tr>
<tr>
<td>b_1 b_2</td>
<td>$\frac{b_2 h_2 + b_1 h_1}{b_2 \ln \frac{R_3}{R_2} + b_1 \ln \frac{R_3}{R_1}}$</td>
</tr>
<tr>
<td>h</td>
<td>$\frac{b_2 h_2 + b_1 h_1}{b_2 \ln \frac{R_3}{R_2} + b_1 \ln \frac{R_3}{R_1}}$</td>
</tr>
</tbody>
</table>
Продолжение табл. 37

<table>
<thead>
<tr>
<th>Сечение</th>
<th>Формула для определения r_h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Двутавр</td>
<td>$\frac{b_1 h_1 + b_2 h_2 + b_3 h_3}{b_1 \ln\frac{R_2}{R_1} + b_2 \ln\frac{R_3}{R_2} + b_3 \ln\frac{R_4}{R_3}}$</td>
</tr>
<tr>
<td>Корытое сечение</td>
<td>$\frac{b_1 h_1 + 2b_2 h_3}{b_1 \ln\frac{R_3 - h_2}{R_1} + 2b_2 \ln\frac{R_2}{R_2 - h_2}}$</td>
</tr>
<tr>
<td>Треугольник</td>
<td>$\frac{h}{2\left[\frac{R_3}{h} \ln\frac{R_3}{R_1} - 1\right]}$</td>
</tr>
<tr>
<td>Треугольник</td>
<td>$2\left[1 - \frac{R_1}{R_3} \ln\frac{R_3}{R_4}\right]$</td>
</tr>
</tbody>
</table>
Проведение табл. 37

Сечение

Круг

\[
\frac{d^2}{4 (2R - \sqrt{4R^2 - d^2})}
\]

Кольцевое сечение

\[
\frac{\sqrt{4R^2 - d^2} + \sqrt{4R^2 - D^2}}{4} = \frac{D^2 - d^2}{4 (\sqrt{4R^2 - d^2} - \sqrt{4R^2 - D^2})}
\]

Овальное сечение

\[
\frac{d^2}{4 (2R - \sqrt{4R^2 - d^2})}
\]

Таблица 38. Значение коэффициента \(k \) в формуле \(e = kR \)

<table>
<thead>
<tr>
<th>Сечение</th>
<th>(\frac{R}{d})</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прямоугольник</td>
<td>1,2</td>
<td>0,305</td>
</tr>
<tr>
<td>1,4</td>
<td>0,204</td>
<td></td>
</tr>
<tr>
<td>1,6</td>
<td>0,149</td>
<td></td>
</tr>
<tr>
<td>1,8</td>
<td>0,112</td>
<td></td>
</tr>
<tr>
<td>2,0</td>
<td>0,090</td>
<td></td>
</tr>
<tr>
<td>2,2</td>
<td>0,077</td>
<td></td>
</tr>
<tr>
<td>2,4</td>
<td>0,065</td>
<td></td>
</tr>
<tr>
<td>2,6</td>
<td>0,055</td>
<td></td>
</tr>
<tr>
<td>2,8</td>
<td>0,047</td>
<td></td>
</tr>
<tr>
<td>3,0</td>
<td>0,041</td>
<td></td>
</tr>
<tr>
<td>3,5</td>
<td>0,028</td>
<td></td>
</tr>
<tr>
<td>4,0</td>
<td>0,021</td>
<td></td>
</tr>
<tr>
<td>6,0</td>
<td>0,0093</td>
<td></td>
</tr>
<tr>
<td>8,0</td>
<td>0,0052</td>
<td></td>
</tr>
<tr>
<td>10,0</td>
<td>0,0033</td>
<td></td>
</tr>
</tbody>
</table>

\(a = R - R_1 = h/2 \)
<table>
<thead>
<tr>
<th>Сечение</th>
<th>(R/a)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тавр</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b_1 = 4b_2; \ h_1 = 1.5b_2; \ h_2 = 4.5b_2;)</td>
<td>1,2</td>
<td>0,418</td>
</tr>
<tr>
<td>(a = R - R_1 = 2,04b_2)</td>
<td>1,4</td>
<td>0,299</td>
</tr>
<tr>
<td></td>
<td>1,6</td>
<td>0,229</td>
</tr>
<tr>
<td></td>
<td>1,8</td>
<td>0,193</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>0,149</td>
</tr>
<tr>
<td></td>
<td>2,2</td>
<td>0,125</td>
</tr>
<tr>
<td></td>
<td>2,4</td>
<td>0,106</td>
</tr>
<tr>
<td></td>
<td>2,6</td>
<td>0,091</td>
</tr>
<tr>
<td></td>
<td>2,8</td>
<td>0,079</td>
</tr>
<tr>
<td></td>
<td>3,0</td>
<td>0,069</td>
</tr>
<tr>
<td></td>
<td>3,5</td>
<td>0,052</td>
</tr>
<tr>
<td></td>
<td>4,0</td>
<td>0,040</td>
</tr>
<tr>
<td></td>
<td>6,0</td>
<td>0,018</td>
</tr>
<tr>
<td></td>
<td>8,0</td>
<td>0,010</td>
</tr>
<tr>
<td></td>
<td>10,0</td>
<td>0,0065</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Двутавр</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = R - R_1 = 2,34b_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b_1 = 6b_2; \ b_3 = 4b_2, \ h_1 = 2b_2; \ h_2 = 3b_2; \ h_3 = b_2;)</td>
<td>1,2</td>
<td>0,409</td>
</tr>
<tr>
<td></td>
<td>1,4</td>
<td>0,292</td>
</tr>
<tr>
<td></td>
<td>1,6</td>
<td>0,224</td>
</tr>
<tr>
<td></td>
<td>1,8</td>
<td>0,178</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>0,144</td>
</tr>
<tr>
<td></td>
<td>2,2</td>
<td>0,120</td>
</tr>
<tr>
<td></td>
<td>2,4</td>
<td>0,103</td>
</tr>
<tr>
<td></td>
<td>2,6</td>
<td>0,089</td>
</tr>
<tr>
<td></td>
<td>2,8</td>
<td>0,077</td>
</tr>
<tr>
<td></td>
<td>3,0</td>
<td>0,067</td>
</tr>
<tr>
<td></td>
<td>3,5</td>
<td>0,049</td>
</tr>
<tr>
<td></td>
<td>4,0</td>
<td>0,038</td>
</tr>
<tr>
<td></td>
<td>6,0</td>
<td>0,018</td>
</tr>
<tr>
<td></td>
<td>8,0</td>
<td>0,010</td>
</tr>
<tr>
<td></td>
<td>10,0</td>
<td>0,0065</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_1 = b_3 = 3b_2; \ h_1 = h_3 = b_2; \ h_2 = 4b_2;)</td>
<td>1,2</td>
<td>0,408</td>
</tr>
<tr>
<td>(a = R - R_1 = 3b_2)</td>
<td>1,4</td>
<td>0,285</td>
</tr>
<tr>
<td></td>
<td>1,6</td>
<td>0,208</td>
</tr>
<tr>
<td></td>
<td>1,8</td>
<td>0,160</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>0,127</td>
</tr>
<tr>
<td></td>
<td>2,2</td>
<td>0,104</td>
</tr>
<tr>
<td></td>
<td>2,4</td>
<td>0,088</td>
</tr>
<tr>
<td></td>
<td>2,6</td>
<td>0,077</td>
</tr>
<tr>
<td></td>
<td>2,8</td>
<td>0,067</td>
</tr>
<tr>
<td></td>
<td>3,0</td>
<td>0,058</td>
</tr>
<tr>
<td></td>
<td>3,5</td>
<td>0,041</td>
</tr>
<tr>
<td></td>
<td>4,0</td>
<td>0,030</td>
</tr>
<tr>
<td></td>
<td>6,0</td>
<td>0,013</td>
</tr>
<tr>
<td></td>
<td>8,0</td>
<td>0,0076</td>
</tr>
<tr>
<td></td>
<td>10,0</td>
<td>0,0048</td>
</tr>
</tbody>
</table>
Продолжение табл. 38

<table>
<thead>
<tr>
<th>Сечение</th>
<th>R/a</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>0,453</td>
<td></td>
</tr>
<tr>
<td>1,4</td>
<td>0,319</td>
<td></td>
</tr>
<tr>
<td>1,6</td>
<td>0,236</td>
<td></td>
</tr>
<tr>
<td>1,8</td>
<td>0,183</td>
<td></td>
</tr>
<tr>
<td>2,0</td>
<td>0,147</td>
<td></td>
</tr>
<tr>
<td>2,2</td>
<td>0,122</td>
<td></td>
</tr>
<tr>
<td>2,4</td>
<td>0,104</td>
<td></td>
</tr>
<tr>
<td>2,6</td>
<td>0,090</td>
<td></td>
</tr>
<tr>
<td>2,8</td>
<td>0,078</td>
<td></td>
</tr>
<tr>
<td>3,0</td>
<td>0,067</td>
<td></td>
</tr>
<tr>
<td>3,5</td>
<td>0,048</td>
<td></td>
</tr>
<tr>
<td>4,0</td>
<td>0,036</td>
<td></td>
</tr>
<tr>
<td>6,0</td>
<td>0,016</td>
<td></td>
</tr>
<tr>
<td>8,0</td>
<td>0,0089</td>
<td></td>
</tr>
<tr>
<td>10,0</td>
<td>0,0057</td>
<td></td>
</tr>
</tbody>
</table>

b) $b_1 = b_3 = 6b_2$; $h_1 = h_3 = b_2$; $h_2 = 4b_2$; $a = R - R_1 = 3b_2$

Трапеция

<table>
<thead>
<tr>
<th>R/a</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>0,336</td>
</tr>
<tr>
<td>1,4</td>
<td>0,229</td>
</tr>
<tr>
<td>1,6</td>
<td>0,168</td>
</tr>
<tr>
<td>1,8</td>
<td>0,128</td>
</tr>
<tr>
<td>2,0</td>
<td>0,102</td>
</tr>
<tr>
<td>2,2</td>
<td>0,084</td>
</tr>
<tr>
<td>2,4</td>
<td>0,071</td>
</tr>
<tr>
<td>2,6</td>
<td>0,061</td>
</tr>
<tr>
<td>2,8</td>
<td>0,053</td>
</tr>
<tr>
<td>3,0</td>
<td>0,046</td>
</tr>
<tr>
<td>3,5</td>
<td>0,038</td>
</tr>
<tr>
<td>4,0</td>
<td>0,024</td>
</tr>
<tr>
<td>6,0</td>
<td>0,011</td>
</tr>
<tr>
<td>8,0</td>
<td>0,0060</td>
</tr>
<tr>
<td>10,0</td>
<td>0,0039</td>
</tr>
</tbody>
</table>

a) $b_1 = 2b_2$; $h = (1 \div 3) b_2$; $a = R - R_1 = \frac{4}{9} h$

<table>
<thead>
<tr>
<th>R/a</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>0,352</td>
</tr>
<tr>
<td>1,4</td>
<td>0,243</td>
</tr>
<tr>
<td>1,6</td>
<td>0,179</td>
</tr>
<tr>
<td>1,8</td>
<td>0,138</td>
</tr>
<tr>
<td>2,0</td>
<td>0,110</td>
</tr>
<tr>
<td>2,2</td>
<td>0,092</td>
</tr>
<tr>
<td>2,4</td>
<td>0,078</td>
</tr>
<tr>
<td>2,6</td>
<td>0,067</td>
</tr>
<tr>
<td>2,8</td>
<td>0,058</td>
</tr>
<tr>
<td>3,0</td>
<td>0,050</td>
</tr>
<tr>
<td>3,5</td>
<td>0,037</td>
</tr>
<tr>
<td>4,0</td>
<td>0,028</td>
</tr>
<tr>
<td>6,0</td>
<td>0,012</td>
</tr>
<tr>
<td>8,0</td>
<td>0,0060</td>
</tr>
<tr>
<td>10,0</td>
<td>0,0039</td>
</tr>
</tbody>
</table>

b) $b_1 = 4b_2$; $h = 5b_2$; $a = R - R_1 = 2b_2 = 0,4h$
<table>
<thead>
<tr>
<th>Сечение</th>
<th>(R/a)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Треугольник, у которого (h = \frac{3}{5} b); (a = R - R_1 = \frac{h}{3} = \frac{b}{5})</td>
<td>1.2</td>
<td>0.361</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>0.251</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>0.186</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>0.144</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>0.116</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>0.096</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>0.082</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>0.060</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>0.0060</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>0.0039</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Круг</th>
<th>(a = \frac{d}{2})</th>
<th>(\frac{D}{2} = \frac{d}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2</td>
<td>0.224</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>0.151</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>0.108</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>0.0070</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>0.0039</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>0.0025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Кольцевое сечение</th>
<th>(D = 2d; \ a = \frac{D}{2} = d)</th>
<th>(\frac{D}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2</td>
<td>0.269</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>0.182</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>0.104</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>0.068</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>0.0087</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>0.0049</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>0.0031</td>
</tr>
</tbody>
</table>
Таблица 39. Перемещения свободного конца консольного кругового стержня постоянного сечения при нагружении в его плоскости (ω, φ, θ — вертикальное, горизонтальное и угловое перемещения соответственно).

<table>
<thead>
<tr>
<th>Схема</th>
<th>ω</th>
<th>ϕ</th>
<th>θ</th>
</tr>
</thead>
</table>
| ![Diagram](image1) | \[
\frac{R^2}{EJ} \left[M_0 (1 - \cos \alpha) - PR \left(\frac{\alpha}{2} - \frac{\sin 2\alpha}{4} \right) - TR \left(1 - \cos \alpha \right) \right]
\] | \[
\frac{R^2}{EJ} \left[-M_0 (\alpha - \sin \alpha) - PR \frac{(1 - \cos \alpha)^2}{2} + TR \left(\frac{3}{2} \alpha - 2 \sin \alpha + \frac{\sin 2\alpha}{4} \right) \right]
\] | \[
\frac{R}{EJ} \left[M_0 \alpha + PR (1 - \cos \alpha) - TR (\alpha - \sin \alpha) \right]
\] |
| ![Diagram](image2) | \[
\frac{R^2}{EJ} \left[M_0 (\sin \alpha - \alpha \cos \alpha) + PR \left(\alpha + \frac{1}{2} \alpha \cos 2\alpha - \frac{3}{4} \sin 2\alpha \right) - TR \left(\cos \alpha - \frac{3}{4} \cos 2\alpha - \frac{1}{2} \alpha \sin 2\alpha - \frac{1}{4} \right) \right]
\] | \[
\frac{R^2}{EJ} \left[-M_0 (\alpha \sin \alpha - 1 + \cos \alpha) - PR \left(\cos \alpha - \frac{3}{4} \cos 2\alpha - \frac{1}{2} \alpha \sin 2\alpha - \frac{1}{4} \right) + TR \left(\alpha - \frac{1}{2} \alpha \cos 2\alpha + \frac{3}{4} \sin 2\alpha - 2 \sin \alpha \right) \right]
\] | \[
\frac{R}{EJ} \left[M_0 \alpha + PR (\sin \alpha - \alpha \cos \alpha) - TR (\alpha \sin \alpha - 1 + \cos \alpha) \right]
\] |
<table>
<thead>
<tr>
<th>Схема</th>
<th>(w)</th>
<th>(v)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\frac{qR^4}{EI} \left(1 - \cos \alpha \right)^2)</td>
<td>(-\frac{qR^4}{EI} \left(\frac{3}{2} \alpha - 2 \sin \alpha + \frac{\sin 2\alpha}{4} \right))</td>
<td>(\frac{qR^3}{EI} (\alpha - \sin \alpha))</td>
</tr>
<tr>
<td></td>
<td>(\frac{qR^4}{EI} \left(\frac{\alpha^2}{2} + \alpha \cos \alpha - \sin \alpha - \frac{\sin 2\alpha}{4} \right))</td>
<td>(\frac{qR^4}{EI} \left(\frac{\alpha^2}{2} - \alpha \sin \alpha + \frac{\sin^2 \alpha}{2} \right))</td>
<td>(\frac{qR^3}{EI} (1 - \cos \alpha - \frac{\alpha^2}{2}))</td>
</tr>
<tr>
<td></td>
<td>(\frac{mR^3}{EI} (\sin \alpha - \alpha \cos \alpha))</td>
<td>(\frac{mR^3}{EI} (1 - \cos \alpha - \alpha \sin \alpha))</td>
<td>(\frac{mR^3}{EI} \alpha^2)</td>
</tr>
</tbody>
</table>
Таблица 40. Перемещения свободного конца консольного кругового стержня постоянного сечения при нагружении в перпендикулярной плоскости (λ — отношение жесткостей сечения при изгибе EJ и кручені GJ)

<table>
<thead>
<tr>
<th>Схема</th>
<th>Перемещение, перпендикулярное к плоскости от</th>
<th>Угол поворота вокруг оси v</th>
<th>Угол поворота вокруг оси w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\frac{PR}{EJ} \left(\frac{1}{2} \alpha + \frac{\lambda - 1}{4} \right) x \sin 2\alpha - 2\lambda \sin \alpha)</td>
<td>(\frac{PR}{EJ} \left(\frac{\lambda - 1}{4} \sin 2\alpha + \frac{1 + \lambda}{2} \alpha - \lambda \sin \alpha \right))</td>
<td>(\frac{PR}{EJ} \left[\frac{1 - \lambda}{4} \sin^2 \alpha + \lambda(1 - \cos \alpha) \right])</td>
</tr>
<tr>
<td></td>
<td>(\frac{M^2}{EI} \left(\frac{\lambda - 1}{4} \sin 2\alpha + \frac{1 + \lambda}{2} \alpha - \lambda \sin \alpha \right))</td>
<td>(\frac{M^2}{EI} \left(\frac{1 + \lambda}{2} \alpha + \frac{\lambda - 1}{4} \sin 2\alpha \right))</td>
<td>(\frac{M^2}{EI} \left(\frac{\lambda - 1}{2} \sin^2 \alpha \right))</td>
</tr>
<tr>
<td>Схема</td>
<td>Перемещение, перпендикулярное к плоскости ω₀</td>
<td>Угол поворота вокруг оси ω</td>
<td>Угол поворота вокруг оси ω</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>[\frac{M_0 R^2}{EJ} \left(\frac{\lambda - 1}{2} \sin^2 \alpha + \frac{\lambda}{1 - \cos \alpha} \right)]</td>
<td>[\frac{M_0 R}{EJ} \left(\frac{\lambda - 1}{2} \sin^2 \alpha \right)]</td>
<td>[\frac{M_0 R}{EJ} \left(\frac{1 + \lambda}{2} \alpha - \frac{\lambda - 1}{4} \sin 2\alpha \right)]</td>
</tr>
<tr>
<td></td>
<td>[\frac{gR^4}{EJ} \left[(\lambda + 1) (1 - \cos \alpha) - \frac{\lambda - 1}{4} (1 - \cos 2\alpha) - \lambda \alpha \sin \alpha \right]]</td>
<td>[\frac{gR^4}{EJ} \left[(\lambda + 1) \left(\sin \alpha - \frac{\alpha}{2} \right) + \frac{\lambda - 1}{4} \sin 2\alpha - \lambda \alpha \cos \alpha \right]]</td>
<td></td>
</tr>
<tr>
<td>Интеграл</td>
<td>Пределы интегрирования</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>от 0 до α</td>
<td>от 0 до π/4</td>
<td>от 0 до π/2</td>
</tr>
<tr>
<td>$\int \sin \varphi , d\varphi$</td>
<td>$1 - \cos \alpha$</td>
<td>0,293</td>
<td>1</td>
</tr>
<tr>
<td>$\int \cos \varphi , d\varphi$</td>
<td>$\sin \alpha$</td>
<td>0,707</td>
<td>1</td>
</tr>
<tr>
<td>$\int \sin^2 \varphi , d\varphi$</td>
<td>$-\frac{1}{4} \sin 2\alpha + \frac{\alpha}{2}$</td>
<td>0,143</td>
<td>0,785</td>
</tr>
<tr>
<td>$\int \cos^2 \varphi , d\varphi$</td>
<td>$\frac{1}{4} \sin 2\alpha + \frac{\alpha}{2}$</td>
<td>0,643</td>
<td>0,785</td>
</tr>
<tr>
<td>$\int \sin^2 \varphi \cos \varphi , d\varphi$</td>
<td>$\frac{\sin^3 \alpha}{3}$</td>
<td>0,118</td>
<td>0,333</td>
</tr>
<tr>
<td>$\int \cos^2 \varphi \sin \varphi , d\varphi$</td>
<td>$\frac{1 - \cos^3 \alpha}{3}$</td>
<td>0,216</td>
<td>0,333</td>
</tr>
<tr>
<td>$\int \sin 2\varphi , d\varphi$</td>
<td>$\frac{1}{2} - \frac{\cos 2\alpha}{2}$</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>$\int \cos 2\varphi , d\varphi$</td>
<td>$\frac{1}{2} \sin 2\alpha$</td>
<td>0,5</td>
<td>0</td>
</tr>
<tr>
<td>$\int \sin \varphi \cos \varphi , d\varphi$</td>
<td>$\frac{\sin^2 \alpha}{2}$</td>
<td>0,25</td>
<td>0,5</td>
</tr>
<tr>
<td>$\int \varphi \sin \varphi , d\varphi$</td>
<td>$\sin \alpha - \alpha \cos \alpha$</td>
<td>0,152</td>
<td>1</td>
</tr>
<tr>
<td>$\int \varphi \cos \varphi , d\varphi$</td>
<td>$\cos \alpha + \alpha \sin \alpha - 1$</td>
<td>0,262</td>
<td>0,571</td>
</tr>
<tr>
<td>$\int \varphi \sin^2 \varphi , d\varphi$</td>
<td>$\frac{1}{4} (\alpha^2 - \alpha \sin 2\alpha) -$</td>
<td>0,0833</td>
<td>0,868</td>
</tr>
<tr>
<td></td>
<td>$-\frac{1}{8} (\cos 2\alpha - 1)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\int \varphi \cos^2 \varphi , d\varphi$</td>
<td>$\frac{1}{4} (\alpha^2 + \alpha \sin 2\alpha) +$</td>
<td>0,226</td>
<td>0,368</td>
</tr>
<tr>
<td></td>
<td>$+\frac{1}{8} (\cos 2\alpha - 1)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\int \varphi \sin 2\varphi , d\varphi$</td>
<td>$\frac{\sin 2\alpha}{4} - \frac{\alpha \cos 2\alpha}{2}$</td>
<td>0,25</td>
<td>0,785</td>
</tr>
<tr>
<td>$\int \varphi \cos 2\varphi , d\varphi$</td>
<td>$\frac{1}{4} (\cos 2\alpha - 1) +$</td>
<td>0,143</td>
<td>-6,5</td>
</tr>
<tr>
<td></td>
<td>$+\frac{\alpha \sin 2\alpha}{2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\int \sin (\alpha - \varphi) \sin \varphi , d\varphi$</td>
<td>$\frac{\sin \alpha}{2} - \frac{\alpha \cos \alpha}{2}$</td>
<td>0,076</td>
<td>0,5</td>
</tr>
<tr>
<td>$\int \cos (\alpha - \varphi) \sin \varphi , d\varphi$</td>
<td>$\frac{\alpha \sin \alpha}{2}$</td>
<td>0,278</td>
<td>0,785</td>
</tr>
</tbody>
</table>
15.1. Толстостенный цилиндр, подверженный внутреннему и наружному давлению

Цилиндр считается толстостенным, если толщина его стенки больше одной десятой его среднего радиуса.

Рассмотрим цилиндр, находящийся под действием внутреннего \(p_1 \) и наружного \(p_2 \) давлений (рис 290), \(r_1 \) и \(r_2 \) — внутренний и наружный радиусы цилиндра. Вследствие осевой симметрии цилиндра и нагрузок напряжения и деформации в цилиндре будут также симметричны относительно его оси.

Двумя сечениями, перпендикулярными к оси цилиндра, выделим кольцо единичной длины (рис. 290). Из этого кольца вырежем элемент abcd (рис. 291, а) двумя плоскостями, проходящими через ось цилиндра и образующими между собой угол \(d\theta \), в двух цилиндрическими поверхностями радиусами \(r \) и \(r + dr \) (рис. 291, б). По граням этого элемента будут действовать радиальные \(\sigma_r \) и тангенциальные \(\sigma_\theta \) напряжения, замыкающие воздействие отброшенной части цилиндра и удовлетворяющие условиям равновесия элемента. Очевидно \(\sigma_\theta \) и \(\sigma_r \) будут главными напряжениями.

Определение \(\sigma_r = \int (p_1, p_2, r) \) и \(\sigma_\theta = \int (p_1, p_2, r) \) начнем из рассмотрения статической стороны задачи и составим уравнения статики в соответствии с принятым координатным (рис. 291, в)

\[
\sum X = 0; \quad \sum Y = 0.
\]

Вследствие симметрии элемента второе условие удовлетворяется тождественно, а первое после подстановки выражений для усилий принимает вид

\[
\sum X = -\sigma_r r d\theta + (\sigma_r + d\sigma_r) (r + dr) d\theta - 2 \left(\sigma_\theta dr \sin \frac{d\theta}{2} \right) = 0.
\]

Принимая \(\sin \frac{d\theta}{2} = \frac{d\theta}{2} \) и отбрасывая величины второго порядка малости, получаем

\[
r \frac{d\sigma_r}{dr} + \sigma_r - \sigma_\theta = 0. \quad (15.1)
\]

Это уравнение содержит два неизвестных напряжения \(\sigma_\theta \) и \(\sigma_r \). Для определения необходимо рассмотреть геометрическую и физическую стороны задачи, что позволит представить уравнение (15.1) в перемещениях.
Обозначим радиальное перемещение цилиндрической поверхности радиусом \(r \) через \(u \) (рис. 291, а); тогда перемещение цилиндрической поверхности радиусом \(r + dr \) будет \(u + du \). Относительное удаляние элемента длиной \(dr \) выразится формулой

\[
e_r = \frac{du}{dr}.
\]
(15.2)

Относительное удлинение в тангенциальном (окружном) направлении будет

\[
e_\theta = \frac{(r + u) d\theta - rd\theta}{rd\theta} = \frac{u}{r}.
\]
(15.3)

Рис 291

Рассматривая физическую сторону задачи, представим зависимости между напряжениями и деформациями в соответствии с обобщенным законом Гука (5.22) применительно к плоскому напряженному состоянию в следующем виде:

\[
\sigma_r = \frac{E}{1 - \mu^2} (e_r + \mu e_\theta);
\]

\[
\sigma_\theta = \frac{E}{1 - \mu^2} (e_\theta + \mu e_r).
\]

Учитывая (15.2) и (15.3), получаем

\[
\sigma_r = \frac{E}{1 - \mu^2} \left(\frac{du}{dr} + \mu \frac{u}{r} \right);
\]

\[
\sigma_\theta = \frac{E}{1 - \mu^2} \left(\frac{u}{r} + \mu \frac{du}{dr} \right).
\]
(15.4)

Подставив (15.4) в (15.1), получим дифференциальное уравнение в перемещениях

\[
\frac{d^2u}{dr^2} + \frac{1}{r} \frac{du}{dr} - \frac{u}{r^2} = 0.
\]
(15.5)

Записав это уравнение в виде

\[
\frac{d}{dr} \left[\frac{1}{r} \frac{d(ur)}{dr} \right] = 0,
\]

после двукратного его интегрирования найдем общее решение

\[
u = C_1 r + C_2 \frac{1}{r},
\]
(15.6)
где \(C_1 \) и \(C_2 \) — постоянные интегрирования, определяемые из граничных условий. В нашем случае граничными условиями будут

\[
(\sigma_r)_{r=r_1} = -p_1, \quad (\sigma_r)_{r=r_2} = -p_2.
\]

Подставляя (15.6) в (15.4), находим

\[
\sigma_r = \frac{E}{1-\mu^2} \left[(1 + \mu) C_1 - \frac{1-\mu}{r^2} C_2 \right]; \quad (15.7)
\]

\[
\sigma_\theta = \frac{E}{1-\mu^2} \left[(1 + \mu) C_1 + \frac{1-\mu}{r_1^2} C_2 \right]. \quad (15.8)
\]

После подстановки граничных условий в (15.7) получаем

\[
-p_1 = \frac{E}{1-\mu^2} \left[(1 + \mu) C_1 - \frac{1-\mu}{r_1^2} C_2 \right];
\]

\[
-p_2 = \frac{E}{1-\mu^2} \left[(1 + \mu) C_1 + \frac{1-\mu}{r_2^2} C_2 \right].
\]

Решив совместно эти уравнения, находим

\[
C_1 = \frac{1-\mu}{E} \frac{r_1^2 p_1 - r_2^2 p_2}{r_2^2 - r_1^2};
\]

\[
C_2 = \frac{1+\mu}{E} \frac{r_1^2 r_2^2 (p_1 - p_2)}{r_2^2 - r_1^2}.
\]

Подставив значения постоянных \(C_1 \) и \(C_2 \) в (15.6) — (15.8), найдем окончательные формулы для определения радиального перемещения \(u \) и напряжений (формулы Ламе):

\[
u = \frac{1-\mu}{E} \frac{r_1^2 p_1 - r_2^2 p_2}{r_2^2 - r_1^2} r + \frac{1+\mu}{E} \frac{r_1^2 r_2^2 (p_1 - p_2)}{r_2^2 - r_1^2} \frac{1}{r}; \quad (15.9)
\]

\[
\sigma_r = \frac{r_1^2 p_1 - r_2^2 p_2}{r_2^2 - r_1^2} - \frac{r_1^2 r_2^2 (p_1 - p_2)}{r_2^2 - r_1^2} \frac{1}{r^3}; \quad (15.10)
\]

\[
\sigma_\theta = \frac{r_1^2 p_1 - r_2^2 p_2}{r_2^2 - r_1^2} + \frac{r_1^2 r_2^2 (p_1 - p_2)}{r_2^2 - r_1^2} \frac{1}{r^3}. \quad (15.11)
\]

Складывая (15.10) и (15.11), убеждаемся, что

\[
\sigma_r + \sigma_\theta = \text{const},
\]

следовательно,

\[
\varepsilon_2 = -\frac{\mu}{E} (\sigma_r + \sigma_\theta) = \text{const}.
\]

т. е. поперечные сечения цилиндра при деформациях остаются плоскими. Формулы (15.9) — (15.11) справедливы для бесконечно длинного цилиндра и пригодны для использования в сечениях цилиндра, достаточно удаленных от днищ, если таковые имеются.
При наличии осевых нагрузок \(N \), действующих на цилиндр, в частности при наличии днищ, в его стенках возникают осевые напряжения

\[
\sigma_z = \frac{N}{F} = \frac{N}{\pi (r_2^2 - r_1^2)}.
\]

(15.12)

При этом в (15.9) появляется слагаемое

\[
\Delta u = -\mu \frac{\sigma_z}{E} r,
\]

(15.13)

а напряжения \(\sigma_r \) и \(\sigma_\theta \) не изменяются.

В частном случае, когда отсутствует наружное давление \((p_2 = 0, \ p_1 = p)\), формулы для определения напряжений и перемещений в толстостенном цилиндре можно записать в виде

\[
\sigma_r = \frac{r_1^2}{r_2^2 - r_1^2} \left(1 - \frac{r_2^2}{r_1^2} \right) p;
\]

(15.14)

\[
\sigma_\theta = \frac{r_1^2}{r_2^2 - r_1^2} \left(1 + \frac{r_2^2}{r_1^2} \right) p;
\]

(15.15)

\[
u = \frac{1 - \mu}{E} \frac{r_1^2}{r_2^2 - r_1^2} r + \frac{1 + \mu}{E} \frac{r_1^2 r_2^2 p}{r_2^2 - r_1^2} \frac{1}{r}.
\]

(15.16)

При этом

\[
(\sigma_r)_{\text{max}} = (\sigma_r)_{r=r_1} = -p;
\]

(15.17)

\[
(\sigma_\theta)_{\text{max}} = (\sigma_\theta)_{r=r_1} = \frac{1 + k^2}{1 - k^2} p,
\]

где

\[
k = \frac{r_1}{r_2}.
\]

Радиальное перемещение внутренней поверхности, т. е. увеличение внутреннего радиуса, равно

\[
(u)_{r=r_1} = \frac{r_1}{E} \left(\frac{1 + k^2}{1 - k^2} + \mu \right) p.
\]

(15.18)

Для наружной поверхности цилиндра

\[
(\sigma_r)_{r=r_2} = 0;
\]

(15.19)

\[
(\sigma_\theta)_{r=r_2} = \frac{2k^2}{1 - k^2} p;
\]

\[
(u)_{r=r_2} = r_2 \frac{2k^2}{E} \frac{1}{1 - k^2} p.
\]

(15.20)

Эпюры напряжений для рассматриваемого случая при \(k = \frac{r_1}{r_2} = 0.5 \) приведены на рис. 292, а Напряжения вдоль радиуса изменяются по гиперболическому закону. Опасные точки (точки наибольших напряжений) находятся на внутренней поверхности цилиндра при \(r = r_1 \).
Из анализа (15.17) следует, что при \(r_2 \to \infty \) и \(k \to 0 \)

\[
(\sigma_r)_{r=r_1} = -p; \quad (\sigma_\theta)_{r=r_1} = p.
\]

Используя третью теорию прочности, получаем

\[
\sigma_{\text{эквIII}} = \sigma_1 = \sigma_3 < [\sigma]
\] \hspace{1cm} (15.21)

В рассматриваемом предельном случае \(k \to 0 \)

\[
\sigma_1 = (\sigma_\theta)_{r=r_1} = p; \quad \sigma_3 = (\sigma_r)_{r=r_1} = -p
\]

условие прочности (15.21) принимает вид

\[
2p < [\sigma],
\]

откуда

\[
p < \frac{[\sigma]}{2}.
\]

Таким образом, цилиндр с весьма толстой стенкой не допускает внутреннего давления, большего определенной величины, т. е. увеличение толщины стенки цилиндра не всегда является эффективным способом увеличения прочности.

Рис 292

Рассмотрим частный случай, когда отсутствует внутреннее давление \((p_1 = 0, p_2 = p) \). Формулы (15.9) — (15.11) примут вид

\[
u = \frac{1 - \mu}{E} \frac{r_2^2 p}{r_2^2 - r_1^2} - \frac{1 + \mu}{E} \frac{r_1^2 r_2^2 p}{r_2^2 - r_1^2} \frac{1}{r};
\] \hspace{1cm} (15.22)

\[
\sigma_r = -\frac{r_2^2}{r_2^2 - r_1^2} \left(1 - \frac{2}{r_2^2}
ight) p;
\] \hspace{1cm} (15.23)

\[
\sigma_\theta = -\frac{r_2^2}{r_2^2 - r_1^2} \left(1 + \frac{2}{r_2^2}
ight) p.
\] \hspace{1cm} (15.24)

Как видно из (15.23) и (15.24), оба напряжения в этом случае сжимающие, причем \(|\sigma_\theta| > |\sigma_1| \). На внутренней поверхности

\[
(\sigma_r)_{r=r_1} = 0;
\] \hspace{1cm} (15.25)

\[
(\sigma_\theta)_{r=r_1} = -\frac{2}{1 - k^2} p;
\] \hspace{1cm} (15.26)

\[
(\nu)_{r=r_1} = -\frac{r_1}{E} \frac{2}{1 - k^2} p.
\] \hspace{1cm} (15.27)

На наружной поверхности цилиндра

\[
(\sigma_r)_{r=r_2} = -p;
\] \hspace{1cm} (15.28)

\[
(\sigma_\theta)_{r=r_2} = -\frac{1 + k^2}{1 - k^2} p;
\] \hspace{1cm} (15.29)

\[
(\nu)_{r=r_2} = -\frac{r_2}{E} \left(1 + k^2 - \mu \right) p.
\] \hspace{1cm} (15.30)
Эпюры напряжений σ_{r} и σ_{θ} при $k = \frac{r_{1}}{r_{2}} = 0.5$ приведены на рис. 292, б. Наибольшее по абсолютной величине напряжение σ_{θ} оказывается на внутренней поверхности цилиндра; эти точки являются опасными. Положив в формуле (15.22) $r_{1} = 0$ и $r = r_{2}$, получим величину перемещения наружной поверхности для сплошного цилиндра:

$$
(u)_{r=r_{2}} = -\frac{pr_{2}}{E} (1 - \mu) \quad (15.30)
$$

В табл. 42 приведены расчетные формулы для толстостенных цилиндров при различных схемах нагружения.

15.2. Расчет составных цилиндров

С целью получения более равномерного распределения напряжений по толщине стенки и разгрузки внутренних слоев за счет лучшего использования наружных цилиндров делают составными путем одевания с наягом одного цилиндра на другой (обычно с помощью горячей посадки). В таких цилиндрах величина допускаемого внутреннего давления может быть значительно больше, чем в цельном цилиндре, что используется при изготовлении орудийных стволов.

Рис. 293

При посадке одного цилиндра на другой с наягом окружные напряжения во внутреннем цилиндре являются сжимающими, а в наружных — растягивающими. Эпюра напряжений, возникающих после посадки, представлена на рис. 293, а.

Под действием внутреннего давления в таком составном цилиндре возникают напряжения, определяемые по формулам (15.14) и (15.15) как для цельного цилиндра и характеризуемые эпюрой, показанной на рис 293, б. Просуммировав эпюры напряжений, приведенные на рис. 293, а и рис. 293, б, получим действительную эпюру (рис. 293, в), имеющую место в составном цилиндре при внутреннем давлении.

Из суммарной эпюры видно, что напряжения в стенке составного цилиндра распределены более равномерно, чем в сплошной стенке (эпюра показана штрихами), поэтому в составных цилиндрах имеет место более рациональное использование материала, чем в сплошных цилиндрах.

При расчете составных цилиндров основным является установление величины давления p_{c} на поверхности их контакта при заданном наяге δ, представляющем собой разность между наружным диаметром внутреннего цилиндра I и внутренним диаметром наружного цилиндра.
II (рис. 294). Очевидно, уменьшение наружного радиуса внутреннего цилиндра \(u_1 \) и увеличение внутреннего радиуса наружного цилиндра \(u_{II} \) равны половине натяга:

\[
|u_1| + |u_{II}| = \frac{\delta}{2}.
\]
(15.31)

Учитывая, что натяг \(\delta \) весьма мал по сравнению с радиусом поверхности контакта, считаем, что \(r_{2I} = r_{II} = r_c \) (\(r_c \) — радиус поверхности контакта составного цилиндра).

Контактное давление \(p_c \) будет наружным для внутреннего цилиндра и внутренним для наружного цилиндра.

Рис. 294

Обозначим

\[
k_1 = \frac{r_1}{r_c}; \quad k_2 = \frac{r_c}{r_2}.
\]

Радиальное перемещение контактной поверхности внутреннего цилиндра определяем по формуле (15.29):

\[
u_1 = -\frac{r_c}{E_1} \left(\frac{1 + k_2^2}{1 - k_1^2} - \mu_1 \right) p_c,
\]
(15.32)

наружного — по формуле (15.18):

\[
u_{II} = \frac{r_c}{E_2} \left(\frac{1 + k_2^2}{1 - k_2^2} + \mu_2 \right) p_c,
\]
(15.33)

Подставляя абсолютные значения этих перемещений в (15.31), получаем

\[
r_c \left(\frac{1 + k_2^2}{1 - k_1^2} - \mu_1 \right) p_c + \frac{r_c}{E_2} \left(\frac{1 + k_2^2}{1 - k_2^2} + \mu_2 \right) p_c = \frac{\delta}{2},
\]

откуда, решая уравнение относительно \(p_c \), находим

\[
p_c = \frac{r_c \left(\frac{1 + k_2^2}{1 - k_1^2} - \mu_1 \right) + \frac{r_c}{E_2} \left(\frac{1 + k_2^2}{1 - k_2^2} + \mu_2 \right)}{\frac{r_c}{E_1} \left(\frac{1 + k_2^2}{1 - k_1^2} - \mu_1 \right) + \frac{r_c}{E_2} \left(\frac{1 + k_2^2}{1 - k_2^2} + \mu_2 \right)}.
\]
(15.34)
Если составляющие цилиндры изготовлены из одного материала, формула упрощается и принимает вид

\[p_c = \frac{\delta E}{2\tau_c (1 + k_1^2) (1 - k_2^2)} \left(\frac{1}{1 - k_1^2} \right). \]

(15.35)

По найденному значению \(p_c = f(\delta) \) определяют начальные напряжения во внутреннем (формулы (15.23), (15.24)) и наружном (формулы (15.14) и (15.15)) цилиндрах. Формулы (15.34) и (15.35) справедливы, если напряжения не превышают предела пропорциональности. При появлении при посадке пластических деформаций фактические усилия \(p_c \) будут меньше расчетных.

15.3. Температурные напряжения в толстостенных цилиндрах

В случае неравномерного нагрева толстостенных цилиндоров в них развиваются температурные напряжения. При расчете температурных напряжений полученные ранее уравнение равновесия (15.11) и геометрические соотношения (15.2) и (15.3) остаются без изменений, а физические зависимости будут несколько иными.

Определив через \(t(r) \) повышение температуры, зависящее от текущего радиуса \(r \), через \(\alpha \) — коэффициент температурного расширения, и приняв значения модуля \(E \) и коэффициента Пуассона \(\mu \) соответственно средней температуре стенки, запишем обобщенный закон Гука в виде

\[
\begin{align*}
\varepsilon_z &= \frac{1}{E} (\sigma_z - \mu \sigma_r - \mu \sigma_\theta) + \alpha t(r) = \text{const}; \\
\varepsilon_r &= \frac{1}{E} (\sigma_r - \mu \sigma_z - \mu \sigma_\theta) + \alpha t(r); \\
\varepsilon_\theta &= \frac{1}{E} (\sigma_\theta - \mu \sigma_z - \mu \sigma_r) + \alpha t(r).
\end{align*}
\]

(15.36)

Решив эти уравнения относительно напряжений, получим

\[
\begin{align*}
\sigma_z &= \frac{E}{(1 + \mu)(1 - 2\mu)} [(1 - \mu) \varepsilon_z + \mu \varepsilon_r + \mu \varepsilon_\theta - (1 + \mu) \alpha t(r)]; \\
\sigma_r &= \frac{E}{(1 + \mu)(1 - 2\mu)} [(1 - \mu) \varepsilon_r + \mu \varepsilon_\theta + \mu \varepsilon_z - (1 + \mu) \alpha t(r)]; \\
\sigma_\theta &= \frac{E}{(1 + \mu)(1 - 2\mu)} [(1 - \mu) \varepsilon_\theta + \mu \varepsilon_r + \mu \varepsilon_z - (1 + \mu) \alpha t(r)].
\end{align*}
\]

(15.37)

(15.38)

(15.39)

Учитывая, что

\[\varepsilon_r = \frac{du}{dr}, \quad \varepsilon_\theta = \frac{u}{r}, \]

(15.40)

после подстановки в уравнение (15.1) выражений (15.38) и (15.39) находим

\[\frac{d^2u}{dr^2} + \frac{1}{r} \frac{du}{dr} - \frac{u}{r^2} = \frac{1 + \mu}{1 - \mu} \alpha \frac{dt(r)}{dr}. \]

(15.41)

Зная закон изменения температуры \(t = f(r) \), из уравнения (15.41) можно определить перемещение.
Переписав (15.41) в виде
\[
\frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} \left(\frac{d(\omega r)}{dr} \right) \right] = \frac{1 + \mu}{1 - \mu} \frac{d(\omega r)}{dr},
\]
после двукратного интегрирования этого уравнения получим
\[
u = \frac{1}{r} \frac{1 + \mu}{1 - \mu} \int_{r_1}^{r} \omega(r) \, r \, dr + C_1 r + \frac{C_2}{r}.
\] (15.42)

Постоянные интегрирования C_1 и C_2 определим из условий для σ_r на внутренней и наружной поверхностях цилиндра
\[(\sigma_r)_{r=r_1} = 0; \quad (\sigma_r)_{r=r_2} = 0.\] (15.43)

Внесем (15.40) и (15.42) в (15.38), будем иметь
\[
\sigma_r = \frac{E}{1 + \mu} \left[-\frac{1 + \mu}{1 - \mu} \frac{1}{r_2^2 - r_1^2} \int_{r_1}^{r} \omega(r) \, r \, dr + \frac{C_1}{r_2^2 - r_1^2} + \frac{\mu}{r_2^2 - r_1^2} \varepsilon_z \right].
\]

Подставив это выражение в (15.43) и решив полученную при этом систему двух уравнений относительно постоянных интегрирования, найдем
\[
C_1 = \frac{(1 + \mu)(1 - 2\mu)}{1 - \mu} \frac{1}{r_2^2 - r_1^2} \int_{r_1}^{r_2} \omega(r) \, r \, dr - \mu \varepsilon_z;
\]
\[
C_2 = \frac{1 + \mu}{1 - \mu} \frac{r_2^2 - r_1^2}{r_2^2 - r_1^2} \int_{r_1}^{r_2} \omega(r) \, r \, dr.
\]

После подстановки (15.40) в (15.37) — (15.39) с учетом (15.42) и найденных значений C_1 и C_2 получим
\[
\sigma_r = \frac{E}{1 - \mu} \left[-\frac{1}{r_2^2 - r_1^2} \int_{r_1}^{r} \omega(r) \, r \, dr + \frac{r_2^2 - r_1^2}{r_2^2 - r_1^2} \int_{r_1}^{r} \omega(r) \, r \, dr \right];
\] (15.44)
\[
\sigma_\theta = \frac{E}{1 - \mu} \left[\frac{1}{r_2^2 - r_1^2} \int_{r_1}^{r} \omega(r) \, r \, dr + \frac{r_2^2 - r_1^2}{r_2^2 - r_1^2} \int_{r_1}^{r} \omega(r) \, r \, dr - \omega(r) \right];
\] (15.45)
\[
\sigma_z = \frac{E}{1 - \mu} \left[\frac{2\mu}{r_2^2 - r_1^2} \int_{r_1}^{r} \omega(r) \, r \, dr + (1 - \mu) \varepsilon_z - \omega(r) \right].
\] (15.46)

Неизвестная величина ε_z, входящая в последнюю формулу, в случае свободного расширения цилиндра может быть найдена из условия отсутствия в поперечном сечении цилиндра продольной силы:
\[
N = \int_{0}^{2\pi} \int_{r_1}^{r_2} \sigma_z r \, dr \, d\phi = 0
\] (15.47)
\[\int_{r_1}^{r_1} \sigma z r dr = 0. \]

Подставляя в последнее равенство выражение для \(\sigma z \) (15.46), находим

\[\varepsilon z = \frac{2}{r_2 - r_1} \int_{r_1}^{r_1} \alpha t (r) r dr. \]

С учетом полученного выражения \(\varepsilon z \) формула (15.46) принимает вид

\[\sigma z = \frac{E}{1 - \mu} \left[\frac{2}{r_2 - r_1} \int_{r_1}^{r_1} \alpha t (r) r dr - \alpha t (r) \right]. \] (15.48)

Вычислить интеграл \(\int_{r_1}^{r_1} \alpha t (r) r dr \) и определить напряжения возможно, если известен закон изменения температуры \(t (r) \) по толщине стенки.

При линейном вакуе изменении температуры

\[t (r) = T \frac{r_a - r}{r_a - r_1}, \] (15.49)

где \(T = t_1 - t_2; t_1 \) и \(t_2 \) — температура на внутренней и наружной поверхностях цилиндра соответственно.

Подставив (15.49) в (15.44), (15.45) и (15.48), после интегрирования найдем

\[\sigma r = \frac{E \alpha t}{3 (1 - \mu) (r_a - r_1)} \left[r - r_1^3 \right] - \left(1 - \frac{r_1^2}{r_a^2} \right) \frac{r_2^3 - r_1^3}{r_2^3 - r_1^3}; \] (15.50)

\[\sigma \theta = \frac{E \alpha t}{3 (1 - \mu) (r_a - r_1)} \left[2r + r_1^3 \right] - \left(1 + \frac{r_1^2}{r_a^2} \right) \frac{r_2^3 - r_1^3}{r_2^3 - r_1^3}; \] (15.51)

\[\sigma z = \frac{E \alpha t}{3 (1 - \mu) (r_a - r_1)} \left[3r - 2 \frac{(r_2^3 - r_1^3)}{r_2^3 - r_1^3} \right]. \] (15.52)

Напряжения у внутренней поверхности цилиндра при \(r = r_1 \) будут

\[(\sigma r)_{r = r_1} = 0; \]

\[(\sigma \theta)_{r = r_1} = (\sigma z)_{r = r_1} = \frac{E \alpha t}{3 (1 - \mu) (r_a - r_1)} \left[3r_1 - 2 \frac{(r_2^3 - r_1^3)}{r_2^3 - r_1^3} \right]. \] (15.53)

У наружной поверхности при \(r = r_2 \)

\[(\sigma r)_{r = r_2} = 0; \]

\[(\sigma \theta)_{r = r_2} = (\sigma z)_{r = r_2} = \frac{E \alpha t}{3 (1 - \mu) (r_a - r_1)} \left[3r_2 - 2 \frac{(r_2^3 - r_1^3)}{r_2^3 - r_1^3} \right]. \] (15.54)
Эпюры распределения температурных напряжений по толщине стенки цилиндра с отношением \(k = \frac{r_1}{r_3} = 0.5 \) при \(\mu = 0.3 \) приведены на рис. 295, а.

В случае логарифмического закона изменения температуры в стенке толстостенного цилиндра

\[
t(r) = \frac{T}{\ln \frac{r_2}{r_1}} \ln \frac{r_2}{r_1}.
\] (15.55)

После подстановки (15.55) в (15.44), (15.45) и (15.48) и выполнения интегрирования формулы для определения напряжений \(\sigma_r, \sigma_\theta \) и \(\sigma_z \) соответственно будут

\[
\sigma_r = -\frac{E\alpha T}{2(1-\mu)\ln \frac{r_2}{r_1}} \left[\ln \frac{r_2}{r_1} + \frac{r_1^2}{r_2^2 - r_1^2} \left(1 - \frac{r_2^2}{r_1^2} \right) \ln \frac{r_2}{r_1} \right];
\] (15.56)

\[
\sigma_\theta = \frac{E\alpha T}{2(1-\mu)\ln \frac{r_2}{r_1}} \left[1 - \ln \frac{r_2}{r_1} - \frac{r_1^2}{r_2^2 - r_1^2} \left(1 - \frac{r_2^2}{r_1^2} \right) \ln \frac{r_2}{r_1} \right];
\] (15.57)

\[
\sigma_z = \frac{E\alpha T}{2(1-\mu)\ln \frac{r_2}{r_1}} \left[1 - 2\ln \frac{r_2}{r_1} - \frac{2r_1^2}{r_2^2 - r_1^2} \ln \frac{r_2}{r_1} \right].
\] (15.58)

У внутренней поверхности цилиндра при \(r = r_1 \)

\[
(\sigma_r)_{r=r_1} = 0;
\]

\[
(\sigma_\theta)_{r=r_1} = (\sigma_z)_{r=r_1} = \frac{E\alpha T}{2(1-\mu)\ln \frac{r_2}{r_1}} \left[1 - \frac{2r_1^2}{r_2^2 - r_1^2} \ln \frac{r_2}{r_1} \right].
\] (15.59)

У наружной поверхности цилиндра при \(r = r_2 \)

\[
(\sigma_r)_{r=r_2} = 0;
\]

\[
(\sigma_\theta)_{r=r_2} = (\sigma_z)_{r=r_2} = \frac{E\alpha T}{2(1-\mu)\ln \frac{r_2}{r_1}} \left[1 - \frac{2r_1^2}{r_2^2 - r_1^2} \ln \frac{r_2}{r_1} \right].
\] (15.60)
Эпюры распределения температурных напряжений по толщине стенки цилиндра с отношением \(k = \frac{r_1}{r_2} = 0,5 \) при \(\mu = 0,3 \) в случае изменения температуры по логарифмическому закону представлены на рис. 295, б.

Вблизи торцов цилиндра напряжения, определяемые с помощью приведенных формул, могут иметь место лишь в том случае, если торцы будут нагружены поверхностной нагрузкой, изменяющейся в соответствии с формулой для \(\sigma_2 \).

15.4. Расчет вращающихся дисков

Вращающийся диск обычно испытывает растяжение под действием центробежных сил, являющихся для него основной нагрузкой, а также изгиб. При неравномерном нагреве в нем могут возникнуть и температурные напряжения. Обычно нагрузка и температурное поле симметричны относительно оси диска, вследствие чего напряжение является функцией расстояния от оси вращения.

![Diagram](image)

Рис. 296

Рассматривая тонкий плоский диск постоянной толщиной \(h \), можно считать, что напряжения по его толщине распределены равномерно, а напряжения, параллельные оси диска, отсутствуют \((\sigma_2 = 0) \). Таким образом, задача определения напряжений в диске сводится к так называемой плоской задаче теории упругости, а именно к задаче о плоском напряженном состоянии.

Если диск, удельная масса которого равна \(\gamma/g \), вращается с угловой скоростью \(\omega \), то массовые силы, действующие на выделенный элемент диска (рис. 296, а) могут быть представлены равнодействующей (рис. 296, б), лежащей в срединной плоскости элемента и равной

\[
\frac{\gamma}{g} h \pi r^2 \cdot \omega^2 r.
\]

Запишем условие равновесия элемента, спроектировав все силы на ось \(x \)

\[
r \frac{d \sigma_r}{dr} + \sigma_r - \sigma_0 - \frac{\gamma}{g} \omega^2 r^2 = 0.
\] \hspace{1cm} (15.61)

Геометрические и физические уравнения при расчете дисков будут такие же, как и в задаче Ляме ((15.2) — (15.4)). Поэтому дифференциальное уравнение (15.61) в перемещениях с учетом (15.4) примет вид

\[
\frac{d^2 u}{dr^2} + \frac{1}{r} \frac{du}{dr} - \frac{u}{r^2} = -\frac{1 - \mu^2}{E} \frac{\gamma}{g} \omega^2 r.
\] \hspace{1cm} (15.62)
Переписав (15.62) в виде
\[\frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} \frac{1}{g} \frac{u}{r} \right] = - \frac{1 - \frac{\mu^2}{E}}{\frac{\gamma}{g}} \omega^2 r \]
и проинтегрировав его последовательно дважды, найдем
\[u = \bar{C}_1 r + \frac{\bar{C}_2}{r} - \frac{1 - \frac{\mu^2}{E}}{\frac{\gamma}{g}} \omega^2 r^3. \] (15.63)
Подставив (15.63) в (15.4), получим
\[\sigma_r = C_1 + \frac{C_2}{r^2} - \frac{3 + \mu}{8 \frac{\gamma}{g}} \omega^2 r^2; \] (15.64)
\[\sigma_\theta = C_1 - \frac{C_2}{r^2} - \frac{3 + 3 \mu}{8 \frac{\gamma}{g}} \omega^2 r^2, \] (15.65)
где
\[C_1 = \frac{E}{1 - \mu} \bar{C}_1; \quad C_2 = - \frac{E}{1 + \mu} \bar{C}_2. \] (15.66)
Постоянные \(C_1 \) и \(C_2 \) (следовательно, \(\bar{C}_1 \) и \(\bar{C}_2 \)) определяются из граничных условий. Для диска с центральным отверстием в общем случае имеем следующие условия на внешнем \((r = r_3)\) и внутреннем \((r = r_1)\) контуре:
\[(\sigma_r)_{r=r_1} = \sigma_{r_1}; \]
\[(\sigma_r)_{r=r_3} = \sigma_{r_3}. \]
В соответствии с (15.64) эти условия дают два уравнения
\[\sigma_{r_1} = C_1 + \frac{C_2}{r_1^2} - \frac{3 + \mu}{8 \frac{\gamma}{g}} \omega^2 r_1^2; \]
\[\sigma_{r_3} = C_1 + \frac{C_2}{r_2^2} - \frac{3 + \mu}{8 \frac{\gamma}{g}} \omega^2 r_2^2. \]
Решая совместно эту систему уравнений, находим
\[C_1 = \frac{r_2^2}{r_2^2 - r_1^2} \sigma_{r_1} - \frac{r_1^2}{r_2^2 - r_1^2} \sigma_{r_2} + \frac{3 + \mu}{8 \frac{\gamma}{g}} \omega^2 (r_1^2 + r_2^2); \] (15.67)
\[C_2 = \frac{r_2^2 r_1^2}{r_2^2 - r_1^2} \sigma_{r_1} - \frac{r_1^2 r_2^2}{r_2^2 - r_1^2} \sigma_{r_2} - \frac{3 + \mu}{8 \frac{\gamma}{g}} \omega^2 r_1^2 r_2^2. \] (15.68)
В случае, когда \(\sigma_{r_2} = 0 \) и \(\sigma_{r_1} = 0, \)
\[C_1 = \frac{3 + \mu}{8 \frac{\gamma}{g}} \omega^2 (r_1^2 + r_2^2); \] (15.69)
\[C_2 = - \frac{3 + \mu}{8 \frac{\gamma}{g}} \omega^2 r_1^2 r_2^2; \] (15.70)
Подставив последние значения \(C_1 \) и \(C_2 \) в (15.64) и (15.65), получим
\[\sigma_r = \frac{3 + \mu}{8 \frac{\gamma}{g}} \omega^2 \left(r_1^2 + r_2^2 - \frac{r_1^2 r_2^2}{r_2^2} - r^2 \right); \] (15.71)
\[\sigma_\theta = \frac{1}{8 \frac{\gamma}{g}} \omega^2 \left[(3 + \mu) \left(r_1^2 + r_2^2 + \frac{r_1^2 r_2^2}{r_2^2} \right) - (1 + 3 \mu) r^2 \right]. \] (15.72)
\[\frac{r_1}{r_2} = k; \quad \frac{r}{r_2} = \rho; \quad \frac{3 + \mu}{8} \frac{\gamma}{g} \omega^2 r_2^2 = c; \quad \frac{1 + 3\mu}{3 + \mu} = m, \quad (15.73) \]

мы вытекаем записать
\[\sigma_r = c \left[1 + k^2 \left(1 - \frac{1}{\rho^2} \right) - \rho^2 \right]; \quad (15.74) \]

\[\sigma_\theta = c \left[1 + k^2 \left(1 + \frac{1}{\rho^2} \right) - m\rho^2 \right]. \]

Напряжение \(\sigma_r \) положительно и достигает наибольшей величины при
\[\rho = \sqrt{k} = \sqrt{\frac{r_1}{r_2}}: \]
\[(\sigma_r)_{\text{max}} = c (1 - k)^2. \quad (15.75) \]

Напряжение \(\sigma_\theta \) также положительно при всех значениях \(\rho \) и достигает максимума при \(\rho = k \):
\[(\sigma_\theta)_{\text{max}} = c [2 + (1 - m) k^2]. \quad (15.76) \]

Из сопоставления (15.75) и (15.76) следует, что всегда имеет место неравенство \((\sigma_\theta)_{\text{max}} > (\sigma_r)_{\text{max}} \). Поэтому условие прочности должно быть записано (например, по IV теории) в следующем виде:
\[\sigma_{\text{экв IV}} = (\sigma_\theta)_{\text{max}} = c [2 + (1 - m) k^2] < [\sigma]. \quad (15.77) \]

В случае хрупкого материала следует пользоваться теорией Куллова — Мора, которая при \(\sigma_3 = \sigma_r = 0 \) приводит к той же формуле (15.77).

Формулы для определения напряжений в слошном диске \(r_1 = 0 \) на основании (15.64) и (15.65) будут иметь вид
\[\sigma_r = C_1 - \frac{3 + \mu}{8} \frac{\gamma}{g} \omega^2 r_2^2; \quad (15.78) \]
\[\sigma_\theta = C_1 - \frac{1 + 3\mu}{8} \frac{\gamma}{g} \omega^2 r_2^2. \quad (15.79) \]

Если внешняя нагрузка на наружном контуре \(r = r_2 \) отсутствует, т. е. \(\sigma_{r_2} = 0 \), то согласно (15.78) находим
\[C_1 = \frac{3 + \mu}{8} \frac{\gamma}{g} \omega^2 r_2^2 = c. \quad (15.80) \]

Подставив (15.80) в (15.78) и (15.79), получим
\[\sigma_r = c (1 - \rho^2); \quad (15.81) \]
\[\sigma_\theta = c (1 - m\rho^2). \quad (15.82) \]

Оба напряжения положительны и увеличиваются с приближением к центру диска. В центре диска при \(\rho = 0 \)
\[(\sigma_r)_{\text{max}} = (\sigma_\theta)_{\text{max}} = c = \frac{3 + \mu}{8} \frac{\gamma}{g} \omega^2 r_2^2. \quad (15.83) \]
Согласно (15.3) радиальное перемещение

\[u = \varepsilon_0 r. \]

(15.84)

Так как

\[\varepsilon_0 = \frac{1}{E} (\sigma_0 - \mu \sigma_r), \]

то

\[u = \frac{r}{E} (\sigma_0 - \mu \sigma_r) \]

(15.85)

Для определения перемещения на наружном контуре диска в формулу (15.85) необходимо подставить значения \(r = r_2, \sigma_0 = \sigma_{0z}; \sigma_r = \sigma_{rz}. \)

В случае неравномерного нагрева диска к напряжениям, вызванным центробежными силами и контурными нагрузками (если таковые имеются), следует прибавить температурные напряжения. Температурные напряжения определяются так же, как и в толстостенном цилиндре, поэтому уравнение равновесия (15.61) при \(\omega = 0 \) будет совпадать с уравнением (15.1):

\[r \frac{d\sigma}{dr} + \sigma_r - \sigma_0 = 0. \]

(15.86)

Относительные деформации с учетом температурного расширения определяются следующими выражениями:

\[
\begin{align*}
\varepsilon_r &= \frac{1}{E} (\sigma_r - \mu \sigma_0) + \alpha t (r); \\
\varepsilon_\theta &= \frac{1}{E} (\sigma_\theta - \mu \sigma_r) + \alpha t (r).
\end{align*}
\]

(15.87)

Решая совместно эти уравнения относительно напряжений, находим

\[
\begin{align*}
\sigma_r &= \frac{E}{1 - \mu^2} [\varepsilon_r + \mu \varepsilon_\theta - (1 + \mu) \alpha t (r)]; \\
\sigma_\theta &= \frac{E}{1 - \mu^2} [\varepsilon_\theta + \mu \varepsilon_r - (1 + \mu) \alpha t (r)].
\end{align*}
\]

(15.88)

Учитывая (15.2) и (15.3), получаем

\[
\begin{align*}
\sigma_r &= \frac{E}{1 - \mu^2} \left[\frac{du}{dr} + \mu \frac{u}{r} - (1 + \mu) \alpha T \frac{r - r_1}{r_2 - r_1} \right]; \\
\sigma_\theta &= \frac{E}{1 - \mu^2} \left[\frac{u}{r} + \mu \frac{du}{dr} - (1 + \mu) \alpha T \frac{r - r_1}{r_2 - r_1} \right].
\end{align*}
\]

(15.89)

При линейном изменении температуры вдоль радиуса диска \(t (r) = T \frac{r - r_1}{r_2 - r_1} \) последнее выражения принимают вид

\[
\begin{align*}
\sigma_r &= \frac{E}{1 - \mu^2} \left[\frac{du}{dr} + \mu \frac{u}{r} - (1 + \mu) \alpha T \frac{r - r_1}{r_2 - r_1} \right], \\
\sigma_\theta &= \frac{E}{1 - \mu^2} \left[\frac{u}{r} + \mu \frac{du}{dr} - (1 + \mu) \alpha T \frac{r - r_1}{r_2 - r_1} \right].
\end{align*}
\]

(15.90)
Модуль упругости \(E \) и коэффициент Пуассона \(\mu \) полагаем постоянными, не зависящими от температуры, и равными их значениям при средней температуре диска.

Подставляя (15.90) и (15.91) в уравнение равновесия (15.86), находим

\[
\frac{d^2u}{dr^2} + \frac{1}{2} \frac{du}{dr} - \frac{u}{r^2} = \frac{1 + \mu}{r_2 - r_1} \alpha T. \tag{15.92}
\]

Записав это уравнение в виде

\[
\frac{d}{dr} \left[\frac{1}{r} \frac{d(ur)}{dr} \right] = \frac{1 + \mu}{r_2 - r_1} \alpha T,
\]

после двойного интегрирования получим выражение для перемещения

\[
u = B_1 r + \frac{B_2}{r} + \frac{1 + \mu}{3(r_2 - r_1)} \alpha Tr^2. \tag{15.93}
\]

Подставив (15.93) в (15.90) и (15.91), для напряжений найдем

\[
s_r = B_1 + \frac{B_2}{r^2} - \frac{T}{3(r_2 - r_1)} \alpha Er, \tag{15.94}
\]

\[
s_\theta = B_1 - \frac{B_2}{r^2} - \frac{2T}{3(r_2 - r_1)} \alpha Er, \tag{15.95}
\]

где

\[
B_1 = \frac{E}{1 - \mu} \left(B_1 + \frac{\alpha Tr_1}{r_2 - r_1} \right);
\]

\[
B_2 = \frac{E}{1 + \mu}.
\]

Постоянные \(B_1 \) и \(B_2 \) могут быть определены из граничных условий \((s_r)_{r=r_1} = r_1 = 0 \text{ при } r = r_1; (s_r)_{r=r_2} = r_2 = 0 \text{ при } r = r_2\).

Напряжения от центробежных сил и температурные напряжения следует просуммировать. В случае линейного изменения температуры вдоль радиуса, сложив правые части выражений (15.64) и (15.94), а также (15.65) и (15.95), получим

\[
s_r = D + \frac{L}{r^2} - \frac{3 + \mu}{8} \frac{\gamma}{g} \omega^2 r^2 - \frac{T}{3(r_2 - r_1)} \alpha Er;
\]

\[
s_\theta = D - \frac{L}{r^2} - \frac{1 + 3\mu}{8} \frac{\gamma}{g} \omega^2 r^2 - \frac{2}{3} \frac{T}{r_2 - r_1} \alpha Er,
\]

где \(D = C_1 + B_1; L = C_2 + B_2 \) — новые постоянные, которые надлежит определить из граничных условий.
Таблица 42. Расчетные формулы для толстостенных цилиндров

<table>
<thead>
<tr>
<th>Схема нагружения. Эпюры напряжений</th>
<th>Главные напряжения в точках цилиндрической поверхности радиусом (r)</th>
<th>Радиальное перемещение точек цилиндрической поверхности радиусом (r)</th>
<th>Главные напряжения в опасной точке; эквивалентное напряжение для опасной точки ((k = r_1/r_r))</th>
</tr>
</thead>
</table>

Цилиндр под действием внутреннего давления \(p \)

\(\sigma_r = \frac{p r_1^2}{r_2^2 - r_1^2} \left(1 - \frac{r_2^2}{r_1^2} \right) \)	Открытый цилиндр
\(\sigma_\theta = \frac{p r_1^2}{r_2^2 - r_1^2} \left(1 + \frac{r_2^2}{r_1^2} \right) \)	\(u = \frac{p r_1^2}{E (r_2^2 - r_1^2)} \left[(1 - \mu) \frac{r_2^2}{r} \right] \) + \((1 + \mu) \frac{r_2^2}{r} \)
\(\sigma_z = 0 \) — открытый цилиндр	\(\sigma_z = \frac{k^2}{1 - k^2} p \) — закрытый цилиндр
\(\sigma_z = \frac{p r_1^2}{r_2^2 - r_1^2} \) — закрытый цилиндр	\(\sigma_3 = \sigma_r = -p \)

\(r = r_1 \)

\(\sigma_1 = \sigma_\theta = \frac{1 + k^2}{1 - k^2} p \)

\(\sigma_2 = 0 \) — открытый цилиндр

\(\sigma_{экв} = \frac{2p}{1 - k^2} \)

\(\sigma_{экв} = p \left(\frac{1 + k^2}{1 - k^2} \right) \frac{1}{\left| \sigma_3 \right|} \)
<table>
<thead>
<tr>
<th>Цилиндр под действием наружного давления (p)</th>
<th>Открытый цилиндр</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_r = -\frac{p r_2^2}{r_2^2 - r_1^2} \left(1 - \frac{r_1^2}{r^2} \right))</td>
<td></td>
</tr>
<tr>
<td>(\sigma_\theta = -\frac{p r_2^2}{r_2^2 - r_1^2} \left(1 + \frac{r_1^2}{r^2} \right))</td>
<td></td>
</tr>
<tr>
<td>(\sigma_z = 0) — открытый цилиндр</td>
<td></td>
</tr>
<tr>
<td>(\sigma_z = -\frac{p r_2^2}{r_2^2 - r_1^2}) — закрытый цилиндр</td>
<td></td>
</tr>
<tr>
<td>(u = -\frac{p r_2^2}{E (r_2^2 - r_1^2)} \left[(1 - \mu) r + \left(1 + \mu \right) \frac{r_1^2}{r} \right])</td>
<td></td>
</tr>
<tr>
<td>(\sigma_r = \sigma_\theta = 0)</td>
<td></td>
</tr>
<tr>
<td>(\sigma_z = 0) — открытый цилиндр</td>
<td></td>
</tr>
<tr>
<td>(\sigma_2 = \sigma_z = \frac{p}{1 - k^2}) — закрытый цилиндр</td>
<td></td>
</tr>
<tr>
<td>(\sigma_3 = \sigma_\theta = \frac{2p}{1 - k^2})</td>
<td></td>
</tr>
<tr>
<td>(\sigma_{\text{экв III}} = \frac{2p}{1 - k^2})</td>
<td></td>
</tr>
<tr>
<td>(\sigma_{\text{экв III}} M = \frac{2p}{1 - k^2})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Цилиндр под действием внутреннего (p_1) и наружного (p_2) давлений</th>
<th>Открытый цилиндр</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_r = \frac{r_1^2 p_1 - r_2^2 p_2}{r_2^2 - r_1^2} - \frac{r_1^2 r_2^2 (p_1 - p_2)}{r_2^2 - r_1^2} \left(1 - \frac{r_1^2}{r^2} \right))</td>
<td></td>
</tr>
<tr>
<td>(\sigma_\theta = \frac{r_1^2 p_1 - r_2^2 p_2}{r_2^2 - r_1^2} + \frac{r_1^2 r_2^2 (p_1 - p_2)}{r_2^2 - r_1^2} \left(1 - \frac{r_1^2}{r^2} \right))</td>
<td></td>
</tr>
<tr>
<td>(\sigma_z = 0) — открытый цилиндр</td>
<td></td>
</tr>
<tr>
<td>(u = \frac{1 - \mu}{E} \frac{r_1^2 p_1 - r_2^2 p_2}{r_2^2 - r_1^2} r + \frac{1 + \mu}{E} \frac{r_1^2 r_2^2 (p_1 - p_2)}{r_2^2 - r_1^2} \left(1 - \frac{r_1^2}{r^2} \right))</td>
<td></td>
</tr>
<tr>
<td>(\sigma_r = -p_1)</td>
<td></td>
</tr>
<tr>
<td>(\sigma_\theta = \frac{(1 + k^2) p_1 - 2p_2}{1 - k^2})</td>
<td></td>
</tr>
<tr>
<td>(\sigma_z = \frac{k^2 p_1 - p_2}{1 - k^2})</td>
<td></td>
</tr>
</tbody>
</table>
16.1. Расчет тонких оболочек по безмоментной теории

К тонким оболочкам могут быть отнесены цистерны, водоемы и резервуары, воздух и газовые баллоны, купол зданий, герметичные перегородки в самолетах и судах, аппараты химического машиностроения, части корпусов турбин и реактивных двигателей и т.д.

Рассмотрим элемент оболочки, показанный на рис. 297, а, б. В общем случае в сечениях, которыми выделен элемент, будут действовать погонные (отнесенные к единице длины сечения) усилия (рис. 297, а)

Рис. 297

и моменты (рис. 297, б): нормальные усилия \(N_1 \) и \(N_2 \); касательные (сдвиговые) усилия \(S_1 \) и \(S_2 \); поперечные силы \(Q_1 \) и \(Q_2 \); изгибающие моменты \(M_1 \) и \(M_2 \); крутящие моменты \(M_{1\text{kr}} \) и \(M_{2\text{kr}} \).

Учет всех перечисленных силовых факторов при расчете оболочек приводит к весьма сложным исходным дифференциальным уравнениям, решение которых даже для простых случаев сопряжено с большими математическими трудностями. Во многих случаях исходные уравнения могут быть существенно упрощены. Это можно достичь исходя из самого характера задачи. Во-первых, если оболочка представляет собой тело вращения и нагрузка симметрична относительно оси оболочки, то задача называется осесимметричной и в этом случае для всех сечений, образованных плоскостями, проходящими через ось симметрии, и ортогональных им сечений справедливы равенства

\[M_{1\text{kr}} = M_{2\text{kr}} = S_1 = S_2 = 0; \quad Q_1 = 0 \quad (\text{или} \quad Q_3 = 0). \]

Во-вторых, если по виду оболочки, характеру нагрузки и закреплений можно по тем или иным соображениям прийти к выводу, что какие-либо усилия или моменты всюду малы по сравнению с остальными усилиями или моментами, то принимают допущения, что эти усилия и моменты равны нулю. Например, часто полагают, что

\[M_1 = M_2 = M_{1\text{kr}} = M_{2\text{kr}} = 0; \quad Q_1 = Q_2 = 0, \]

и в результате приходят к так называемой безмоментной теории оболочек.

428
В частности, безмоментной теорией оболочек пользуются при определении напряжений в резервуаре (рис. 298), представляющем собой осесимметричную оболочку. Будем считать, что меридиональные сечения срединной поверхности оболочки образуют плоские кривые, а толщина оболочки h мала по сравнению с радиусами кривизны. Тогда в случае закрепления краев резервуара таким образом, что на них могут действовать только усилия, касательные к меридиональным кривым, можно считать, что оболочка находится в безмоментном напряженном состоянии.

Резервуар, показанный на рис. 298, заполненный (полностью или частично) газом, жидкостью или сыпучим веществом, в котором давление одинаково во всех точках плоскости, перпендикулярной к оси резервуара, представляет собой оболочку, находящуюся не только в безмоментном, но и в осесимметричном напряженном состоянии.

![Рис. 298](image1)

![Рис. 299](image2)

Выделим из рассматриваемой оболочки прямоугольный криволинейный элемент $ABCD$, проведя два близких осевых сечения и два орто- гональных к ним и к поверхности оболочки сечения. Обозначим длины граней элемента через ds_1 и ds_2 (рис. 299). В гранях элемента соответственно будут действовать растягивающие усилия (в случае внутреннего давления) N_2ds_1 и N_1ds_2. Здесь N_1 и N_2 — соответственно нормальные усилия, приходящиеся на единицу длины контура элемента:

$$N_1 = \sigma_1 h; \quad N_2 = \sigma_m h,$$

где σ_1 — окружное (широтное или кольцевое) нормальное напряжение, направленное по касательной к окружности радиусом $\rho_1 = \rho_1$; σ_m — меридиональное нормальное напряжение, направленное по касательной к меридиану радиусом $\rho_m = \rho_2$.

Рассмотрим условие равновесия элемента, спроектировав на нормаль O_1O_2 (рис. 299) внутренние усилия, действующие по контуру элемента, а также давление p, действующее на выделенный элемент площадью $ds_1 \times ds_2$:

$$2N_1ds_2 \sin \frac{d\varphi_1}{2} + N_2ds_1 \sin \frac{d\varphi_2}{2} + (N_2 + dN_2) ds_1 \sin \frac{d\varphi_2}{2} - pds_1ds_2 = 0.$$

Учитывая малость углов $d\varphi_1$ и $d\varphi_2$ и пренебрегая величинами второго порядка малости, находим

$$\frac{N_1}{\rho_1} + \frac{N_2}{\rho_2} = p.$$

(16.2)
Учитывая также (16.1) и то, что \(\rho_t = \rho_1 \) и \(\rho_m = \rho_2 \), на основании (16.2) получаем

\[
\frac{\sigma_t}{\rho_t} + \frac{\sigma_m}{\rho_m} = \frac{P}{h}. \tag{16.3}
\]

Уравнение (16.3) называется уравнением Лапласа. Для определения двух неизвестных \(\sigma_t \) и \(\sigma_m \) одного уравнения Лапласа не достаточно. Второе уравнение легко можно получить из рассмотрения условий равновесия нижней части оболочки радиусом \(r \), отсеченной конической поверхностью \(A_1 D_1 B_1 \) (рис. 300):

\[
N_2 \cos \alpha \cdot 2\pi r - \rho_2 \pi r^2 = Q_{ж} - Q_p = 0,
\]

где \(Q_{ж} \) — вес жидкости или сыпучего тела, находящейся в рассматриваемой части резервуара; \(Q_p \) — собственный вес рассматриваемой части резервуара. Отсюда погонное усилие в рассматриваемом сечении стенки будет

\[
N_2 = \frac{pr}{2 \cos \alpha} + \frac{Q_{ж} + Q_p}{2\pi r \cos \alpha}. \tag{16.4}
\]

Зная \(N_2 \), меридиональное нормальное напряжение \(\sigma_m \) согласно (16.1) определяется из формулы

\[
\sigma_m = \frac{pr}{2h \cos \alpha} + \frac{Q_{ж} + Q_p}{2\pi rh \cos \alpha}. \tag{16.5}
\]

Так как задача определения напряжений в стенках резервуара решалась в предположении, что напряжения по толщине стенки распределены равномерно, не было необходимости рассматривать геометрическую и физическую стороны задачи, т. е. в принятой постановке задача о расчете тонкостенных сосудов оказалась статически определимой.

Нормальные напряжения \(\sigma_t \) и \(\sigma_m \), действующие в площадках, где отсутствуют касательные напряжения, очевидно, являются главными. Что касается третьего главного напряжения, направленного по нормали к поверхности оболочки, то оно на внутренней поверхности равно \(\rho \), а на наружной — нулю (при внутреннем давлении). Поскольку в тонкостенных оболочках \(\sigma_1 = \sigma_t \) и \(\sigma_3 = \sigma_m \) значительно больше \(\rho \), последним по сравнению с \(\sigma_t \) и \(\sigma_m \) пренебрегают, т. е. \(\sigma_3 \) полагают равным нулю.

Следовательно, будем полагать, что материал оболочки находится в плоском напряженном состоянии. Поэтому при расчете на прочность в зависимости от состояния материала следует пользоваться соответствующей теорией прочности. Так, по IV теории прочности условно прочности (6.17) будет иметь вид

\[
\sigma_{экв IV} = \sqrt{\sigma_t^2 + \sigma_m^2 - \sigma_t \sigma_m} \leq [\sigma]. \tag{16.6}
\]

Ниже приведены расчетные формулы для резервуаров различных форм.

Сферический баллон заполняется газом, давление которого равно \(\rho \). Подставляя в (16.3) \(\rho_m = \rho_t = R; \sigma_m = \sigma_t = \sigma \), находим

\[
\frac{2 \sigma}{R} = \frac{\rho}{h},
\]

430
\[\sigma = \sigma_1 = \sigma_4 = \frac{pR}{2h}. \] (16.7)

Условия прочности по I, III и IV теориям прочности приводятся к такому:

\[\sigma_{\text{экв IV}} = \frac{pR}{2h} \ll [\sigma]. \] (16.8)

Цилиндрический баллон заполнен газом, давление которого равно \(p \) (рис. 301). В этом случае \(\rho_i = R; \rho_m = \infty \).

Из (16.3) находим

\[\sigma_i = \frac{pR}{h}. \] (16.9)

Напряжение \(\sigma_m \) в стенке баллона, отдаленной от его торцов, определяем по формуле (16.5), положив \(Q_\text{ж} = Q_p = 0; \alpha = 0 \):

\[\sigma_m = \frac{pR}{2h}, \] (16.10)

или

\[\sigma_m = \frac{1}{2} \sigma_i. \]

Сферический резервуар (рис. 302) наполнен жидкостью или сплющенным телом с плотностью \(\gamma \). В этом случае

\[\rho_i = \rho_m = R; \quad r = R \sin \varphi; \quad H = R (\cos \varphi - \cos \beta); \quad \rho = \gamma H = \gamma R (\cos \varphi - \cos \beta). \]

Из уравнения Лапласа (16.3) находим

\[\sigma_i + \sigma_m = \frac{pR}{h} = \frac{\gamma R^2}{h} (\cos \varphi - \cos \beta). \] (16.11)

Воспользовавшись формулой (16.5), в которой

\[Q_\text{ж} = \gamma V_{ABC} = \gamma \cdot \frac{1}{3} \pi R^2 (3R - H_C) = \frac{\pi \gamma}{3} R^3 (1 - \cos \varphi)^2 (2 + \cos \varphi), \] (16.12)

пользуем в ней \(Q_p = 0 \) и \(\alpha = 90^\circ - \varphi \), найдем

\[\sigma_m = \frac{\gamma R^2}{h} \frac{1 + \cos \varphi + \cos^2 \varphi}{3 (1 + \cos \varphi)} - \frac{\cos \beta}{2}. \] (16.13)

Затем из (16.11) определяем

\[\sigma_i = \frac{\gamma R^2}{h} \frac{2 \cos^2 \varphi + 2 \cos \varphi - 1 - \cos \beta}{3 (1 + \cos \varphi)} - \frac{\cos \beta}{2}. \] (16.14)

Максимальное напряжение будет в точке C, где \(\varphi = 0 \):

\[\sigma_m = \sigma_{\text{max}}^2 = \frac{\gamma R^2 (1 - \cos \beta)}{2h}. \] (16.15)

На краю оболочки, при \(\varphi = \beta \)

\[\sigma_m (\beta) = -\sigma_i (\beta) = \frac{\gamma R^2}{6h} \frac{1 - \cos \beta - \cos^2 \beta}{1 + \cos \beta}. \] (16.16)

431
Сферический купол радиусом R и толщиной стенки h изготовлен из материала с плотностью γ (рис. 303). Бес единицы площади оболочки $q = \gamma h$. Нормальная составляющая

$$q_n = q \cos \varphi = \gamma h \cos \varphi$$

играет роль давления, приложенного к поверхности, и в уравнении Лапласа (16.3) следует полагать $p = -q_n$, а в уравнении (16.5) $p = 0$.

Учитывая, что $\rho_t = \rho_m = R$, из уравнения Лапласа находим

$$\sigma_m + \sigma_t = \frac{p R}{h} = -\gamma R \cos \varphi. \quad (16.17)$$

Используя формулу (16.5), в которой

$$Q_p = q S_{ABC} = \gamma h S_{ABC} = \gamma h 2\pi R H_C = \gamma h 2\pi R^2 (1 - \cos \varphi),$$

t. е.

$$Q_p = 2\pi \gamma h R^2 (1 - \cos \varphi);$$

$$r = R \sin \varphi; \quad \alpha = 90^\circ - \varphi; \quad p = 0,$$

а также учитывая, что в сечении AB вес части ACB вызывает сжатие, находим

$$\sigma_m = -\frac{\gamma R}{1 + \cos \varphi}. \quad (16.18)$$

Тогда из уравнения (16.17) получаем

$$\sigma_t = \gamma R \frac{1 - \cos \varphi - \cos^2 \varphi}{1 + \cos \varphi}. \quad (16.19)$$

Меридиональные напряжения всюду сжимающие и возрастают по мере удаления от вершины купола к краю. Кольцевые напряжения в верхней части купола отрицательные (сжимающие); при $\varphi = 51^\circ 50'$ они обращаются в нуль, а при $\varphi > 51^\circ 50'$ становятся растягивающими. Приведенные результаты верны, если устройство купола таково, что в нем могут возникать реакции, направленные по касательной к меридиональной кривой.

16.2. Распорные кольца в оболочках

Если в некотором сечении AA_1 оболочки (рис. 304) имеется перелом, то касательные к меридиональной кривой слева и справа от точки A образуют между собой угол $180^\circ - (\alpha_1 + \alpha_2)$. Погонные усилия, вызванные меридиональными напряжениями σ_{m_1} и σ_{m_2} (рис. 305) в сечениях BB_1 и CC_1, бесконечно близких к AA_1 (образованных коническими поверхностями $O_1 BB_1$ и $O_2 CC_1$, нормальными к средней поверхности
оболочки), будут равны \(\sigma_{m_1} h_1 \) и \(\sigma_{m_2} h_2 \), где \(h_1 \) и \(h_2 \) — толщина частей оболочки 1 и 2.
Из условия равновесия кольца //C1C имеем
\[
\sigma_{m_1} h_1 \cos \alpha_1 \cdot 2\pi r_1 = \sigma_{m_2} h_2 \cos \alpha_2 \cdot 2\pi r_2,
\]
или
\[
\sigma_{m_1} h_1 \cos \alpha_1 = \sigma_{m_2} h_2 \cos \alpha_2.
\]
Таким образом, проекции этих усилий на ось оболочки взаимно уравновешиваются. В то же время сумма проекций указанных усилий на плоскость \(AA_1 \) (рис. 306) дает погонное радиальное усилие
\[
q = \sigma_{m_1} h_1 \sin \alpha_1 + \sigma_{m_2} h_2 \sin \alpha_2,
\]
(16.20)

которое можно рассматривать как местную нагрузку, сжимающую оболочку и могущую вызвать в оболочке значительный изгиб.
Чтобы уменьшить изгиб, в резервуарах часто устанавливают кольца жесткости, или распорные кольца (рис. 307), которые и принимают на себя радиальные усилия \(q \) по схеме, приведенной на рис. 308. В кольце возникают только сжимающие напряжения, и условие прочности для кольца принимает вид
\[
\frac{q R_k}{F_k} \leq [\sigma],
\]
(16.21)
ge where \(R_k \) — радиус средней поверхности кольца; \(F_k \) — площадь поперечного сечения кольца; \(q \) — погонная нагрузка, действующая на кольцо, определяемая по формуле (16.20).
Иногда вместо распорного кольца в месте излома создают местное утолщение оболочки, загибая край днища резервуара внутрь оболочки, или, например, так, как показано на рис. 309.
В табл. 43 приведены расчетные формулы для определения напряжений и перемещений в тонкостенных оболочках.

Таблица 43. Расчетные формулы для определения напряжений и перемещений в тонкостенных оболочках

<table>
<thead>
<tr>
<th>Схема</th>
<th>Формулы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сферическая оболочка. Равномерное внутреннее давление</td>
<td>(\sigma_m = \sigma_t = \frac{pR}{2h} ; \ w = \frac{pR^3}{2Eh} (1 - \mu))</td>
</tr>
</tbody>
</table>
| Сферическая оболочка, полностью заполненная жидкостью и опертая по кольцу радиусом \(R \sin \alpha_0 \) | Внутреннее давление \(p = \gamma R (1 - \cos \alpha) \):
| & \(\alpha < \alpha_0 \):
| & \(\sigma_m = \frac{\gamma R^2}{6h} \left(1 - \frac{2 \cos^2 \alpha}{1 + \cos \alpha} \right) \)
| & \(\sigma_t = \frac{\gamma R^2}{6h} \left(5 - 6 \cos \alpha + \frac{2 \cos^2 \alpha}{1 + \cos \alpha} \right) \) для \(\alpha > \alpha_0 \):
| & \(\sigma_m = \frac{\gamma R^2}{6h} \left(5 + \frac{2 \cos^2 \alpha}{1 - \cos \alpha} \right) \)
| & \(\sigma_t = \frac{\gamma R^2}{6h} \left(1 - 6 \cos \alpha - \frac{2 \cos^2 \alpha}{1 - \cos \alpha} \right) \) |
| Сферический резервуар, наполненный жидкостью. Кромки свободно оперты | Внутреннее давление \(p = \gamma R (\cos \varphi - \cos \beta) \):
| & \(\sigma_m = \frac{\gamma R^2}{h} \left[\frac{1 + \cos \varphi + \cos^2 \varphi}{3 (1 + \cos \varphi)} - \frac{\cos \beta}{2} \right] \)
| & \(\sigma_t = \frac{\gamma R^2}{h} \left[-1 + 2 \cos \varphi + 2 \cos^2 \varphi - \frac{\cos \beta}{2} \right] \) при \(\varphi = 0 \):
| & \(\sigma_m = \sigma_t = \frac{\gamma R}{h} \left(1 - \frac{\cos \beta}{2} \right) = \sigma_{\text{max}} \) |
Сферический купол под действием собственного веса. Кромки свободно опорты

\[
\sigma_m = -\sigma_t = \frac{\gamma R^2}{h} \frac{2 - \cos \beta - \cos^2 \beta}{6 (1 + \cos \beta)}
\]

Изменение радиуса круга на контуре

\[
\Delta = -\frac{\gamma R^3 \sin \beta}{E h} \frac{(1 + \mu) (2 - \cos \alpha - \cos^2 \alpha)}{6 (1 + \cos \alpha)}
\]

Сферический купол. Равномерное нормальное давление. Кромки шарнирно опорты на упругое кольцо. Материалы оболочки и кольца одинаковы

\[
\sigma_m = -\frac{\gamma M R}{1 + \cos \varphi} ; \quad \sigma_t = \frac{\gamma M R}{1 - \cos \varphi - \cos^2 \varphi} \frac{1}{1 + \cos \varphi}
\]

\[
\sigma_t = 0 \text{ при } \varphi = 51^\circ 50' \\
\sigma_t < 0 \text{ при } 0 < \alpha < 51^\circ 50' \\
\sigma_t > 0 \text{ при } \alpha > 51^\circ 50'
\]

Вдали от краев при \(H \gg 10h \)

\[
\sigma_m = \sigma_t = \frac{p R}{2h}
\]

Напряжения в опорном кольце

\[
\sigma_k = -\frac{p R^2 \sin \alpha}{2} \left[\frac{\left(\cos \alpha - 0,39 \frac{\sqrt{R h}}{R \sin \alpha} \right)}{F + 0,39h \sqrt{R h}} \right]
\]

где \(F \) — площадь сечения опорного кольца

Длинная цилиндрическая оболочка с дышами. Равномерное внутреннее давление

\[
\sigma_m = \frac{p R}{2h} ; \quad \sigma_t = \frac{p R}{h} = \sigma_{\text{max}}
\]

\[
\omega = \frac{p R^2}{E h} \left(1 - \frac{\mu}{2} \right)
\]
<table>
<thead>
<tr>
<th>Схема</th>
<th>Формулы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Цилиндр, заполненный жидкостью. Верхние края свободно опёрты</td>
<td>$\sigma_m = \frac{\gamma HR}{2h}$; $\sigma_l = \frac{\gamma (H - x) R}{h}$</td>
</tr>
<tr>
<td>Длинная коническая оболочка. Равномерное внутреннее давление</td>
<td>Вдали от краев</td>
</tr>
<tr>
<td>$\sigma_m = \frac{px \lg \alpha}{2h}$; $\sigma_l = \frac{px \lg \alpha}{h}$</td>
<td>$\omega = \frac{3px^2 \lg^2 \alpha}{4hE}$</td>
</tr>
<tr>
<td>Коническая оболочка под действием собственного веса. Края снабжено опоры</td>
<td>Вдали от краев</td>
</tr>
<tr>
<td>$\sigma_m = \frac{\gamma_M x}{2 \cos \alpha}$; $\sigma_l = \frac{\gamma_M x \sin^2 \alpha}{\cos \alpha}$</td>
<td>Радиальное перемещение края ($x = l$)</td>
</tr>
<tr>
<td>$\Delta = \frac{\gamma_M l^2}{E} \lg \alpha \left(\sin^2 \alpha - \frac{\mu}{2} \right)$</td>
<td>При $\sin \alpha = \sqrt{\frac{\mu}{2}}$ $\Delta = 0$</td>
</tr>
</tbody>
</table>
Продолжение табл. 43

<table>
<thead>
<tr>
<th>Схема</th>
<th>Формулы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Коническая оболочка, полностью наполненная жидкостью. Края свободно оперты</td>
<td></td>
</tr>
</tbody>
</table>

\[
\sigma_m = \frac{\gamma x \tan \alpha \left(H - \frac{2}{3} x \right)}{2h \cos \alpha};
\]

\[
\sigma_t = \frac{\gamma x \tan \alpha}{h \cos \alpha} (H - x)
\]

\[
\sigma_{m_{\text{max}}} = \frac{3\gamma H^2 \tan \alpha}{16h \cos \alpha} \quad \text{при} \ x = \frac{3}{4} H
\]

\[
\sigma_{t_{\text{max}}} = \frac{\gamma H^2 \tan \alpha}{4h \cos \alpha} \quad \text{при} \ x = \frac{H}{2}
\]

Изменение радиуса круга на контуре

\[
\Delta = -\mu \frac{\gamma H^3 \tan^2 \alpha}{6hE \cos \alpha}
\]

<table>
<thead>
<tr>
<th>Формулы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Напряжения в днище</td>
</tr>
</tbody>
</table>

\[
\sigma_m = \frac{\gamma \tan \alpha}{2h \cos \alpha} \left(H + H_k - \frac{2}{3} x \right) x
\]

\[
\sigma_t = \frac{\gamma x \tan \alpha}{h \cos \alpha} (H + H_k - x)
\]

Если \(H > \frac{H_k}{3} \), то

\[
\sigma_{m_{\text{max}}} = \frac{\gamma \tan \alpha}{2h \cos \alpha} \left(H + \frac{H_k}{3} \right) H_k \quad \text{при} \ x = H_k
\]

Если \(H < \frac{H_k}{3} \), то

\[
\sigma_{m_{\text{max}}} = \frac{3\gamma \tan \alpha}{16h \cos \alpha} \left(H + H_k \right)^2
\]

при \(x = \frac{3}{4} \left(H + H_k \right) \)

Если \(H > H_k \), то

\[
\sigma_{t_{\text{max}}} = \frac{\gamma \tan \alpha}{4h \cos \alpha} \left(H + H_k \right)^2
\]

при \(x = \frac{H + H_k}{2} \)

Если \(H < H_k \), то

\[
\sigma_{t_{\text{max}}} = \frac{\gamma \tan \alpha}{h \cos \alpha} HH_k \quad \text{при} \ x = H_k
\]
<table>
<thead>
<tr>
<th>Схема</th>
<th>Формулы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Цилиндрическая оболочка со сферическим днищем, заполненная жидкостью</td>
<td>Напряжения в днище</td>
</tr>
</tbody>
</table>
| ![Diagram](image) | \[\sigma_m = \frac{\gamma R}{2h} \left[H + H_C - x + \frac{x (3R - x)}{3 (2R - x)} \right] \]
| | \[\sigma_{m_{\text{max}}} = \frac{\gamma R}{2h} (H + H_C) \text{ при } x = 0 \]
| | \[\sigma_t = \frac{\gamma R}{2h} \left[H + H_C - x - \frac{x (3R - x)}{3 (2R - x)} \right] \]
| | \[\sigma_{t_{\text{max}}} = \frac{\gamma R}{2h} (H + H_C) \text{ при } x = 0 \]
| | Для полусфераического днища \((H_C = R)\)
| | \[\sigma_{m_{\text{max}}} = \sigma_{t_{\text{max}}} = \frac{\gamma R}{2h} (H + R) \text{ при } x = 0 \]
| Торовая оболочка, Равномерное внутреннее давление | \[\sigma_m = \frac{pR}{2h} \frac{2a + R \sin \varphi}{a + R \sin \varphi} \]
| ![Diagram](image) | \[\sigma_{m_{\text{max}}} = \frac{pR (2a - R)}{2h (a - R)} \text{ при } \varphi = -\pi/2 \]
| | \[\sigma_t = \frac{pR}{2h} \]
| | \[w = \frac{pR}{2Eh} \left[\frac{a}{R} (1 - 2\mu) + (1 - \mu) \cos \varphi \right] \]
| | Значения \(\sigma_m \) и \(\sigma_t \) достаточно точны
| | при \(a \geq (2 - 3) R \)
Глава 17

Расчет конструкций по предельным состояниям

17.1. Основные понятия о предельном состоянии

Приведенные выше методики расчета на прочность стержней, балок и конструкций были основаны на оценке прочности материала в опасной точке, т. е. проводился расчет по допускаемым напряжениям. Опасным, или предельным, состоянием конструкции считалось такое ее состояние, при котором наибольшее местное напряжение достигало опасной величины — предела текучести (для пластичного материала) или временного сопротивления (для хрупкого материала). Состояние всей остальной массы материала во внимание не принималось.

В то же время при неравномерном распределении напряжений, например при изгибе, кручине, в статически неопределимых конструкциях, изготовленных из пластичных материалов, появление местных напряжений, равных пределу текучести, в большинстве случаев не является опасным для всей конструкции в целом.

В связи с этим возникла необходимость в оценке прочности конструкции по ее предельному состоянию.

Под предельным состоянием конструкции понимают такое ее состояние, при котором она теряет способность сопротивляться внешним воздействиям или перестает удовлетворять предъявляемым к ней эксплуатационным требованиям.

Различают три вида предельных состояний: а) по несущей способности (прочности, устойчивости и усталости). При достижении этого состояния конструкция теряет способность сопротивляться внешним воздействиям или получает такие остаточные изменения, при которых она перестает удовлетворять предъявляемым к ней эксплуатационным требованиям; б) по развитию чрезмерных деформаций от статических или динамических нагрузок, при которых в конструкции, сохраняющей прочность и устойчивость, появляются необратимые деформации или колебания чрезмерной амплитуды, так что конструкция перестает удовлетворять предъявляемым к ней эксплуатационным требованиям; в) по образованию и развитию трещин, когда в конструкции, сохраняющей прочность и устойчивость, появляются крупные трещины, вследствие чего дальнейшая эксплуатация конструкции становится невозможной (потеря требуемой водонепроницаемости, опасность коррозии из-за повреждения отделочного слоя и т. п.).

Методы расчетов по предельным состояниям широко применяются при проектировании строительных конструкций и позволяют вскрыть резервы прочности, не используемые при расчетах по допускаемым напряжениям, и уменьшить вес конструкции.

Ниже рассмотрены некоторые примеры расчета по предельным нагрузкам конструкций, изготовленных из пластичных материалов, имеющих площадку текучести на диаграммах растяжения, сжатия и чистого сдвига. С целью упрощения расчетов диаграммы типа приведенной на рис. 310 схематизируются таким образом, что участок прямой, выражающий закон Гука, непосредственно переходит в горизон-
тальную прямую без плавного перехода (рис. 311). Этим самым при
нимается равенство между пределами пропорциональности и текуче-
сти. Длина горизонтального участка диаграммы не ограничивается,
т. е. материал считается идеально пластичным, не упрочняющимся.
Такая диаграмма называется диаграммой Прандтля.
Замена реальных диаграмм схематизированной диаграммой Прандт-
ля приемлема для материалов типа алюминия и вполне допустима для
материалов, имеющих диаграммы с ограниченной длиной площадки
текучести (рис. 312).
Пределное состояние конструкции, определяемое значительной
пластической деформацией, наступит в начале упрочнения материала,
и предельная нагрузка может быть вычислена по пределу текучести.
Для сложного напряженного состояния существуют различные
теории перехода материала в пластичное состояние. Наиболее просто

![Рис. 310](image1.png) ![Рис. 311](image2.png) ![Рис. 312](image3.png)

расчеты выполняются при использовании теории пластичности Сен-
Венана, согласно которой пластичное состояние материала при слож-
ном напряженном состоянии наступает тогда, когда наименьшие каса-
тельные напряжения достигают предельного значения — предела те-
кучести при свдиге

$$\tau_{\text{max}} = \tau_{\text{T}}. \quad (17.1)$$

Исходя из изложенных выше положений, рассмотрим некоторые
характерные случаи расчета по предельному состоянию.

17.2. Расчеты при растяжении и сжатии

При растяжении и сжатии напряжения распределяются равномер-
но по площади поперечного сечения стержня. Поэтому расчеты на
прочность статически определяемых систем по допускаемому напряже-
нию и по предельному состоянию дают один и тот же результат. В слу-
чае статически неопределяемых систем результаты расчетов будут раз-
личны. Это легко показать на примере расчета на растяжение трех-
стержневой подвески (рис. 313), нагруженной силой \(P \). Площади
поперечных сечений \(F \) стержней одинаковы; материал пластичный с
пределом текучести \(\sigma_{\text{T}} \).

При расчете рассматриваемой один раз статически неопределенной
системы по допускаемому напряжению согласно данным раздела 7.3
при \(F_1 = F_2 = F \)

$$N_1 = \frac{P}{1 + 2 \cos^3 \alpha}; \quad (17.2)$$

$$N_2 = N_3 = \frac{\cos^2 \alpha}{1 + 2 \cos^3 \alpha} P. \quad (17.3)$$

440
Очевидно, всегда $N_1 > N_2 = N_3$, т. е. большее усилие возникает в среднем стержне. Следовательно, в среднем стержне будет и наибольшее напряжение

$$
\sigma_{\text{max}} = \frac{N_1}{F} = \frac{1}{1 + 2 \cos^3 \alpha} \frac{P}{F}.
$$

Запас прочности при этом будет

$$
n_t = \frac{\sigma_t}{\sigma_{\text{max}}} = \frac{1 + 2 \cos^3 \alpha}{P} F \sigma_t.
$$

При расчете рассматриваемой подвески по предельному состоянию усилие в среднем стержне при появлении в нем пластической деформации будет

$$
N_{1t} = F \sigma_t
$$

При этом согласно (17.2) внешняя нагрузка

$$
P_{1t} = (1 + 2 \cos^3 \alpha) F \sigma_t,
$$

а усилия в крайних стержнях рассматриваемой системы, превращающейся в статически определимую систему, будут

$$
N_2 = N_3 = \frac{P - F \sigma_t}{2 \cos \alpha}.
$$

Рис 313

Несущая способность конструкции выдержать нагрузку $P > P_{1t}$ будет исчерпана, когда напряжения в крайних стержнях достигнут предела текучести, а соответствующая этому моменту нагрузка согласно (17.8) будет такой:

$$
N_2 = N_3 = F \sigma_t = \frac{P_{\text{пр}} - F \sigma_t}{2 \cos \alpha},
$$

откуда

$$
P_{\text{пр}} = (1 + 2 \cos \alpha) F \sigma_t.
$$

Запас прочности при расчете по предельному состоянию

$$
n_{\text{пр}} = \frac{P_{\text{пр}}}{P} = \frac{(1 + 2 \cos \alpha) F \sigma_t}{P}.
$$

Из сопоставления (17.5) и (17.10) видно, что $n_{\text{пр}} > n_t$. Например, при $\alpha = 30^\circ$ отношение $n_{\text{пр}}/n_t = 1.19$. Таким образом, расчет по предельному состоянию позволил выявить скрытый запас прочности конструкции.

17.3. Расчет при кручении

При кручении стержней сплошного круглого сечения касательные напряжения в упругой области на расстоянии ρ от центра сечения (рис. 314) определяются по формуле (9.7):

$$
\tau_\rho = \frac{M_{\text{кр}} \rho}{J_\rho},
$$

(17.11)
максимальные напряжения по формуле (9.8):

$$\tau_{\text{max}} = \frac{M_{\text{кр}}}{W_p}.$$ \hspace{1cm} (17.12)

Опасное состояние стержня при расчете на кручение по допускаемым напряжениям определяется появлением пластических деформаций в крайних волокнах, когда крутящий момент

$$M_{\text{кр}} = M_T = \tau_T W_p.$$ \hspace{1cm} (17.13)

При этом стержень сохраняет способность воспринимать возрастающий крутящий момент вследствие роста напряжений до уровня предела текучести \(\tau_T\) (рис. 315) в точках, лежащих ближе к центру сечения (рис. 316, a).

Рис. 314 \hspace{1cm} Рис. 315

Рис. 316

При расчете по предельному состоянию, при котором пластические деформации распределены по всему сечению (рис. 316, б), крутящий момент (рис. 316, в)

$$M_{\text{пр}} = \int_F \rho dF \tau_T = \tau_T \cdot 2\pi \int_0^{d/2} \rho^2 d\rho$$ \hspace{1cm} (17.14)

или

$$M_{\text{пр}} = \tau_T \frac{\pi d^3}{12}.$$ \hspace{1cm} (17.15)

Величина

$$\frac{\pi d^3}{12} = W_p(\text{пл})$$ \hspace{1cm} (17.16)

называется пластическим моментом сопротивления при кручении. Тогда

$$M_{\text{пр}} = \tau_T W_p(\text{пл}).$$ \hspace{1cm} (17.17)
Отношение предельного момента M_{pr} к моменту M_T, определяемому по формуле (17.13), будет

$$\frac{M_{pr}}{M_T} = \frac{W_{p(чал)}}{W_p} = \frac{\pi d^3 \cdot 16}{12 \pi d^3} = \frac{4}{3},$$

или

$$M_{pr} = \frac{4}{3} M_T = 1,33 M_T.$$

Таков скрытый запас прочности скручиваемого круглого стержня, который обнаруживается при переходе от расчета по допускаемым напряжениям к расчету по предельному состоянию.

В случае статически неопределённой системы, приведённой на рис. 317, а, б, в, запас прочности при расчете по предельному состоянию оказывается в 1,78 раза больше запаса прочности, получаемого при расчете по допускаемым напряжениям.

17.4. Расчет при изгибе

При изгибе нормальные напряжения по высоте сечения распределены неравномерно (рис. 318, а) и на расстоянии y от нейтральной линии определяются по формуле Навье (10.6):

$$\sigma = \frac{M y}{J}.$$

Максимальные напряжения на краю сечения

$$\sigma_{\text{max}} = \frac{M}{W},$$

где W — осевой момент сопротивления площади поперечного сечения балки, который, например, для балки прямоугольного сечения шириной b и высотой h будет

$$W = \frac{bh^2}{6}.$$
Опасная величина изгибающего момента при расчете по допускаемым напряжениям будет (если пределы текучести при растяжении и сжатии одинаковы)

\[M_T = \sigma_T \cdot W. \]
(17.18)

При этом балка способна воспринимать возрастающий изгибающий момент. По мере увеличения изгибающего момента по сравнению с \(M_T \), пластическое состояние материала распространяется в направлении нейтральной оси (рис. 318, б), вплоть до полного исчерпания несущей способности балки. Предельное состояние наступит тогда, когда текучесть распространится по всему поперечному сечению (рис. 318, в), после чего дальнейшая деформация балки будет происходить без увеличения изгибающего момента. В рассматриваемом поперечном сечении образуется так называемый пластический шарнир, который передает изгибающий момент, равный предельному изгибающему моменту, определяемому для сечения, симметричного относительно нейтральной оси, по формуле

\[M_{np} = \int_{F} \sigma_T y \, dF = \sigma_T \cdot 2 \int_{F/2} y \, dF = \sigma_T \cdot 2S_{\text{max}}. \]
(17.19)

где \(S_{\text{max}} \) — статический момент площади половины поперечного сечения относительно нейтральной оси.

Величину \(2S_{\text{max}} \) принято называть пластическим моментом сопротивления при изгибе и обозначать \(W_{np} \). Тогда

\[M_{np} = \sigma_T \cdot W_{np}. \]
(17.20)

Опношение

\[\frac{M_{np}}{M_T} = \frac{W_{np}}{W} \]
(17.21)

характеризует степень увеличения запаса прочности балки при переходе к расчету по предельным нагрузкам. В случае балки прямоугольного сечения

\[\frac{W_{np}}{W} = \frac{bh^3}{4} \cdot \frac{4}{bh^2} = 1,5. \]

Для двутавровых прокатных балок в среднем \(\frac{W_{np}}{W} = 1,18 \).

В табл. 44 сведены расчетные формулы для определения пластических моментов сопротивления для некоторых сечений балок.
Таблица 44. Пластические моменты сопротивления для некоторых сечений балок

<table>
<thead>
<tr>
<th>Сечение</th>
<th>Пластические моменты сопротивления</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(W_{pl} = \frac{bh^2}{4}); (W_{pl} = 1,5W_x)</td>
</tr>
<tr>
<td></td>
<td>(W_{pl} = \frac{h^2}{3(b_2 - b_1)} \left[b_1^2 + b_2^2 - (b_1' + b_2')^2 \right] \times \sqrt{\frac{b_1^2 + b_2^2}{2}})</td>
</tr>
<tr>
<td></td>
<td>(W_{pl} = \frac{bhl^2}{6} (2 - \sqrt{2}) \approx 0,0977bh^2); (W_{pl} \approx 2,36W_x)</td>
</tr>
<tr>
<td></td>
<td>(W_{pl} = \frac{d^3}{6}); (W_{pl} = 1,7W_x)</td>
</tr>
<tr>
<td>Сечение</td>
<td>Пластические моменты сопротивления</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
<td>[W_{\text{пл}} = \frac{1}{6} \left(d_n^3 - d_w^3 \right) \approx d^3 \delta]</td>
</tr>
<tr>
<td></td>
<td>[W_{\text{пл}} = 1,7 \frac{1 - \alpha^3}{1 - \alpha^4} W_x; \quad \alpha = \frac{d_w}{d_n}]</td>
</tr>
<tr>
<td></td>
<td>[W_{\text{пл}} = S_x; \quad W_{\text{пл}} \approx (1,14 - 1,18) W_x]</td>
</tr>
</tbody>
</table>
18.1. Устойчивое и неустойчивое упругое равновесие

В системе, находящейся в деформированном состоянии, равновесие между внешними нагрузками и вызываемыми ими внутренними силами упругости может быть не только устойчивым, но и неустойчивым. Упругое равновесие устойчиво, если деформированное тело при любом малом отклонении от состояния равновесия стремится возвращаться к первоначальному состоянию и возвращается к нему после удаления внешнего воздействия, нарушающего первоначальное равновесное состояние. Упругое равновесие неустойчиво, если деформированное тело, будучи выведено из него каким-либо воздействием, продолжает деформироваться в направлении вызванного отклонения и после прекращения воздействия в исходное состояние не возвращается. Между этими двумя состояниями равновесия находится переходное состояние, называемое критическим. При критическом состоянии деформированное тело находится в безразличном равновесии: оно может сохранять первоначально приданную ему форму, но может и потерять ее от самого незначительного воздействия.

Устойчивость формы равновесия деформированного тела зависит от величины приложенной к нему нагрузки. Нагрузка, превышение которой вызывает потерю устойчивости первоначальной формы тела, называется критической нагрузкой и обозначается через $P_{кр}$.

На рис. 319, а, б, в показаны возможные случаи деформирования стержня в зависимости от сжимающей нагрузки: при $P < P_{кр}$ форма равновесия остается устойчивой (на рис. 319, а); при $P = P_{кр}$ — состояние безразличного равновесия, когда стержень может занимать одно из трех показанных сплошной и штриховыми линиями положений (рис. 319, б); при $P > P_{кр}$ стержень теряет устойчивость, выпучивается, т. е. прямоолинейная форма равновесия перестает быть устойчивой (рис. 319, в).

Достижение нагрузками критических значений равнозначной разрушенной конструкции, так как неустойчивая форма равновесия неминуемо будет утрачена, что практически связано с неограниченным ростом деформации и напряжений. Разрушение обычно происходит внезапно от изгиба и при малых значениях сжимающих напряжений, когда прочность элемента на сжатие еще далеко не исчерпана. Для обеспечения определенного запаса устойчивости необходимо, чтобы удовлетворялось условие

$$P < [P],$$

(18.1)
где P — действующая нагрузка; $[P]$ — допускаемая нагрузка, которая при коэффициенте запаса устойчивости n_y определяется так:

$$[P] = \frac{P_{кр}}{n_y}.$$ (18.2)

Таким образом, при расчете упругих систем (в частности, таких типичных систем, каким являются сжатые стержни) на устойчивость прежде всего необходимо определить величину критической силы $P_{кр}$.

Ниже рассмотрим основные формулы для определения критических нагрузок при сжатии длинного тонкого стержня или при так называемом продольном изгибе.

18.2. Формула Эйлера для определения критической нагрузки сжатого стержня

Предполагая, что критическая сила $P_{кр}$ не вызывает в стержне напряжений, превышающих предел пропорциональности, и что имеют место только малые отклонения от прямоолинейной формы, значение критической силы $P_{кр}$ для сжатого стержня длиной l, закрепленного по схеме, приведенной на рис 320, а, можно определить из следующего приближенного дифференциального уравнения изогнутой оси балки (раздел 10.5):

$$EJ_{min} \frac{d^2w(z)}{dz^2} = M(z),$$ (18.3)

где E — модуль упругости материала стержня при растяжении; J_{min} — наименьший момент инерции сечения стержня (при потере устойчивости прогиб произойдет перпендикулярно к оси наименьшей жесткости); $M(z)$ — изгибающий момент:

$$M(z) = -Pw.$$ (18.4)

Подставив (18.4) в (18.3), получим

$$EJ_{min} \frac{d^2w}{dz^2} + Pw = 0,$$

или

$$\frac{d^2w}{dz^2} + k^2w = 0,$$ (18.5)

где

$$k^2 = \frac{P_{кр}}{EJ_{min}}.$$ (18.6)

Решением полученного однородного дифференциального уравнения (18.5) будет

$$w = A \sin kz + B \cos kz,$$

где A и B — постоянные интегрирования — определяются из граничных условий. В частности, для случая шарнирного закрепления концов сжатого стержня (рис. 320, а) граничные условия имеют вид

$$w(z) \big|_{z=0} = 0, \quad w(z) \big|_{z=l} = 0.$$
Из первого граничного условия следует, что $B = 0$, поэтому

$$w(z) = A \sin kz.$$ \hspace{1cm} (18.7)

Из второго условия получаем

$$A \sin kl = 0.$$ \hspace{1cm} (18.8)

Так как

$$A \neq 0,$$

tо

$$\sin kl = 0.$$ \hspace{1cm} (18.8)

Корень этого уравнения kl может иметь бесконечное число значений:

0, π, 2π, ..., $n\pi$, т. е.

$$kl = n\pi,$$

gде n — произвольное целое число.

Очевидно, первый корень $kl = 0$ должен быть отброшен, так как он не соответствует исходным данным задачи. Таким образом,

$$k^2 l^2 = n^2 \pi^2.$$ \hspace{1cm} (18.9)

Учитывая (18.6) и (18.9), находим искомое значение сжимающего усилия

$$P = \frac{n^2 \pi^2 E J_{\text{min}}}{l^2}.$$ \hspace{1cm} (18.10)

Это выражение впервые было получено Эйлером и называется формулой Эйлера.

Наименьшее значение критической силы P_{kr}, получаемое при $n = 1$ и $kl = \pi$, определяется формулой

$$P_{kr} = \frac{\pi^2 E J_{\text{min}}}{l^2}.$$ \hspace{1cm} (18.11)

Уравнение изогнутой линии при малых деформациях согласно (18.7) имеет вид

$$w(z) = A \sin \frac{n\pi z}{l}.$$

Значение A характеризуется величиной максимального прогиба $w_{\text{max}} = f$, когда $\sin \frac{n\pi z}{l} = 1$. Следовательно,

$$w = f \sin \frac{n\pi z}{l}.$$ \hspace{1cm} (18.12)

Максимум $w(z)$ имеет место при таком значении z, для которого

$$\frac{dw}{dz} = 0,$$

t. е.

$$\frac{dw}{dz} = f \frac{n\pi}{l} \cos \frac{n\pi z}{l} = 0,$$

или

$$\cos \frac{n\pi z}{l} = 0.$$
Наименьшее значение аргумента, при котором косинус равен нулю, равно \(\frac{\pi}{2} \), следовательно,

\[
\frac{\pi z}{l} = \frac{\pi}{2}
\]

откуда

\[
z = \frac{l}{2n}.
\] (18.13)

Из (18.12) или (18.13) следует, что \(n \) равно числу полуволн синусоиды, умещающейся на длине изогнутого стержня (рис. 321). Если \(n = 1 \), то \(z = l/2 \), и максимальное значение прогиба \(w_{\text{max}} = f \) имеет место посередине длины стержня. Это соответствует основному случаю, показанному на рис. 320, б, когда после потери стержнем устойчивости при минимальном значении критической силы \(P_{\text{кр}} \) на его изогнутой оси умещается только одна полувольна синусоиды.

18.3. Влияние условий закрепления концов стержня на величину критической силы

Влияние условий закрепления концов стержня на величину критической силы легко выяснить путем сопоставления вида изогнутой оси стержня при различных случаях закрепления с формой изогнутой оси в основном случае, т. е. при шарнирном закреплении обоих концов стержня.

Стержень длиной \(l \) с одним жестко закрепленным, а другим свободным концом (рис. 322, а). При потере устойчивости стержень находится в таком же состоянии, как и половина стержня длиной \(L = \frac{l}{2} \) с шарнирно закрепленными концами (рис. 322, б). Это значит, что в рассматриваемом случае формула (18.11) примет вид

\[
P_{\text{кр}} = \frac{\pi^2 E J_{\text{min}}}{(2l)^3} = \frac{\pi^2 E J_{\text{min}}}{4l^2}.
\] (18.14)
При этом изогнутая ось стержня (рис. 322, 6) имеет вид половины полуволны синусоиды. Значит, \(n = 1/2 \).

Стержень длинной \(l \) с двумя жестко закрепленными концами (рис. 323). При потере устойчивости средняя часть стержня будет иметь такую же форму потери устойчивости, как и стержень длинной \(L = l/2 \) с шарнирно закрепленными концами, т. е.

\[
P_{kp} = \frac{\pi^4 EJ_{min}}{(0.5l)^4} = \frac{4\pi^4 EJ_{min}}{l^4}.
\] (18.15)

В этом случае образуется две половины: средняя, длинной \(L = l/2 \), и две крайних половины полуволны, длинной \(l/2 \). Значит, \(n = 2 \).

Стержень длинной \(l \) с одним жестко закрепленным концом, а другим шарнирно опертым (рис. 324). После потери устойчивости правая часть стержня \(CB \) будет иметь вид полуволны синусоиды. Из сравнения рис. 324 и рис. 322, 6 находим, что участок \(CB \) имеет длину \(L = 0.7l \), а следовательно,

\[
P_{kp} = \frac{\pi^4 EJ_{min}}{(0.7l)^4}.
\] (18.16)

Из сопоставления (18.11) и (18.14) — (18.16) следует, что в общем случае указанные формулы могут быть представлены в виде

\[
P_{kp} = \frac{\pi^4 EJ_{min}}{(vl)^4},
\] (18.17)

где \(vl = l_{np} \) — приведенная длина стержня; \(l \) — фактическая длина стержня; \(v \) — коэффициент приведения длины.

При шарнирном закреплении обон концов стержня \(v = 1 \); если один конец стержня жестко закреплен, а другой свободен, то \(v = 2 \); если оба конца жестко закреплены, то \(v = 1/2 \); если один конец жестко закреплен, а второй шарнирно оперт, то \(v = 0.7 \).

Приведенные случаи закрепления концов стержня на практике в чистом виде встречаются редко. Наиболее распространены случаи закрепления, когда один конец стержня жестко заделан, а другой упруго оперт или когда оба конца упруго заделаны.

Рассматривая первый из указанных случаев (рис. 325), легко заметить, что после потери устойчивости упруго опертый конец перемещается в вертикальном направлении на величину \(f_B \), при этом возникает упругая реакция \(R_B \), пропорциональная отклонению \(f_B \):

\[
R_B = cf_B,
\]

где \(c \) — коэффициент жесткости опоры \(B \).
Дифференциальное уравнение упругой линии при этом имеет вид

$$EJ_{\min} \frac{d^2w}{dz^2} = P (f_B - w) \left(1 - \frac{c}{P_{kr}} l \right)$$ \hspace{1cm} (18.18)

или

$$\frac{d^2w}{dz^2} = k^2 (f_B - w) - \frac{c f_B}{E J_{\min}} (l - z),$$ \hspace{1cm} (18.19)

где

$$k^2 = \frac{P_{kr}}{E J_{\min}}.$$

Перепишем уравнение (18.19) в виде

$$\frac{d^2w}{dz^2} + k^2 w = k^2 f_B \left(1 - \frac{c}{P_{kr}} l \right) + k^2 \frac{c f_B}{P_{kr}} z,$$ \hspace{1cm} (18.20)

найдем его решение

$$w = C \sin k z + D \cos k z + f_B \left(1 - \frac{c}{P_{kr}} l \right) + \frac{c}{P_{kr}} f_B z.$$ \hspace{1cm} (18.21)

Постоянные интегрирования и критическую нагрузку определим из граничных условий:

при \(z = 0 \)

$$w (0) = w_A = 0,$$ \hspace{1cm} (18.22)

$$\frac{dw (0)}{dz} = 0 (0) = 0;$$ \hspace{1cm} (18.23)

при \(z = l \)

$$w (l) = w_B = f_B.$$ \hspace{1cm} (18.24)

Из (18.22) находим

$$D = -f_B \left(1 - \frac{c}{P_{kr}} l \right).$$

Для использования (18.23) вычислим производную (18.21) и

$$\frac{dw}{dz} = kC \cos k z - kD \sin k z + \frac{c}{P_{kr}} f_B,$$

откуда при \(z = 0 \) получаем

$$kC + \frac{c}{P_{kr}} f_B = 0,$$

или

$$C = -\frac{c}{kP_{kr}} f_B.$$

Подставив полученные значения \(C \) и \(D \) в (18.21), найдем

$$w (z) = -\frac{c}{kP_{kr}} f_B \sin k z - f_B \left(1 - \frac{c}{P_{kr}} l \right) \cos k z +$$

$$+ f_B \left(1 - \frac{c}{P_{kr}} l \right) + \frac{c f_B}{P_{kr}} z.$$ \hspace{1cm} (18.25)
Используем граничное условие (18.24). Положив в (18.25) \(z = l \), найдем

\[
\omega (l) = -\frac{c}{kP_{kr}} f_B \sin kl - f_B \left(1 - \frac{c}{P_{kr}} l \right) \cos kl +
\]

или

\[
+ f_B \left(1 - \frac{c}{P_{kr}} l \right) + \frac{c}{P_{kr}} f_B l = f_B,
\]

откуда

\[
\tan kl = kl \left(1 - \frac{P_{kr}}{cl} \right).
\] (18.26)

Если из этого уравнения найти наименьшее значение \(k \), то тем самым будет найдено наименьшее значение критической нагрузки

\[
P_{kr} = k^2 EJ_{min}.
\]

Рассмотрим два предельных случая. Положим \(c = 0 \), получим

\[
\tan kl = \infty; \quad kl = \frac{\pi}{2},
\]

t. е. приходим к расчетной схеме, когда один (левый) конец жестко заделан, а другой (правый) свободен (рис. 322, а). Величина критической силы в этом случае определяется формулой (18.14). Полагая \(c = \infty \), из (18.26) находим \(\tan kl = kl \), \(kl = \pi/0,7 \) и величину критической силы (18.26), которая соответствует случаю, когда один конец стержня жестко заделан, а другой шарнирно оперт (рис. 324).

Следовательно, изменение коэффициента упругости \(c \) от нуля до бесконечности может быть учтено коэффициентом приведения \(\psi \), который при этом будет изменяться от 2 до 0,7.

Значения коэффициента приведения длины \(\psi \), а также коэффициента устойчивости \(\eta = k^2 \psi \) для центрально сжатых стержней постоянного и переменного поперечных сечений для различных случаев нагрузжен и закрепления приведены в табл. 45. В табл. 46 даны значения критических нагрузок для полосы и некоторых двутавровых балок.

18.4. О потере устойчивости при напряжениях, превышающих предел пропорциональности материала

Формула Эйлера была получена исходя из дифференциального уравнения упругой линии, поэтому ею можно пользоваться лишь в случае, если справедлив закон Гука, т. е. пока критическое напряжение, возникающее в сжатом стержне при критической нагрузке \(P_{kr} \) (18.17), не превышает предела пропорциональности:

\[
\sigma_{kr} = \frac{P_{kr}}{F} < \sigma_{пр},
\]

где \(F \) — площадь поперечного сечения стержня.
Представляя критическое напряжение в виде

$$\sigma_{kr} = \frac{P_{kr}}{F} = \frac{\pi^2 E l_{min}}{F (\nu l)^2} = \frac{\pi^2 E}{\left(\frac{\nu l}{l}\right)^2}$$

где $l = l_{min} = \sqrt{\frac{J_{min}}{F}}$ — наименьший главный радиус инерции площади сечения стержня (раздел 2.7), или

$$\sigma_{kr} = \frac{\pi^2 E}{\lambda^2}$$ \hspace{1cm} (18.27)

где

$$\lambda = \frac{\nu l}{l_{min}}$$ \hspace{1cm} (18.28)

— безразмерная величина, называемая гибкостью стержня, из (18.27) видно, что критическое напряжение зависит только от модуля упругости E и гибкости λ.

Построив график зависимости $\sigma_{kr} = f(\lambda)$ (рис. 326) — гиперболу Эйлера, можно убедиться, что для данного материала (а известным модулем E) формула (18.27) справедлива начиная с определенного значения гибкости, которое может быть найдено на условии

$$\sigma_{kr} = \frac{\pi^2 E}{\lambda^2} < \sigma_{pu}$$

Определенной предельной гибкостью λ_{pred} ниже которой формулой (18.27) пользоваться нельзя:

$$\lambda_{pred} > \sqrt{\frac{\pi^2 E}{\sigma_{pu}}}$$

Так, для стали марки СтЗ, модуль упругости которой $E = 2 \cdot 10^8$ МПа, $\sigma_{pu} \approx 200$ МПа,

$$\lambda < \lambda_{pred} = \sqrt{\frac{\pi^2 E}{\sigma_{pu}}} = \sqrt{\frac{3,14^2 \cdot 2 \cdot 10^8}{200}} \approx 100,$$

t. e. формулой Эйлера (18.27) можно пользоваться на участке гиперболы, показанной на рис. 326 сплошной линией, при гибкости λ не менее 100.

Однако, как показывает опыт, на участке $\lambda < \lambda_{pred}$ при напряжениях в стержне, больших σ_{pu}, при которых формула Эйлера дает завышенные значения критических напряжений (участок гиперболы Эйлера, показанный на рис. 326 штрихами), стержень может потерять устойчивость. В этом случае значение критического напряжения мо-

\[\sigma_{kr} = a - b\lambda. \]
(18.29)

Для чугуна пользуются квадратичной зависимостью

\[\sigma_{kr} = a - b\lambda + c\lambda^2. \]
(18.30)

Значения постоянных коэффициентов \(a\), \(b\) и \(c\) для некоторых материалов приведены ниже.

<table>
<thead>
<tr>
<th>Материал</th>
<th>(\lambda_{pred})</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ст2, Ст3</td>
<td>100</td>
<td>3100</td>
<td>11,4</td>
<td>—</td>
</tr>
<tr>
<td>Ст5</td>
<td>100</td>
<td>4640</td>
<td>32,6</td>
<td>—</td>
</tr>
<tr>
<td>Сталь 40</td>
<td>90</td>
<td>3210</td>
<td>11,6</td>
<td>—</td>
</tr>
<tr>
<td>Кремнестая сталь</td>
<td>100</td>
<td>5890</td>
<td>38,2</td>
<td>—</td>
</tr>
<tr>
<td>Дерево (сосна)</td>
<td>110</td>
<td>293</td>
<td>1,94</td>
<td>—</td>
</tr>
<tr>
<td>Чугун</td>
<td>80</td>
<td>7760</td>
<td>120</td>
<td>0,53</td>
</tr>
</tbody>
</table>

При некоторых значениях гибкости \(\lambda_0\) величина \(\sigma_{kr}\), вычисленная по формулам (18.29) или (18.30), становится равной предельному напряжению при сжатии, т. е. для пластичных материалов

\[\sigma_{kr} = \sigma_T; \]

для хрупких материалов

\[\sigma_{kr} = \sigma_B. \]

Стержни, у которых \(\lambda < \lambda_0\), называются стержнями малой гибкости и их рассчитывают только на прочность. Для стали марки Ст3, например, при \(40 < \lambda < 100\) график зависимости \(\sigma_{kr} = f(\lambda)\), полученный на основании формулы (18.29), представляет собой наклонную прямую \(SM\) (рис. 326), а часть графика \(NS\) при \(0 < \lambda < 40\) может рассматриваться как горизонтальная линия.

Таким образом, график зависимости \(\sigma_{kr} = f(\lambda)\) для стали марки Ст3 состоит из трех участков: горизонтального участка \(NS\), соответствующего \(\sigma_{kr} = \sigma_T\); наклонного участка \(SM\) при \(40 < \lambda < 100\) и гиперболы Эйлера при \(\lambda > 100\) (правая точка \(M\)).

18.5. Расчет сжатых стержней на устойчивость с помощью коэффициентов уменьшения основного допускаемого напряжения

Централизованно сжатые стержни с малой гибкостью (\(\lambda < \lambda_0\)) сохраняют несущую способность при условии, что критические напряжения не превышают опасного напряжения, т. е. что

\[\sigma_{kr} < \sigma_0, \]

gде для хрупких материалов за опасное напряжение принимается временное сопротивление, т. е. \(\sigma_0 = \sigma_B\), для пластичных материалов — предел текучести \(\sigma_0 = \sigma_T\). Несущая способность стержней малой гибкости определяется прочностью материала.
В случае стержней с большой гибкостью опасным состоянием следует считать момент возникновения в сжатом стержне напряжений, равных \(\sigma_{kr} \). Поэтому для обеспечения работоспособности стержня необходимо выполнение следующего условия устойчивости:

\[
\sigma_{kr} < [\sigma]_y, \tag{18.31}
\]

где \([\sigma]_y\) — допускаемое напряжение на устойчивость, определяемое по формуле

\[
[\sigma]_y = \frac{\sigma_{kr}}{n_y}.
\]

Здесь \(n_y\) — коэффициент запаса устойчивости, который на-за возможной эксцентриситет приложения нагрузки, искривления стержня и неоднородности материала принимается всегда несколько больше основного коэффициента запаса на прочность \((n_y > n_0)\). Для стали \(n_y = 1,8 — 3,0\); для чугуна \(n_y = 5,0 — 5,5\); для дерева \(n_y = 2,8 — 3,2\). Чем больше гибкость, тем меньшим принимают \(n_y\).

На практике при расчете на устойчивость принято пользоваться не допускаемым напряжением на устойчивость \([\sigma]_y\), а допускаемым напряжением на сжатие \([\sigma]\) с соответствующим поправочным коэффициентом \(\varphi\), значение которого может быть установлено на отношениях

\[
[\sigma]_y = \frac{\sigma_{kr}}{n_y} \cdot \frac{n_0}{\sigma_0}.
\]

Отсюда

\[
[\sigma]_y = \frac{\sigma_{kr}}{\sigma_0} \cdot \frac{n_0}{n_y} [\sigma -].
\]

или

\[
[\sigma]_y = \varphi [\sigma -], \tag{18.32}
\]

где

\[
\varphi = \frac{\sigma_{kr}}{\sigma_0} \cdot \frac{n_0}{n_y}. \tag{18.33}
\]

Здесь \(\varphi\) — коэффициент уменьшения допускаемого напряжения на сжатие, или коэффициент условного допускаемого напряжения.

В табл. 47 приведены значения \(\varphi\) для различных гибкостей.

Таким образом, учитывая (18.32), расчетную формулу на устойчивость (18.31) теперь можем переписать в виде

\[
\sigma_{max} < [\sigma]_y = \varphi [\sigma -]
\]

или

\[
\sigma = \frac{P}{F_6 рутто} < \varphi [\sigma -]. \tag{18.34}
\]

Различают два вида расчета на устойчивость: поверочный и проектировочный.

При поверочном расчете исходят из известных размеров и формы поперечного сечения стержня и прежде всего определяют наименьший
осевой момент инерции \(j_{\text{min}} \), площадь \(F \), вычисляют минимальный радиус инерции

\[i_{\text{min}} = \sqrt{\frac{j_{\text{min}}}{F}}, \]

а также гибкость

\[\lambda = \frac{\psi l}{i_{\text{min}}}. \]

Затем, зная гибкость, находят по таблице коэффициент \(\varphi \), определяют допускаемое напряжение на устойчивость

\[[\sigma]_y = \varphi [\sigma_\text{l}]. \]

Сравнивают действительное напряжение \(\sigma = \frac{P}{F_{\text{бруто}}} \) с допускаемым напряжением на устойчивость \([\sigma]_y\) и выясняют, удовлетворяется ли условие

\[\sigma \leq [\sigma]_y. \]

При проектировочном расчете исходят из условия

\[\sigma = \frac{P}{\varphi F_{\text{бруто}}} \leq [\sigma_\text{l}]. \quad (18.35) \]

Необходимое сечение определяется формулой

\[F_{\text{бруто}} = \frac{P}{\varphi [\sigma_\text{l}]} . \quad (18.36) \]

Кроме носовой площади \(F_{\text{бруто}} \) в последнем соотношении неизвестным является также и коэффициент \(\varphi \). Поэтому при подборе сечения приходится пользоваться методом последовательных приближений, варьируя величину коэффициента \(\varphi \). Обычно при первой попытке принимают \(\varphi_1 = 0.5 - 0.6 \). При принятом \(\varphi_1 \) по формуле (18.36) определяют \(F_{\text{бруто}} \) и подбирают соответствующее сечение. Зная сечение и определив \(j_{\text{min}}, i_{\text{min}} \) и \(\lambda \), устанавливают фактическое значение коэффициента \(\varphi_1 \). Если \(\varphi_1 \) значительно отличается от \(\varphi_1 \), то напряжение будет отличаться от допускаемого. Тогда следует повторить расчет, т. е. предпринять вторичную попытку, приняв среднее по величине значение между коэффициентами \(\varphi_1 \) и \(\varphi_1' \):

\[\varphi_2 = \frac{\varphi_1 + \varphi_1'}{2}. \]

В результате второй попытки устанавливают \(\varphi_2 \). Если требуется третья попытка, то расчет повторяют при

\[\varphi_3 = \frac{\varphi_2 + \varphi_2'}{2} \]

и т. д. Обычно на практике удается обойтись двумя-тремя попытками.

При заданном сечении условие (18.35) можно использовать для определения допускаемого значения нагрузки \(P \) или предельной длины \(l \) стержня через его гибкость \(\lambda \), обеспечивающих устойчивость стержня.
18.6. Выбор материала и рациональной формы поперечных сечений сжатых стержней

Для стержней большой гибкости (\(\lambda > \lambda_{\text{пред}}\)), когда \(\sigma_{\text{кр}} < \sigma_{\text{пц}}\), модуль упругости \(E\) является единственной характеристикой, определяющей сопротивляемость стержня потере устойчивости. Тогда, очевидно, для сталных стержней, работающих на сжатие, у которых \(E\) практически меняется мало, целесообразно применить сталь повышенной прочности. Что касается формы поперечного сечения, то рациональной будет такая форма, при которой при определенной площади величина наименьшего радиуса инерции \(i_{\text{min}}\) (см. раздел 2.7) является наибольшей.

Введем безразмерную характеристику

\[
\xi = \frac{i_{\text{min}}}{\sqrt{F}}
\]

которую назовем удельным радиусом инерции. О рациональности того или иного сечения можно судить на основании данных, приведенных ниже.

<table>
<thead>
<tr>
<th>Сечение</th>
<th>(\xi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Трубчатое</td>
<td>(0,95 \pm 0,8)</td>
</tr>
<tr>
<td></td>
<td>(0,7 \pm 0,8)</td>
</tr>
<tr>
<td>Уголковое</td>
<td>(0,5 \pm 0,3)</td>
</tr>
<tr>
<td>Двутавровое</td>
<td>(0,41 \pm 0,27)</td>
</tr>
<tr>
<td>Швеллерное</td>
<td>(0,41 \pm 0,29)</td>
</tr>
<tr>
<td>Квадратное</td>
<td>(0,289)</td>
</tr>
<tr>
<td>Круглое</td>
<td>(0,283)</td>
</tr>
<tr>
<td>Прямоугольное ((b = 2b))</td>
<td>(0,204)</td>
</tr>
</tbody>
</table>

Анализ приведенных данных показывает, что наиболее рациональными являются трубчатые сечения, столь же рациональны коробчатые тонкостенные сечения. Наименее рациональными являются сплошные прямоугольные сечения.

При проектировании стержней, несущая способность которых определяется сопротивлением потере устойчивости, следует стремиться к тому, чтобы стержень был равноустойчивым во всех направлениях, т. е. чтобы главные моменты инерции были по возможности одинаковыми.

18.7. Продольно-поперечный изгиб

Изгиб стержня называется продольно-поперечным, если в его поперечных сечениях возникают изгибающие моменты как от продольных, так и от поперечных нагрузок (рис. 327).
Вычисление полного изгибающего момента \(M_n \) в поперечных сечениях производят с учетом прогибов оси стержня:

\[
|M_n (z)| = |M (z)| + |Sw_n (z)|,
\]

(18.37)

gде \(M (z) \) — изгибающий момент от действия поперечной нагрузки;

\(Sw_n (z) \) — изгибающий момент от действия осевой нагрузки \(S \). Определение величины полного изгибающего момента \(M_n (z) \) осложняется тем, что в этом случае нельзя пользоваться принципом независимости действия сил.

Рис. 3.27

Рассмотрим приближенный метод определения изгибающего момента \(M_n (z) \). Он основан на допущении, что изогнутая ось балки при поперечной нагрузке принимает форму синусоиды, т. е.

\[
\omega (z) \approx f \sin \frac{\pi z}{l}.
\]

(18.38)

При наличии продольной силы также приближенно принимают, что

\[
\omega_n (z) \approx f_n \sin \frac{\pi z}{l}.
\]

(18.39)

Такое допущение позволяет получить достаточную точность для шарнирно опертой балки при действии поперечных нагрузок, направленных в одну сторону, особенно, если деформация балки оказывается симметричной относительно ее середины, где \(\omega_n (l/2) = f_n \).

Дифференциальные уравнения упругой линии при поперечном (10.31) и продольно-поперечном изгибе соответственно запишем так:

\[
\frac{d^2 \omega (z)}{dz^2} = \frac{M (z)}{EI};
\]

(18.40)

\[
\frac{d^2 \omega_n (z)}{dz^4} = \frac{M (z)}{EI} - \frac{Sw_n (z)}{EI}.
\]

(18.41)

Исключив из уравнений (18.40) и (18.41) \(M (z) \) и учтя допущения (18.38) и (18.39), будем иметь

\[
(f_n - f) \frac{d^2}{dz^2} \left(\sin \frac{\pi z}{l} \right) = -\frac{S}{EI} f_n \sin \frac{\pi z}{l}.
\]
После дифференцирования получим

\[\frac{n^2}{l^2} (f_n - f) = \frac{S}{EJ} f_n. \] (18.42)

Обозначив

\[\frac{n^2EJ}{l^2} = P_s, \] (18.43)

из уравнения (18.42) найдем выражение для прогиба посредине пролета балки при продольно-поперечном изгибе:

\[f_n = \frac{f}{1 - \frac{S}{P_s}}. \] (18.44)

Формула (18.44) дает удовлетворительные результаты, когда сжимающая сила \(S \) не превышает 0,8 \(P_k \). Предполагая, что изгибающие моменты пропорциональны прогибам, в соответствии с (18.44) можно получить простую приближенную формулу для определения изгибающего момента при продольно-поперечном изгибе в виде

\[M_n = \frac{M}{1 - \frac{S}{P_s}}. \] (18.45)

Тогда величина максимальных напряжений в сечении стержня определяется формулой

\[\sigma_{max} = \frac{S}{F} + \frac{(M_n)_{max}}{W} \] (18.46)

или с учетом (18.45) формулой

\[\sigma_{max} = \frac{S}{F} + \frac{M}{W \left(1 - \frac{S}{P_s}\right)}. \] (18.47)

Из формулы следует, что принцип независимости действия сил здесь не имеет места.

В табл. 48 приведены уравнения изгибающего момента и упругой линии для некоторых случаев продольно-поперечного изгиба балок постоянного поперечного сечения.
Таблица 48. Коэффициенты \(v \) и \(\eta \) для определения критической
нагрузки центрально сжатых стержней по формуле \(P_{kr} = \frac{\pi^2 EJ}{(vl)^2} = \frac{EJ}{l^2} \)

<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины (v)</th>
<th>Коэффициент устойчивости (\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>![Схема стержня 1]</td>
<td>1</td>
<td>9,8696</td>
</tr>
<tr>
<td>2</td>
<td>![Схема стержня 2]</td>
<td>0,699</td>
<td>20,199</td>
</tr>
<tr>
<td>3</td>
<td>![Схема стержня 3]</td>
<td>2</td>
<td>2,4674</td>
</tr>
<tr>
<td>4</td>
<td>![Схема стержня 4]</td>
<td>1</td>
<td>9,8696</td>
</tr>
<tr>
<td>5</td>
<td>![Схема стержня 5]</td>
<td>2</td>
<td>2,4674</td>
</tr>
<tr>
<td>6</td>
<td>![Схема стержня 6]</td>
<td>0,5</td>
<td>39,4784</td>
</tr>
<tr>
<td>7</td>
<td>![Схема стержня 7]</td>
<td>0,699</td>
<td>20,199</td>
</tr>
<tr>
<td>Номер схемы</td>
<td>Схема стержня и его нагружения</td>
<td>Коэффициент приведения длины (\nu)</td>
<td>Коэффициент устойчивости (\eta)</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>8</td>
<td>![Diagram 8]</td>
<td>(a/l)</td>
<td>(a/l)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>2,4674</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1</td>
<td>2,932</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,2</td>
<td>3,283</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,3</td>
<td>3,845</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,4</td>
<td>4,551</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,5</td>
<td>5,438</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,6</td>
<td>6,511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,7</td>
<td>7,726</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,8</td>
<td>8,874</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,9</td>
<td>9,637</td>
</tr>
<tr>
<td>9</td>
<td>![Diagram 9]</td>
<td>(a/l)</td>
<td>(a/l)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>2,467</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1</td>
<td>2,883</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,2</td>
<td>3,414</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,3</td>
<td>4,105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,4</td>
<td>5,021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,5</td>
<td>6,26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,6</td>
<td>7,99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,7</td>
<td>10,39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,8</td>
<td>13,69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,9</td>
<td>17,24</td>
</tr>
<tr>
<td>10</td>
<td>![Diagram 10]</td>
<td>(P_3/P_1)</td>
<td>(P_3/P_1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\nu)</td>
<td>(\eta)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>9,8696</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,25</td>
<td>10,93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,5</td>
<td>11,92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,75</td>
<td>12,46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>13,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>14,68</td>
</tr>
</tbody>
</table>

В общем случае при

\[
m = \frac{P_1 + P_2}{P_1}
\]

\(P_{кр} = (P_1 + P_2)_{кр} \)
<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины ν</th>
<th>Коэффициент устойчивости η</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>![Diag1]</td>
<td>![Graph1]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P_{kr} = (P_1 + P_2)_{kr})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>![Diag2]</td>
<td>0,773</td>
<td>16,5</td>
</tr>
<tr>
<td>13</td>
<td>![Diag3]</td>
<td>0,858</td>
<td>13,41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины ν</th>
<th>Коэффициент устойчивости η</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>![Diag4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P_{kr} = (P_1 + P_2)_{kr})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

При \(m = \frac{P_1 + P_2}{P_1} \) и \(n = \frac{a}{b} \)
<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины τ</th>
<th>Коэффициент устойчивости η</th>
<th>P₁/P₁</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a/l</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>4,935</td>
<td>7,402</td>
<td>14,80</td>
<td>27,14</td>
</tr>
<tr>
<td>0,1</td>
<td>4,930</td>
<td>7,377</td>
<td>14,68</td>
<td>26,66</td>
</tr>
<tr>
<td>0,2</td>
<td>4,880</td>
<td>7,207</td>
<td>13,78</td>
<td>23,19</td>
</tr>
<tr>
<td>0,3</td>
<td>4,712</td>
<td>6,769</td>
<td>11,70</td>
<td>16,82</td>
</tr>
<tr>
<td>0,4</td>
<td>4,470</td>
<td>6,074</td>
<td>9,187</td>
<td>11,57</td>
</tr>
<tr>
<td>0,5</td>
<td>4,136</td>
<td>5,268</td>
<td>7,060</td>
<td>8,210</td>
</tr>
<tr>
<td>0,6</td>
<td>3,759</td>
<td>4,497</td>
<td>5,504</td>
<td>6,048</td>
</tr>
<tr>
<td>0,7</td>
<td>3,385</td>
<td>3,830</td>
<td>4,376</td>
<td>4,660</td>
</tr>
<tr>
<td>0,8</td>
<td>3,040</td>
<td>3,280</td>
<td>3,551</td>
<td>3,685</td>
</tr>
<tr>
<td>0,9</td>
<td>2,734</td>
<td>2,832</td>
<td>2,936</td>
<td>2,986</td>
</tr>
<tr>
<td>1,0</td>
<td>2,467</td>
<td>2,467</td>
<td>2,467</td>
<td>2,467</td>
</tr>
</tbody>
</table>

В общем случае

![Diagram](diag.png)

<p>| | | | | | |
| | | | | | |
| --- | --- | --- | --- | --- |
| 15 | 3,952 | 0,632 | | |</p>
<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины v</th>
<th>Коэффициент устойчивости η</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td>2</td>
<td>(\pi^2/4)</td>
</tr>
<tr>
<td></td>
<td>(a_1) (a_2) (a_3) (a_n-l) (P_1) (P_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P_{kr} = \left[P_1 \left(\frac{a_1}{l}\right)^2 + \right.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+ P_2 \left(\frac{a_2}{l}\right)^2 + \cdots + P_n) \left(\frac{a_n}{l}\right)^2 + \cdots + P_n \right]_{kr}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>(q) (l) (0,725) (18,76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P_{kr} = (ql)_{kr})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>(q) (l) (0,434) (52,5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P_{kr} = (ql)_{kr})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>(q) (l) (1,122) (7,839)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P_{kr} = (ql)_{kr})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>(q) (l) (0,723) (18,9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P_{kr} = (ql)_{kr})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Номер схемы</td>
<td>Схема стержня и его нагружения</td>
<td>Коэффициент приведения длины l</td>
<td>Коэффициент устойчивости η</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>21</td>
<td>q [l]</td>
<td>0,577</td>
<td>29,64</td>
</tr>
<tr>
<td></td>
<td>$P_{kr} = (ql)_{kr}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>q [l]</td>
<td>0,366</td>
<td>73,65</td>
</tr>
<tr>
<td></td>
<td>$P_{kr} = (ql)_{kr}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>$\frac{q}{2}$ [l]</td>
<td>0,560</td>
<td>31,47</td>
</tr>
<tr>
<td></td>
<td>$P_{kr} = \left(\frac{ql}{2}\right)_{kr}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>$\frac{q}{2}$ [l]</td>
<td>0,694</td>
<td>20,49</td>
</tr>
<tr>
<td></td>
<td>$P_{kr} = \left(\frac{ql}{2}\right)_{kr}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>$\frac{q}{2}$ [l]</td>
<td>1,486</td>
<td>4,47</td>
</tr>
<tr>
<td></td>
<td>$P_{kr} = \left(\frac{ql}{2}\right)_{kr}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Номер схемы</td>
<td>Схема стержня и его нагружения</td>
<td>Коэффициент приведения длины v</td>
<td>Коэффициент устойчивости η</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>26</td>
<td>$P_{kr} = \left(\frac{qL}{2}\right)_{kr}$</td>
<td>1,388</td>
<td>5,123</td>
</tr>
<tr>
<td>27</td>
<td>$P_{kr} = \left(\frac{qL}{2}\right)_{kr}$</td>
<td>0,782</td>
<td>16,126</td>
</tr>
</tbody>
</table>

Для $n = \frac{qL}{l^2}$:

<table>
<thead>
<tr>
<th>n</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9,87</td>
</tr>
<tr>
<td>0,25</td>
<td>8,62</td>
</tr>
<tr>
<td>0,50</td>
<td>7,40</td>
</tr>
<tr>
<td>0,75</td>
<td>6,08</td>
</tr>
<tr>
<td>1,0</td>
<td>4,77</td>
</tr>
<tr>
<td>2,0</td>
<td>-0,66</td>
</tr>
<tr>
<td>3,0</td>
<td>-4,94</td>
</tr>
<tr>
<td>4,0</td>
<td>-9,87</td>
</tr>
<tr>
<td>5,0</td>
<td>-14,80</td>
</tr>
</tbody>
</table>

При больших значениях n коэффициент η может оказаться отрицательным и для устойчивости равновесия стержня к нему должна быть приложена растягивающая сила P.

467
Продолжение табл. 45

<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержней и его нагружения</th>
<th>Коэффициент приведения длины (n)</th>
<th>Коэффициент устойчивости (\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td></td>
<td>(n)</td>
<td>(\eta)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>2,47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,25</td>
<td>2,28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,50</td>
<td>2,08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,75</td>
<td>1,91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,0</td>
<td>1,72</td>
</tr>
<tr>
<td>См. примечание к схеме 28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(J/J)</th>
<th>(a/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,2</td>
<td>0,4</td>
</tr>
<tr>
<td>0,1</td>
<td>0,153</td>
<td>0,27</td>
</tr>
<tr>
<td>0,1</td>
<td>1,47</td>
<td>2,40</td>
</tr>
<tr>
<td>0,2</td>
<td>2,80</td>
<td>4,22</td>
</tr>
<tr>
<td>0,4</td>
<td>5,09</td>
<td>6,68</td>
</tr>
<tr>
<td>0,6</td>
<td>6,98</td>
<td>8,19</td>
</tr>
<tr>
<td>0,8</td>
<td>8,55</td>
<td>9,18</td>
</tr>
<tr>
<td>1,0</td>
<td>(\pi^2)</td>
<td>(\pi^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(J/J)</th>
<th>(a/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,2</td>
<td>0,4</td>
</tr>
<tr>
<td>0,01</td>
<td>0,614</td>
<td>1,08</td>
</tr>
<tr>
<td>0,1</td>
<td>5,87</td>
<td>9,48</td>
</tr>
<tr>
<td>0,2</td>
<td>11,1</td>
<td>16,3</td>
</tr>
<tr>
<td>0,4</td>
<td>20,2</td>
<td>24,9</td>
</tr>
<tr>
<td>0,6</td>
<td>27,7</td>
<td>30,6</td>
</tr>
<tr>
<td>0,8</td>
<td>34,0</td>
<td>35,3</td>
</tr>
<tr>
<td>1,0</td>
<td>(4\pi^2)</td>
<td>(4\pi^2)</td>
</tr>
<tr>
<td>Номер схемы</td>
<td>Схема стержня и его нагружения</td>
<td>Коэффициент приведения длины (v)</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Приближенно

\[
2,467 \left[\frac{l-a}{l} + \frac{l-a}{l} \frac{J}{J_1} + \frac{1}{\pi} \left(\frac{J}{J_1} - 1 \right) \sin \frac{\pi a}{l} \right]
\]

<table>
<thead>
<tr>
<th>(a/l)</th>
<th>(\frac{j_1 - j}{j})</th>
<th>(0)</th>
<th>(0,1)</th>
<th>(0,2)</th>
<th>(0,5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2,467</td>
<td>2,243</td>
<td>2,056</td>
<td>1,645</td>
<td></td>
</tr>
<tr>
<td>0,1</td>
<td>2,467</td>
<td>2,285</td>
<td>2,126</td>
<td>1,761</td>
<td></td>
</tr>
<tr>
<td>0,2</td>
<td>2,467</td>
<td>2,325</td>
<td>2,197</td>
<td>1,581</td>
<td></td>
</tr>
<tr>
<td>0,3</td>
<td>2,467</td>
<td>2,363</td>
<td>2,262</td>
<td>2,013</td>
<td></td>
</tr>
<tr>
<td>0,4</td>
<td>2,467</td>
<td>2,396</td>
<td>2,327</td>
<td>2,141</td>
<td></td>
</tr>
<tr>
<td>0,5</td>
<td>2,467</td>
<td>2,423</td>
<td>2,379</td>
<td>2,256</td>
<td></td>
</tr>
<tr>
<td>0,6</td>
<td>2,467</td>
<td>2,444</td>
<td>2,420</td>
<td>2,350</td>
<td></td>
</tr>
<tr>
<td>0,7</td>
<td>2,467</td>
<td>2,457</td>
<td>2,446</td>
<td>2,415</td>
<td></td>
</tr>
<tr>
<td>0,8</td>
<td>2,467</td>
<td>2,464</td>
<td>2,461</td>
<td>2,453</td>
<td></td>
</tr>
<tr>
<td>0,9</td>
<td>2,467</td>
<td>2,467</td>
<td>2,466</td>
<td>2,465</td>
<td></td>
</tr>
<tr>
<td>1,0</td>
<td>2,467</td>
<td>2,467</td>
<td>2,467</td>
<td>2,467</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(a/l)</th>
<th>(\frac{j_1 - j}{j})</th>
<th>(1,0)</th>
<th>(2,0)</th>
<th>(5,0)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,234</td>
<td>0,8225</td>
<td>0,411</td>
<td>0,2243</td>
<td></td>
</tr>
<tr>
<td>0,1</td>
<td>1,367</td>
<td>0,944</td>
<td>0,4894</td>
<td>0,2714</td>
<td></td>
</tr>
<tr>
<td>0,2</td>
<td>1,52</td>
<td>1,093</td>
<td>0,5919</td>
<td>0,3360</td>
<td></td>
</tr>
<tr>
<td>0,3</td>
<td>1,692</td>
<td>1,277</td>
<td>0,7293</td>
<td>0,4237</td>
<td></td>
</tr>
<tr>
<td>0,4</td>
<td>1,879</td>
<td>1,499</td>
<td>0,9174</td>
<td>0,5498</td>
<td></td>
</tr>
<tr>
<td>0,5</td>
<td>2,068</td>
<td>1,756</td>
<td>1,173</td>
<td>0,7462</td>
<td></td>
</tr>
<tr>
<td>0,6</td>
<td>2,235</td>
<td>2,025</td>
<td>1,531</td>
<td>1,052</td>
<td></td>
</tr>
<tr>
<td>0,7</td>
<td>2,356</td>
<td>2,256</td>
<td>1,950</td>
<td>1,530</td>
<td></td>
</tr>
<tr>
<td>0,8</td>
<td>2,440</td>
<td>2,402</td>
<td>2,297</td>
<td>2,106</td>
<td></td>
</tr>
<tr>
<td>0,9</td>
<td>2,465</td>
<td>2,459</td>
<td>2,446</td>
<td>2,424</td>
<td></td>
</tr>
<tr>
<td>1,0</td>
<td>2,467</td>
<td>2,467</td>
<td>2,467</td>
<td>2,467</td>
<td></td>
</tr>
<tr>
<td>Номер схемы</td>
<td>Схема стержня и его нагружения</td>
<td>Коэффициент приведения длины (a/l)</td>
<td>Коэффициент устойчивости (\eta)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0,1175</td>
<td>0,0484</td>
<td>0,0247</td>
<td></td>
</tr>
<tr>
<td>0,1</td>
<td></td>
<td>0,1436</td>
<td>0,0595</td>
<td>0,0301</td>
<td></td>
</tr>
<tr>
<td>0,2</td>
<td></td>
<td>0,1793</td>
<td>0,0749</td>
<td>0,038</td>
<td></td>
</tr>
<tr>
<td>0,3</td>
<td></td>
<td>0,2302</td>
<td>0,0971</td>
<td>0,0494</td>
<td></td>
</tr>
<tr>
<td>0,4</td>
<td></td>
<td>0,3064</td>
<td>0,1309</td>
<td>0,067</td>
<td></td>
</tr>
<tr>
<td>0,5</td>
<td></td>
<td>0,4268</td>
<td>0,1860</td>
<td>0,0958</td>
<td></td>
</tr>
<tr>
<td>0,6</td>
<td></td>
<td>0,633</td>
<td>0,2848</td>
<td>0,1482</td>
<td></td>
</tr>
<tr>
<td>0,7</td>
<td></td>
<td>1,018</td>
<td>0,488</td>
<td>0,2588</td>
<td></td>
</tr>
<tr>
<td>0,8</td>
<td></td>
<td>1,730</td>
<td>0,9991</td>
<td>0,5592</td>
<td></td>
</tr>
<tr>
<td>0,9</td>
<td></td>
<td>2,374</td>
<td>2,189</td>
<td>1,746</td>
<td></td>
</tr>
<tr>
<td>1,0</td>
<td></td>
<td>2,467</td>
<td>2,467</td>
<td>2,467</td>
<td></td>
</tr>
</tbody>
</table>

33

Приближенно \(\eta = \frac{EJ_1}{l^2}\). Практически \(\eta = 2,467 \left[\left(1 - \frac{J_2 - J_1 (l-a_1)^2}{J_1 l^2} \right) \times \left(1 - \frac{J_3 - J_2 (l-a_2)^2}{J_2 l^2} \right) \cdots \left(1 - \frac{J_n - J_{n-1} (l-a_{n-1})^2}{J_{n-1} l^2} \right) \right] \)

| Число участков с различными \(J_1/l\) моментами инерции |
|-----------------|---|---|---|---|---|
| | 2 | 3 | 4 | 10 |
| 0,2 | 5,2 | 6,32 | 6,48 | 7,32 | 7,4 |
| 0,4 | 9,88 | 10,9 | 11,1 | 11,2 | 11,2 |
| 0,6 | 14,0 | 14,6 | 14,7 | 14,76 | 14,8 |
| 0,8 | 17,4 | 17,8 | 17,8 | 17,9 | 18,0 |
| 1,0 | 20,5 | 20,5 | 20,5 | 20,5 | 20,5 |

**

\(P_{kr} = \left(\frac{q \ell}{4} \right)_{kr}\)
<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины</th>
<th>Коэффициент устойчивости (\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[P_{kr} = \left(\frac{q_0 l}{4} \right)_{kr} \]

<table>
<thead>
<tr>
<th>(J_t/J)</th>
<th>Число участков с различными моментами инерции</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>0,2</td>
<td>18,1</td>
</tr>
<tr>
<td>0,4</td>
<td>31,2</td>
</tr>
<tr>
<td>0,6</td>
<td>41,0</td>
</tr>
<tr>
<td>0,8</td>
<td>49,4</td>
</tr>
<tr>
<td>1,0</td>
<td>54,8</td>
</tr>
</tbody>
</table>

**

Момент инерции сечения изменяется вдоль оси по закону

\[J(z) = J_0 (a + bz)^n \]

<table>
<thead>
<tr>
<th>(J_t/J^*)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>3,67</td>
</tr>
<tr>
<td>0,1</td>
<td>4,67</td>
</tr>
<tr>
<td>0,2</td>
<td>5,41</td>
</tr>
<tr>
<td>0,4</td>
<td>6,78</td>
</tr>
<tr>
<td>0,6</td>
<td>7,78</td>
</tr>
<tr>
<td>0,8</td>
<td>8,85</td>
</tr>
<tr>
<td>1,0</td>
<td>(\pi^2)</td>
</tr>
</tbody>
</table>

- \(n = 1 \) — сплошной стержень прямоугольного поперечного сечения постоянной высоты; ширина сечения изменяется по линейному закону
- \(n = 2 \) — пирамидальный стержень, составленный из четырех угловых поясов, соединенных решеткой (или общитых тонкими листами)
- \(n = 3 \) — стержень прямоугольного сечения постоянной ширины, когда высота сечения изменяется по линейному закону
- \(n = 4 \) — сплошной пирамидальный (конический) стержень
Дополнение табл. 45

<table>
<thead>
<tr>
<th>№ земли</th>
<th>Схема стержня и его нагрузления</th>
<th>Коэффициент приведенной длины</th>
<th>Коэффициент устойчивости η</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>J_1/J_0</td>
<td>n</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>0,5 1 1,5 2 3 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 — 5,78 — 1,0 — — —</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1 7,86 6,48 5,78 5,4 5,01 4,81</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,2 7,97 7,01 6,58 6,37 6,14 6,02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,4 8,31 7,87 7,69 7,61 7,52 7,48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,6 8,76 8,61 8,54 8,51 8,5 8,47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,8 9,3 9,27 9,25 9,24 9,23 9,23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,0 π^2 π^2 π^2 π^2 π^2 π^2</td>
<td></td>
</tr>
</tbody>
</table>

Момент инерции сечения изменяется вдоль оси по закону

$$ J(z) = J_0 (a + bz)^n $$

<table>
<thead>
<tr>
<th></th>
<th>Момент инерции сечения изменяется вдоль оси по закону</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>J_1/J_0</td>
</tr>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>0,1</td>
<td>— 14,39 13,7 13,3</td>
</tr>
<tr>
<td>0,2</td>
<td>20,35 18,93 18,49 18,23</td>
</tr>
<tr>
<td>0,4</td>
<td>26,16 25,54 25,34 25,23</td>
</tr>
<tr>
<td>0,6</td>
<td>31,02 30,79 30,71 30,68</td>
</tr>
<tr>
<td>0,8</td>
<td>35,42 35,35 35,33 35,32</td>
</tr>
<tr>
<td>1,0</td>
<td>$4\pi^2$ $4\pi^2$ $4\pi^2$ $4\pi^2$</td>
</tr>
</tbody>
</table>

Момент инерции сечения крайних участков изменяется вдоль оси по закону

$$ J(z) = J_0 (a + bz)^n $$

<table>
<thead>
<tr>
<th></th>
<th>J_1/J_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>a/l n</td>
</tr>
<tr>
<td></td>
<td>0 0,2 0,4 0,6 0,8</td>
</tr>
<tr>
<td>0</td>
<td>5,78 7,04 8,35 9,36 9,8</td>
</tr>
<tr>
<td>1,0</td>
<td>1,56 2,78 6,25 9,59 9,59</td>
</tr>
<tr>
<td>Номер сечения</td>
<td>Схема стержня и его нагружения</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Момент инерции сечения крайних участков изменяется вдоль оси по закону \(J(z) = j_0 (a + bz)^{n} \)

<table>
<thead>
<tr>
<th>(j/\sqrt{j})</th>
<th>(a/l)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2</td>
<td>20,36</td>
<td>29,0</td>
</tr>
<tr>
<td></td>
<td>18,94</td>
<td>27,67</td>
</tr>
<tr>
<td></td>
<td>18,48</td>
<td>27,24</td>
</tr>
<tr>
<td></td>
<td>18,23</td>
<td>27,03</td>
</tr>
<tr>
<td>Номер схемы</td>
<td>Схема стержня и его нагружения</td>
<td>Коэффициент приведения длины в</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>η</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0,4</td>
<td></td>
<td>26,16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25,54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25,32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25,23</td>
</tr>
<tr>
<td>0,6</td>
<td></td>
<td>31,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30,79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30,72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30,68</td>
</tr>
<tr>
<td>0,8</td>
<td></td>
<td>35,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35,35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35,33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35,32</td>
</tr>
</tbody>
</table>

Момент инерции сечения изменяется вдоль оси по закону

$$J(z) = J \left(\frac{l - z}{l} \right)^n$$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>7,839</td>
<td>5,78</td>
<td>3,67</td>
</tr>
</tbody>
</table>

Момент инерции сечения изменяется вдоль оси по закону

$$J(z) = J \left(\frac{l - z}{l} \right)^n$$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>16,1</td>
<td>13</td>
<td>9,87</td>
<td>6,59</td>
</tr>
</tbody>
</table>
Схема сечения и его нагружения | Коэффициент приведения длины \(v \) | Коэффициент устойчивости \(\eta \)
---|---|---
43

\[q = q_0 \left(\frac{l - z}{l} \right)^m \]

\[P_{kr} = \left(\frac{q_0 l}{m + 1} \right)_{kr} \]

Момент инерции сечения изменяется вдоль оси по закону

\[J(z) = J \left(\frac{l - z}{l} \right)^n \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(m)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27,3</td>
<td>41,3</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>23,1</td>
<td>36,1</td>
<td>52,1</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18,9</td>
<td>30,9</td>
<td>45,8</td>
<td>63,6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14,7</td>
<td>25,7</td>
<td>39,5</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10,2</td>
<td>20,2</td>
<td>33,0</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

При \(m = \frac{J_2 a}{J_1 (l - a)} \) и \(n = \frac{P_2 (l - a)}{P_1 a} \)

\[P_{kr} = \frac{\pi^2 EJ_{\min}}{(a l)^2} \]

При \(P_1 = P_2 = P \) и \(J_1 = J_2 = J \)

\[P_{kr} = \frac{\pi^2 EJ}{(vl)^2} = \eta \frac{EJ}{l^2} \]
Продолжение табл. 45

<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коефициент приведенной длины ν</th>
<th>Коефициент устойчивости η</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a/l</td>
<td>ν</td>
<td>a/l</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0,699</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
<td>0,652</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td>0,2</td>
<td>0,604</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td>0,3</td>
<td>0,558</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>0,4</td>
<td>0,518</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>0,500</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td>0,518</td>
<td>0,6</td>
</tr>
<tr>
<td></td>
<td>0,7</td>
<td>0,558</td>
<td>0,7</td>
</tr>
<tr>
<td></td>
<td>0,8</td>
<td>0,604</td>
<td>0,8</td>
</tr>
<tr>
<td></td>
<td>0,9</td>
<td>0,652</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>0,699</td>
<td>1,0</td>
</tr>
</tbody>
</table>

При $m = \frac{J_2 a}{J_1 (l - a)}$ и $n = \frac{P_2 (l - a)}{P_1 a}$

$$P_{Kr} = \frac{\pi^2 EJ_{min}}{(v \alpha)^2}$$

При $P_1 = P_2 = P$ и $J_1 = J_2 = J$

$$P_{Kr} = \frac{\pi^2 EJ}{(v \alpha)^2} = \eta \frac{EJ}{l^2}$$
<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины (\nu)</th>
<th>Коэффициент устойчивости (\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a/l)</td>
<td>(\nu)</td>
<td>(a/l)</td>
<td>(\eta)</td>
</tr>
<tr>
<td>0</td>
<td>0,699</td>
<td>0</td>
<td>20,19</td>
</tr>
<tr>
<td>0,1</td>
<td>0,646</td>
<td>0,1</td>
<td>23,63</td>
</tr>
<tr>
<td>0,2</td>
<td>0,593</td>
<td>0,2</td>
<td>28,09</td>
</tr>
<tr>
<td>0,3</td>
<td>0,559</td>
<td>0,3</td>
<td>33,96</td>
</tr>
<tr>
<td>0,4</td>
<td>0,487</td>
<td>0,4</td>
<td>41,68</td>
</tr>
<tr>
<td>0,5</td>
<td>0,439</td>
<td>0,5</td>
<td>51,12</td>
</tr>
<tr>
<td>0,6</td>
<td>0,41</td>
<td>0,6</td>
<td>58,84</td>
</tr>
<tr>
<td>0,7</td>
<td>0,412</td>
<td>0,7</td>
<td>58,92</td>
</tr>
<tr>
<td>0,8</td>
<td>0,436</td>
<td>0,8</td>
<td>51,97</td>
</tr>
<tr>
<td>0,9</td>
<td>0,467</td>
<td>0,9</td>
<td>45,27</td>
</tr>
<tr>
<td>1,0</td>
<td>0,500</td>
<td>1,0</td>
<td>39,48</td>
</tr>
</tbody>
</table>

При \(m = \frac{J_2a}{J_1(l-a)} \) и \(n = \frac{P_2(l-a)}{P_1a} \)

\[
P_{kr} = \frac{\pi^2 EJ_{min}}{(va)^2}
\]

При \(P_1 = P_2 = P \) и \(J_1 = J_2 = J \)

\[
P_{kr} = \frac{\pi^2 EJ}{(vl)^2} = \frac{EJ}{l^2}
\]

<table>
<thead>
<tr>
<th>(a/l)</th>
<th>(\nu)</th>
<th>(a/l)</th>
<th>(\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,5</td>
<td>0</td>
<td>39,48</td>
</tr>
<tr>
<td>0,1</td>
<td>0,463</td>
<td>0,1</td>
<td>46,13</td>
</tr>
<tr>
<td>0,2</td>
<td>0,426</td>
<td>0,2</td>
<td>54,45</td>
</tr>
<tr>
<td>0,3</td>
<td>0,391</td>
<td>0,3</td>
<td>64,56</td>
</tr>
<tr>
<td>0,4</td>
<td>0,362</td>
<td>0,4</td>
<td>75,22</td>
</tr>
<tr>
<td>0,5</td>
<td>0,35</td>
<td>0,5</td>
<td>80,76</td>
</tr>
<tr>
<td>0,6</td>
<td>0,362</td>
<td>0,6</td>
<td>75,22</td>
</tr>
<tr>
<td>0,7</td>
<td>0,391</td>
<td>0,7</td>
<td>64,56</td>
</tr>
<tr>
<td>0,8</td>
<td>0,426</td>
<td>0,8</td>
<td>54,45</td>
</tr>
<tr>
<td>0,9</td>
<td>0,463</td>
<td>0,9</td>
<td>46,13</td>
</tr>
<tr>
<td>1,0</td>
<td>0,5</td>
<td>1,0</td>
<td>39,48</td>
</tr>
<tr>
<td>Номер стены</td>
<td>Схема стержня и его нагружения</td>
<td>Коэффициент приведения длины ν</td>
<td>Коэффициент устойчивости η</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

При $m = \frac{J_2a}{J_1(l-a)}$ и $n = \frac{P_2(l-a)}{P_1a}$

$$p_{kp} = \frac{\pi^2EI_{min}}{(va)^2}$$

При $P_1 = P_2 = P$ и $J_1 = J_2 = J$

$$p_{kp} = \frac{\pi^2EI}{(vl)^2} = \eta \frac{EI}{l^2}$$

<table>
<thead>
<tr>
<th>a/l</th>
<th>ν</th>
<th>a/l</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,0</td>
<td>0</td>
<td>9,87</td>
</tr>
<tr>
<td>0,1</td>
<td>0,933</td>
<td>0,1</td>
<td>11,83</td>
</tr>
<tr>
<td>0,2</td>
<td>0,868</td>
<td>0,2</td>
<td>13,11</td>
</tr>
<tr>
<td>0,3</td>
<td>0,804</td>
<td>0,3</td>
<td>15,26</td>
</tr>
<tr>
<td>0,4</td>
<td>0,746</td>
<td>0,4</td>
<td>17,72</td>
</tr>
<tr>
<td>0,5</td>
<td>0,699</td>
<td>0,5</td>
<td>20,19</td>
</tr>
<tr>
<td>0,6</td>
<td>0,672</td>
<td>0,6</td>
<td>21,88</td>
</tr>
<tr>
<td>0,7</td>
<td>0,668</td>
<td>0,7</td>
<td>22,14</td>
</tr>
<tr>
<td>0,8</td>
<td>0,679</td>
<td>0,8</td>
<td>21,4</td>
</tr>
<tr>
<td>0,9</td>
<td>0,693</td>
<td>0,9</td>
<td>20,55</td>
</tr>
<tr>
<td>1,0</td>
<td>0,699</td>
<td>1,0</td>
<td>20,19</td>
</tr>
</tbody>
</table>
Продолжение табл. 45

<table>
<thead>
<tr>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины (m)</th>
<th>Коэффициент устойчивости (\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>(m = \frac{J_2 a}{J_1 (l - a)}) и (n = \frac{P_1 (l - a)}{P_1 a})</td>
<td>(P_{kr} = \frac{\pi^2 E J_{min}}{(va)^2})</td>
</tr>
</tbody>
</table>

![Diagram](attachment:image.png)

При \(P_1 = P_2 = P \) и \(J_1 = J_2 = J \)

\[
P_{kr} = \frac{\pi^2 E J}{(vl)^2} = \frac{E J}{l^2}
\]

<table>
<thead>
<tr>
<th>(\frac{a}{l})</th>
<th>(m)</th>
<th>(n)</th>
<th>(\frac{a}{l})</th>
<th>(\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,0</td>
<td>0</td>
<td>0</td>
<td>9,87</td>
</tr>
<tr>
<td>0,1</td>
<td>0,925</td>
<td>0,1</td>
<td>11,53</td>
<td></td>
</tr>
<tr>
<td>0,2</td>
<td>0,85</td>
<td>0,2</td>
<td>13,65</td>
<td></td>
</tr>
<tr>
<td>0,3</td>
<td>0,776</td>
<td>0,3</td>
<td>16,37</td>
<td></td>
</tr>
<tr>
<td>0,4</td>
<td>0,704</td>
<td>0,4</td>
<td>19,9</td>
<td></td>
</tr>
<tr>
<td>0,5</td>
<td>0,636</td>
<td>0,5</td>
<td>24,42</td>
<td></td>
</tr>
<tr>
<td>0,6</td>
<td>0,575</td>
<td>0,6</td>
<td>29,82</td>
<td></td>
</tr>
<tr>
<td>0,7</td>
<td>0,53</td>
<td>0,7</td>
<td>35,1</td>
<td></td>
</tr>
<tr>
<td>0,8</td>
<td>0,507</td>
<td>0,8</td>
<td>38,41</td>
<td></td>
</tr>
<tr>
<td>0,9</td>
<td>0,501</td>
<td>0,9</td>
<td>39,4</td>
<td></td>
</tr>
<tr>
<td>1,0</td>
<td>0,5</td>
<td>1,0</td>
<td>39,48</td>
<td></td>
</tr>
</tbody>
</table>

479
<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины (y)</th>
<th>Коэффициент устойчивости (\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td></td>
<td>[m = \frac{J_1 l_1}{J_{12} l_2}] и [n = \frac{P_{12} l_1}{P_{11} l_1}]</td>
<td>[(P_{KR} = \frac{n^2 E J_{min}}{(v l_1)^3}) для графика 47]</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>[m_1 = \frac{3 J_{10} l_1}{J_{11} l_2}] и [m_2 = \frac{3 J_{21} l_1}{J_{11} l_2}]</td>
<td>[(P_{KR} = \frac{n^2 E J_{min}}{(v l_1)^3}) для графика]</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>[k_1 = l_0/l_1] и [k_2 = l_2/l_1]</td>
<td>[P_{KR} = \frac{n^2 E J_{min}}{(v l_1)^3}) для графика]</td>
</tr>
<tr>
<td>Номер схемы</td>
<td>Схема стержня и его нагружения</td>
<td>Коэффициент приведения длины (v)</td>
<td>Коэффициент устойчивости (\eta)</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>При (m = \frac{3J_0l_1}{J_1l_0}), (p_{kr} = \frac{\pi^2 E J_{min}}{(vl_0)^2})</td>
<td>—</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>При (m = \frac{J_2l_1}{J_1l_2}), (n = \frac{p_{kr}l_1}{p_{kr}l_1}), (p_{kr} = \frac{\pi^2 E J_{min}}{(vl_1)^2})</td>
<td>Значения (v) находятся из графиков, построенных для схемы 48</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>При (m = \frac{3J_0l_1}{J_1l_0}), (p_{kr} = \frac{\pi^2 E J_{min}}{(vl_0)^2})</td>
<td>—</td>
</tr>
<tr>
<td>Номер схемы</td>
<td>Схема стержня и его нагружения</td>
<td>Коэффициент приведения длины ν</td>
<td>Коэффициент устойчивости η</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>1</td>
<td>9,8696</td>
</tr>
</tbody>
</table>

n — число пролетов

<table>
<thead>
<tr>
<th>n</th>
<th>ν</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,699</td>
<td>20,2</td>
</tr>
<tr>
<td>2</td>
<td>0,879</td>
<td>12,77</td>
</tr>
<tr>
<td>3</td>
<td>0,939</td>
<td>11,19</td>
</tr>
<tr>
<td>4</td>
<td>0,964</td>
<td>10,62</td>
</tr>
<tr>
<td>5</td>
<td>0,977</td>
<td>10,34</td>
</tr>
<tr>
<td>6</td>
<td>0,983</td>
<td>10,21</td>
</tr>
<tr>
<td>7</td>
<td>0,988</td>
<td>10,1</td>
</tr>
<tr>
<td>8</td>
<td>0,99</td>
<td>10,07</td>
</tr>
<tr>
<td>9</td>
<td>0,992</td>
<td>10,029</td>
</tr>
<tr>
<td>10</td>
<td>0,994</td>
<td>9,9895</td>
</tr>
<tr>
<td>Порядок схемы</td>
<td>Схема стержня и его нагружения</td>
<td>Коэффициент приведения длины v</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td>n — число пролетов</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,699</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,814</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,873</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,917</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0,939</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0,954</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0,964</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0,971</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,977</td>
</tr>
</tbody>
</table>

58

59

60

61
<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины ν</th>
<th>Коэффициент устойчивости η</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td>$0 \leq \eta \leq 39,48$</td>
</tr>
</tbody>
</table>

При $m_1 = \frac{s_1 l}{EJ}$

$$
\begin{align*}
 m_2 &= \frac{s_2 l}{EJ} \\
 n &= \frac{r_1 r_2 l^3}{(s_1 + s_3) EJ} \\
 0.5 &\leq \nu \leq \infty
\end{align*}
$$

Некоторые конкретные данные при:

$n = 0$

$\eta = 0.5$
<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины v</th>
<th>Коэффициент устойчивости η</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 4$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 10$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graphs for different values of n](image)
<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагруження</th>
<th>Коэффициент приведения длины (v)</th>
<th>Коэффициент устойчивости (\eta)</th>
</tr>
</thead>
</table>

0,5 \(\leq v \leq 2 \)

Некоторые конкретные данные

\[
m_1 = \frac{s_1 l}{E J}
\]
\[
m_2 = \frac{s_2 l}{E J}
\]
\[
n = \frac{r_1 r_2 l^3}{(s_1 + s_2) E J}
\]

, *

0,7 \(\leq v \leq \infty \)

Некоторые конкретные данные

\[
m_1 = \frac{s_1 l}{E J};
\]
\[
m_2 = \frac{s_2 l}{E J};
\]
\[
n = \frac{r_1 r_2 l^3}{(s_1 + s_2) E J}
\]

, *

2,4424 \(\leq \eta \leq 39,48 \)

0 \(\leq \eta \leq 20,14 \)
<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины v</th>
<th>Коэффициент устойчивости η</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td></td>
<td>$0.5 \leq v < 1$</td>
<td>$9.8696 \leq \eta \leq 39.48$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$n = \frac{r_1 r_2 l^3}{(s_1 + s_2) E J}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$***, ****$</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>$1 \leq v < \infty$</td>
<td>$0 < \eta \leq 9.8696$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$n = \frac{r_1 r_2 l^3}{(s_1 + s_2) E J}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$***, ****$</td>
<td></td>
</tr>
<tr>
<td>Номер схемы</td>
<td>Схема стержня и его нагружения</td>
<td>Кoeffициент приведения длины v</td>
<td>Кoeffициент устойчивости η</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>68</td>
<td>$m_1 = \frac{S_1 l}{E J}$, $m_2 = \frac{S_2 l}{E J}$</td>
<td>$0.5 \leq v \leq 1$</td>
<td>9,8696 $\leq \eta \leq 39.48$</td>
</tr>
<tr>
<td>69</td>
<td>$m_1 = \frac{s_1 l}{E J}$, $m_2 = \frac{s_2 l}{E J}$</td>
<td>$0.7 \leq v \leq 2$</td>
<td>2,4424 $\leq \eta \leq 20.14$</td>
</tr>
<tr>
<td>70</td>
<td>$m_1 = \frac{s_1 l}{E J}$, $m_2 = \frac{s_2 l}{E J}$</td>
<td>$0.5 \leq v \leq 0.7$</td>
<td>20,14 $\leq \eta \leq 39.48$</td>
</tr>
</tbody>
</table>

Некоторые конкретные данные

$\eta = \frac{r_1 r_2 l^3}{(s_1 + s_2) E J}$

Асимптомата

Конкретные значения v могут быть взяты из графика, построенного для схемы 54.
<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины v</th>
<th>Коэффициент устойчивости η</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>$m_1 = \frac{s_1 l}{E J}$; $m_2 = \frac{s_2 l}{E J}$; $n = \frac{r_1 r_2 l^2}{(s_1 + s_2) E J}$</td>
<td>$1 < v < 2$</td>
<td>$2,4424 < \eta < 9,8696$</td>
</tr>
<tr>
<td>72</td>
<td>$m_1 = \frac{s_1 l}{E J}$; $m_2 = \frac{s_2 l}{E J}$; $n = \frac{r_1 r_2 l^2}{(s_1 + s_2) E J}$</td>
<td>$0,7 < v < 1$</td>
<td>$9,8696 < \eta < 20,14$</td>
</tr>
<tr>
<td>73</td>
<td>$m_1 = \frac{s_1 l}{E J}$; $m_2 = \frac{s_2 l}{E J}$; $n = \frac{r_1 r_2 l^2}{(s_1 + s_2) E J}$</td>
<td>$2 < v < \infty$</td>
<td>$0 < \eta < 2,4424$</td>
</tr>
</tbody>
</table>

Конкретные значения v могут быть взяты из графика, построенного для схемы 52 с учетом, что $m_1 = \frac{s_1 l}{E J}$; $m_2 = \frac{s_2 l}{E J}$; $n = \frac{r_1 r_2 l^2}{(s_1 + s_2) E J}$.

Некоторые конкретные данные.
<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины у</th>
<th>Коэффициент устойчивости η</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td></td>
<td>1</td>
<td>9,8696</td>
</tr>
<tr>
<td></td>
<td>$m_1 = \frac{s_1 l}{EJ}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$m_2 = \frac{s_2 l}{EJ}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Необходима также проверка устойчивости по формуле

$$P_{kr} = \frac{r_1 r_2}{r_1 + r_2} l$$

За расчетное принимают наименьшее значение P_{kr}

<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины у</th>
<th>Коэффициент устойчивости η</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$f = \frac{a}{l}$; $c = \frac{rl^3}{EJ}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(r — коэффициент жесткости упруго-перемещающейся опоры)

<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины у</th>
<th>Коэффициент устойчивости η</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td></td>
<td>При числе пролетов $n = 2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r — коэффициент жесткости упруго-перемещающейся опоры</td>
<td>значении ν могут быть взяты из графика, построенного для схемы 69</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>При $n = 3$</td>
<td></td>
</tr>
<tr>
<td>Номер схемы</td>
<td>Схема стержня и его нагружения</td>
<td>Коэффициент приведения длины v</td>
<td>Коэффициент устойчивости η</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>При $n = 4$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c = \frac{rl^3}{EJ}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>При числе пролетов $n = 2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lambda = 3$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

r — коэффициент жесткости упруго-перемещающейся опоры.
<table>
<thead>
<tr>
<th>Номер схемы</th>
<th>Схема стержня и его нагружения</th>
<th>Коэффициент приведения длины ν</th>
<th>Коэффициент устойчивости η</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(n = 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Значения ν могут быть взяты из графика, построенного для схемы 52.

При этом \(m = \frac{s l}{2EJ} \) (s — коэффициент жесткости упруго-поверхующейся опоры)

Значения ν могут быть взяты из графика, построенного для схемы 54.

При этом \(m = \frac{s l}{2EJ} \) (s — коэффициент жесткости упруго-поверхующейся опоры)

\[
C = \frac{r l^3}{E J}
\]

* \(J \) и \(J_i \) — наибольший и наименьший моменты инерции поперечного сечения соответственно.

** Предполагается, что имеется несколько участков одинаковой длины, причем разности между моментами инерции соседних участков одинаковы.

*** \(r_i \) и \(r_s \) — коэффициенты жесткости левой и правой упруго-перемещающихся опор.

**** \(s_i \) и \(s_s \) — коэффициенты жесткости левой и правой упруго-поверхующихся опор.

***** \(c \) — коэффициент жесткости упругого основания (коэффициент постели), равный отношению реакции основания к его осадке.
Таблица 46. Критические нагрузки для полосы и некоторых двутавровых балок*

Типы опор:

<table>
<thead>
<tr>
<th>Схема</th>
<th>Критическая нагрузка</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M_{kr} = \frac{\pi S}{2l}$</td>
</tr>
<tr>
<td>При потере устойчивости плоскость действия пары сохраняет неизменную ориентацию в системе подвижных осей, жестко связанных с перемещающимися торцовом сечением</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{kr} = \frac{4,013}{l^2} \left(S - \frac{a}{l} EJ \right)$</td>
</tr>
<tr>
<td>при $a = 0$ $P_{kr} = \frac{4,013S}{l^2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Если высота консольной полосы изменяется по закону $h = h_0 \sqrt{1 - \frac{z}{l}}$, где h_0 — высота полосы у основания, z — текущая координата вдоль полосы, то</td>
<td></td>
</tr>
<tr>
<td>$P_{kr} = \frac{mS}{l^2}$</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>m</td>
<td>2,4</td>
</tr>
</tbody>
</table>

* $S = \sqrt{EJ GJ_k}$, где EJ — наименьшая жесткость при изгибе; GJ_k — жесткость при кручении.
Схема

Критическая нагрузка

\[P_{кр} = \frac{kS}{l^2} \]

Коэффициент \(k \) берется из таблицы

\[\frac{1}{l^2} \frac{2GJ}{k} \]

При этом \(\chi = \frac{k^2}{D} \), где \(D \) — жесткость одной из полок двутавра при изгибе в ее плоскости

<table>
<thead>
<tr>
<th>(\chi)</th>
<th>0,1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>44,3</td>
<td>15,7</td>
<td>12,2</td>
<td>10,7</td>
<td>9,76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\chi)</th>
<th>6</th>
<th>10</th>
<th>24</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>8,69</td>
<td>7,58</td>
<td>6,19</td>
<td>5,64</td>
</tr>
</tbody>
</table>

При \(\chi > 40 \) \(k = \frac{4,013}{\left(1 - \frac{1}{V^2 \chi}\right)^3} \)

\[P_{кр} = \frac{5,56S}{l^2} \]

\[(qI)_{кр} = \frac{12,85S}{l^2} \]

Если высота консольной полосы изменяется по закону \(h = h_0 \sqrt{n - \frac{2}{l}} \), где \(h_0 \) — высота полосы у основания, \(z \) — текущая координата вдоль полосы, то \((qh)_{кр} = \frac{mS}{l^2} \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>1,333</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>9,6</td>
<td>10,4</td>
<td>11,2</td>
<td>12,8</td>
</tr>
</tbody>
</table>
Продолжение табл. 46

<table>
<thead>
<tr>
<th>Схема</th>
<th>Критическая нагрузка</th>
</tr>
</thead>
</table>
| ![схема 1](image1.png) | \(\left(\frac{q_0 l}{2} \right)_{kr} = \frac{26,5S}{l^2} \)
\(q_0 \) — в корне |
| ![схема 2](image2.png) | \((ql)_{kr} = \frac{15,95S}{l^2} \) |
| ![схема 3](image3.png) | \(M_{kr} = \frac{\pi S}{l} \)
\(M_{kr} = \frac{\pi S}{l} \sqrt{1 + \left(\frac{\pi}{l} \right)^2 \frac{Dh^3}{2GJ_k}} \)
где \(h \) — высота балки; \(D \) — жесткость одной из полок двутавра при изгибе в ее плоскости |
| ![схема 4](image4.png) | \(M_{kr} = \frac{EJ + GJ_k}{2R} \pm \)
\(M_{kr} = \frac{EJ + GJ_k}{2R} \pm \sqrt{\frac{(EJ + GJ_k)^2}{2R} S^2 \left(\frac{\pi^2}{\theta^2} - 1 \right)} \)
Нижний знак определяет критическое значение момента, направленного противоположно показанному на схеме |
| ![схема 5](image5.png) | \(P_{kr} = \frac{kS}{l^2} \) |

<table>
<thead>
<tr>
<th>(a/l)</th>
<th>0,05</th>
<th>0,1</th>
<th>0,15</th>
<th>0,2</th>
<th>0,25</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>111,6</td>
<td>56,01</td>
<td>37,88</td>
<td>29,11</td>
<td>24,1</td>
</tr>
<tr>
<td>(a/l)</td>
<td>0,3</td>
<td>0,35</td>
<td>0,4</td>
<td>0,45</td>
<td>0,5</td>
</tr>
<tr>
<td>(k)</td>
<td>21,01</td>
<td>19,04</td>
<td>17,82</td>
<td>17,15</td>
<td>16,94</td>
</tr>
</tbody>
</table>

495
<table>
<thead>
<tr>
<th>Схема</th>
<th>Критическая нагрузка</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[P_{kr} \frac{l}{l^2} \left(S - 3,48 \frac{a}{l} EJ \right)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Схема</th>
<th>Критическая нагрузка</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[P_{kr} = \frac{kS}{l^2}]</td>
</tr>
</tbody>
</table>

При \(x = \frac{l^3}{h^2} \frac{2GJ}{D} \), где \(h \) — высота балки, \(D \) — жесткость одной из полок двутавра при изгибе в ее плоскости, значения \(k \) будут

<table>
<thead>
<tr>
<th>(x)</th>
<th>0,4</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>86,4</td>
<td>31,9</td>
<td>25,6</td>
<td>21,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>32</th>
<th>64</th>
<th>160</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>19,6</td>
<td>18,3</td>
<td>17,5</td>
<td>17,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Схема</th>
<th>Критическая нагрузка</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[(ql)_{kr} = \frac{28,31S}{l^2}]</td>
</tr>
</tbody>
</table>

При \(x = \frac{l^3}{h^2} \frac{2GJ}{D} \), где \(h \) — высота балки, \(D \) — жесткость одной из полок двутавра при изгибе в ее плоскости, значения \(k \) будут

<table>
<thead>
<tr>
<th>(x)</th>
<th>0,4</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>143</td>
<td>53</td>
<td>42,6</td>
<td>36,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>32,6</td>
<td>30,5</td>
<td>29,4</td>
<td>28,6</td>
</tr>
</tbody>
</table>
Если при опрокидывании нагрузка остается параллельной первоначальному направлению, то

\[(qR)_{кр} = \frac{EJ}{R^2} \frac{(\pi^2 - \theta^2)^2}{\theta^2 \left(\pi^2 + \theta^2 \frac{EJ}{GJ_к} \right)}\]

Если при опрокидывании нагрузка остается направленной к исходному центру кривизны, то

\[(qR)_{кр} = \frac{\pi^2 EJ}{R^2} \frac{\pi^2 - \theta^2}{\theta^2 \left(\pi^2 + \theta^2 \frac{EJ}{GJ_к} \right)}\]

\[M_{кр} = \frac{2\pi S}{l}\]

\[P_{кр} = \frac{44.5 S}{l^2}\]

\[P_{кр} = \frac{kS}{l^2}\]

При \(x = \frac{l^3}{h^2} \frac{2GJ_к}{D}\), где \(h\) — высота балки, \(D\) — жесткость одной из полок двутавра при изгибе в ее плоскости, значения \(k\) будут

<table>
<thead>
<tr>
<th>(x)</th>
<th>0,4</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>268</td>
<td>88,8</td>
<td>65,5</td>
<td>50,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>320</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>40,2</td>
<td>34,1</td>
<td>30,7</td>
<td>28,4</td>
</tr>
</tbody>
</table>
Продолжение табл 46

<table>
<thead>
<tr>
<th>Схема</th>
<th>Критическая нагрузка</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P_{кр} = \frac{kS}{l^2}$</td>
</tr>
<tr>
<td></td>
<td>$a/l \quad 0,1 \quad 0,2 \quad 0,3 \quad 0,4 \quad 0,5$</td>
</tr>
<tr>
<td></td>
<td>$k \quad 117 \quad 53,2 \quad 35,2 \quad 28,5 \quad 26,7$</td>
</tr>
<tr>
<td></td>
<td>$(ql)_{кр} = \frac{48,6S}{l^2}$</td>
</tr>
</tbody>
</table>

При $x = \frac{l^2}{2h^2} \frac{2GJ}{D}$, где h — высота балки, D — жесткость одной из полок двутавра при изгибе в ее плоскости, значения k будут

<table>
<thead>
<tr>
<th>x</th>
<th>0,4</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>488</td>
<td>161</td>
<td>119</td>
<td>91,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>32</th>
<th>96</th>
<th>128</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>73,0</td>
<td>58,0</td>
<td>55,8</td>
<td>51,2</td>
</tr>
</tbody>
</table>

![Diagram 5](image5.png)	$P_{кр} = \frac{kS}{l^2}$
![Diagram 6](image6.png)	$a/l \quad 0,1 \quad 0,2 \quad 0,3 \quad 0,4 \quad 0,5$
![Diagram 7](image7.png)	$k \quad 608 \quad 155 \quad 80,9 \quad 58,6 \quad 53,0$
![Diagram 8](image8.png)	$(ql)_{кр} = \frac{129,1S}{l^2}$
Продолжение табл. 46

<table>
<thead>
<tr>
<th>Схема</th>
<th>Критическая нагрузка</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((qR)_{кр} = \frac{mEJ}{R^2})</td>
</tr>
<tr>
<td>Нагрузка остается параллельной своему первоначальному направлению</td>
<td></td>
</tr>
<tr>
<td>(\theta)</td>
<td>(\pi : 4)</td>
</tr>
<tr>
<td>(m)</td>
<td>60,1</td>
</tr>
</tbody>
</table>

\[P_{кр} = \frac{ks}{l^2} \]

| \(a/l \) | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 |
| \(k \) | 65,8 | 34,7 | 25,8 | 22,8 | 22,9 |

| \(a/l \) | 0,6 | 0,7 | 0,8 | 0,9 |
| \(k \) | 25,7 | 32,9 | 50,7 | 111 |

\[(ql)_{кр} = \frac{39,6S}{l^2} \]

\[P_{кр} = \frac{ks}{l^2} \]

| \(a/l \) | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 |
| \(k \) | 77,5 | 41,5 | 31,5 | 28,9 | 30,5 |

| \(a/l \) | 0,6 | 0,7 | 0,8 | 0,9 |
| \(k \) | 37,1 | 53,9 | 104 | 376 |

\[(ql)_{кр} = \frac{57,2S}{l^2} \]
Продолжение табл. 46

<table>
<thead>
<tr>
<th>Схема</th>
<th>Критическая нагрузка</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P_{kr} = \frac{kS}{l^2}$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>a/l</td>
<td>0,1</td>
</tr>
<tr>
<td>k</td>
<td>79,6</td>
</tr>
<tr>
<td>a/l</td>
<td>0,6</td>
</tr>
<tr>
<td>k</td>
<td>45,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$(ql)_{kr} = \frac{64,6S}{l^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P_{kr} = \frac{kS}{l^2}$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>a/l</td>
<td>0,1</td>
</tr>
<tr>
<td>k</td>
<td>138</td>
</tr>
<tr>
<td>a/l</td>
<td>0,6</td>
</tr>
<tr>
<td>k</td>
<td>46,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$(ql)_{kr} = \frac{84,8S}{l^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P_{kr} = \frac{kS}{l^2}$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>a/l</td>
<td>0,1</td>
</tr>
<tr>
<td>k</td>
<td>145</td>
</tr>
<tr>
<td>a/l</td>
<td>0,6</td>
</tr>
<tr>
<td>k</td>
<td>50,5</td>
</tr>
</tbody>
</table>
Продолжение табл. 46

<table>
<thead>
<tr>
<th>Схема</th>
<th>Критическая нагрузка</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>((ql)_{\text{кр}} = \frac{86,4S}{l^2})</td>
<td></td>
</tr>
</tbody>
</table>

Vertikalskie перемещения опорных сечений невозможно:

<table>
<thead>
<tr>
<th>(a/l)</th>
<th>0,1</th>
<th>0,2</th>
<th>0,3</th>
<th>0,4</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>393</td>
<td>114</td>
<td>63,1</td>
<td>47,2</td>
<td>43,2</td>
</tr>
</tbody>
</table>

Vertikalskie перемещения опорных сечений предполагаются невозможными

\((ql)_{\text{кр}} = \frac{98,7S}{l^2} \)

<table>
<thead>
<tr>
<th>(a/l)</th>
<th>0,1</th>
<th>0,2</th>
<th>0,3</th>
<th>0,4</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>399</td>
<td>118</td>
<td>67,8</td>
<td>52,6</td>
<td>50,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(a/l)</th>
<th>0,6</th>
<th>0,7</th>
<th>0,8</th>
<th>0,9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>57,7</td>
<td>82,2</td>
<td>161</td>
<td>621</td>
</tr>
</tbody>
</table>

\((ql)_{\text{кр}} = \frac{120,6S}{l^2} \)

Таблица 48. Уравнения изгибающего момента \(M(z) \) и упругой линии \(\psi(z) \) для некоторых случаев продольно-поперечного изгиба балки постоянного поперечного сечения \(k = \sqrt{\frac{N}{ET}} \)

<table>
<thead>
<tr>
<th>Схема балки и ее нагружения</th>
<th>(M(z))</th>
<th>(\psi(z))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M(z) = \frac{P}{k} \left[\frac{sh kb}{sh kl} sh kz - e(a) \frac{sh k}{sh kl} (z - a) \right])</td>
<td>(w(z) = \frac{P}{Ek^3} \left[\frac{sh kb}{sh kl} sh kz - \left(1 - \frac{a}{l} \right) kz - e(a) \frac{sh k}{sh kl} (z - a) - k (z - a) \right])</td>
</tr>
<tr>
<td></td>
<td>(M(a) = \frac{P}{k} \frac{sh kb}{sh kl} sh ka)</td>
<td>(w(a) = \frac{P}{Ek^3} \left[\frac{sh kb}{sh kl} sh ka - \left(1 - \frac{a}{l} \right) ka \right])</td>
</tr>
<tr>
<td></td>
<td>(e(a) = 0 \text{ при } z < a)</td>
<td>(e(a) = 0 \text{ при } z > a)</td>
</tr>
<tr>
<td>Problem 1</td>
<td>Problem 2</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[M(z) = \frac{q}{k^2} \left[-\frac{\text{ch} \left(\frac{z - l/2}{l} \right)}{\text{ch} \frac{l}{2}} \right] + 1]</td>
<td>[w(z) = \frac{q}{EJk^4} \left[1 - \frac{\text{ch} \left(\frac{z - l/2}{l} \right)}{\text{ch} \frac{l}{2}} \right] \frac{k^2}{2} \left(1 - \frac{z}{l} \right)]</td>
<td></td>
</tr>
<tr>
<td>[M \left(\frac{l}{2} \right) = \frac{q}{k^2} \left(-\frac{1}{\text{ch} \frac{l}{2}} + 1 \right)]</td>
<td>[w \left(\frac{l}{2} \right) = \frac{q}{EJk^4} \left(1 - \frac{1}{\text{ch} \frac{l}{2}} \right) - \frac{k^2}{8}]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[M(z) = \frac{P}{k} \frac{\text{sh} kz}{\text{ch} kl}]</td>
<td>[M(z) = \frac{M}{\text{ch} kl} \text{ch} k(l - z)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[M(l) = \frac{q}{k^2} \frac{\text{ch} kl}{k^2} \left(1 - \frac{\text{ch} kl - kl \text{sh} kl}{\text{ch} kl} \right)]</td>
<td>[-]</td>
<td></td>
</tr>
</tbody>
</table>
Схема балки и ее нагружения

<table>
<thead>
<tr>
<th>$M(z)$</th>
<th>$w(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(z) = q \frac{k}{k^2} \left[1 - \frac{kl}{2} \frac{ch k \left(z - \frac{l}{2} \right)}{sh \frac{kl}{2}} \right]$</td>
<td>$w(z) = \frac{q}{Ek^4} \left[-\frac{ch k \left(z - \frac{l}{2} \right)}{sh \frac{kl}{2}} + \frac{kl}{2} \frac{k}{2} - \frac{k^2 l z \left(1 - \frac{z}{l} \right)}{2} \right]$</td>
</tr>
<tr>
<td>$M \left(\frac{l}{2} \right) = q \frac{k}{k^2} \left(1 - \frac{kl}{2} \frac{2}{sh \frac{kl}{2}} \right)$</td>
<td>$w \left(\frac{l}{2} \right) = \frac{q}{Ek^4} \left(\frac{kl}{2} \frac{k}{2} \frac{k l}{4} - \frac{k^2 l^2}{8} \right)$</td>
</tr>
<tr>
<td>$M(0) = q \frac{k}{k^2} \left(1 - \frac{2}{sh \frac{kl}{2}} \right)$</td>
<td></td>
</tr>
</tbody>
</table>

Математические выражения

<table>
<thead>
<tr>
<th>$M(z)$</th>
<th>$w(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(z) = \frac{p}{k} \left[\frac{\sin k b}{\sin k l} \sin k z - \epsilon(a) \sin k (z - a) \right]$</td>
<td>$w(z) = \frac{p}{Ek^4} \left[-\frac{\sin k b}{\sin k l} \sin k z + \left(1 - \frac{a}{l} \right) k z + \epsilon(a) \left(\sin k (z - a) - k (z - a) \right) \right]$</td>
</tr>
<tr>
<td>$M(a) = \frac{p}{k} \frac{\sin k b}{\sin k l} \frac{\sin k a}{\sin k a}$</td>
<td>$w(a) = \frac{p}{Ek^4} \left[-\frac{\sin k b}{\sin k l} \frac{\sin k a}{\sin k a} + \left(1 - \frac{a}{l} \right) k a \right]$</td>
</tr>
<tr>
<td>$\epsilon(a) = 0$ при $z < a$</td>
<td></td>
</tr>
<tr>
<td>$\epsilon(a) = 1$ при $z > a$</td>
<td></td>
</tr>
</tbody>
</table>
\[M(z) = M \left[\frac{\cos kb}{\sin kl} \sin kz - e(a) \cos k(z-a) \right] \]

\[M(a) = M \frac{\cos kb}{\sin kl} \sin ka \]

\[w(z) = \frac{M}{EJk^2} \left\{ - \frac{\cos kb}{\sin kl} \sin kz + \frac{z}{l} - e(a) \left[1 - \cos k(z-a) \right] \right\} \]

\[w(a) = \frac{M}{EJk^2} \left\{ - \frac{\cos kb}{\sin kl} \sin ka + \frac{a}{l} \right\} \]

\[M(z) = \frac{q}{ks} \left[-1 + \frac{\cos k \left(z - \frac{l}{2} \right)}{\cos \frac{k}{2}} \right] \]

\[M \left(\frac{l}{2} \right) = \frac{q}{ks} \left(-1 + \frac{1}{\cos \frac{k}{2}} \right) \]

\[w \left(\frac{l}{2} \right) = \frac{q}{EJk^2} \left(1 - \frac{1}{\cos \frac{k}{2}} + \frac{k}{8} \right) \]

\[w(0) = \frac{q}{EJk^2} \left[1 - \frac{1}{\cos \frac{k}{2}} + \frac{k}{8} \right] \]
<table>
<thead>
<tr>
<th>Схема балки и ее нагружения</th>
<th>$M(z)$</th>
<th>$w(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M(z) = \frac{q}{k^2} \left[\frac{\cos kl - \cos kb}{\sin kl} \sin kz - \cos kz + 1 \right]$</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$M(z') = \frac{q}{k^2} \left[\frac{\cos kl - \cos kb}{\sin kl} \sin kz - \cos kz + \cos k(z - a) \right]$</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$M(z) = \frac{q}{k^2} \left(\frac{\sin kz}{\sin kl} - \frac{z}{l} \right)$</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$M_{\text{max при } z = \frac{1}{k} \arccos \frac{\sin kl}{kl}}$</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$M(z) = -\frac{P}{k} \frac{\sin kz}{\cos kl}$</td>
<td>—</td>
</tr>
</tbody>
</table>
\[M(z) = \frac{M}{\cos kl} \cos k(l - z) \]

\[M(l) = \frac{q}{k^2 \cos kl} (1 - \cos kl - kl \sin kl) \]

\[M(t) = \frac{q}{k^2} \left[-1 + \frac{kl}{2} \cos \left(\frac{z - t}{2} \right) \right] \]

\[M(t/2) = \frac{q}{k^2} \left(-1 + \frac{kl}{2} \right) \]

\[M(0) = \frac{q}{k^2} \left(-1 + \frac{kl/2}{\sin kl/2} \right) \]

\[w(t) = \frac{q}{E J k^4} \left(\frac{kl}{2} \left(\frac{-\cos \left(\frac{z - t}{2} \right) + \frac{kl}{2}}{\sin \frac{kl}{2}} \right) \right) + \\
\left(\frac{kl/2}{2} \left(1 - \frac{z}{l} \right) \right) + \\
\frac{k^{3/2}}{2} \left(1 - \frac{z}{l} \right) \]

\[w \left(\frac{l}{2} \right) = \frac{q}{E J k^4} \left(-\frac{kl}{2} \frac{kl}{4} + \frac{k^{3/2}}{8} \right) \]
19.1. Классификация механических колебаний

Все колебательные процессы, с которыми приходится встречаться в физике и технике, можно классифицировать в соответствии с законом, по которому величина, характеризующая колебательный процесс, изменяется во времени. Такую классификацию можно назвать кинематической в широком смысле этого слова. Колебания могут быть периодическими и непериодическими. Кроме того, имеется широкий промежуточный класс так называемых почти периодических колебаний.

Периодические колебания описываются периодической функцией, значение которой повторяется через определенный отрезок времени T, называемый периодом колебаний, т. е.

$$ f(t + T) = f(t) $$

при любом значении переменной t.

Непериодическими называются функции, не удовлетворяющие указанному условию.

Почти периодические функции определяются условием

$$ |f_1(t + \tau) - f_1(t)| < \varepsilon $$

при любом t, где τ и ε — определенные постоянные величины. Очевидно, что если ε очень мало по сравнению со средним значением модуля функции $f_1(t)$ за время t, то почти периодическая функция будет близка к периодической, в которой τ будет почти периодом.

К наиболее распространенным периодическим колебаниям относятся гармонические колебания.

Непериодические колебания гораздо разнообразнее периодических. Такие колебания чаще всего являются затухающими (рис. 328, а) или нарастающими (рис. 328, б) гармоническими колебаниями. Затухающие колебания математически могут быть представлены выражением

$$ x = A e^{-\delta t} \cos (\omega t + \varphi). \quad (19.1) $$

gде A, φ, δ и ω — постоянные величины; t — время.

Нарастающие гармонические колебания математически описываются аналогично (19.1), только знак при δt должен быть заменен на противоположный (плюс).
Строго говоря, название «затухающие гармонические колебания» не совсем логично, так как гармонические колебания не могут затухать. Тем не менее на практике этим названием пользуются.

Классификация колебательных процессов по внешним признакам не является достаточной, а потому она должна быть дополнена классификацией колебаний по основным физическим признакам рассматриваемых колебательных систем.

При исследовании колебательных движений упругих систем важно знать, какое число независимых параметров определяет положение системы в каждый данный момент времени. Число таких параметров называется числом степеней свободы.

В простейших случаях положение системы может быть определено одной величиной. Такие системы называются системами с одной степенью свободы. Колебательная система, состоящая из груза Q, подвешенного на пружине (рис. 329), будучи устроена, так, что возможны только вертикальные перемещения груза, является системой с одной степенью свободы. Ее положение в любой момент времени может быть определено одним параметром — перемещением по вертикали.

Примером системы с двумя степенями свободы может служить невесомая балка, несущая две массы (рис. 330). Здесь независимыми параметрами, определяющими положение системы в любой момент времени, могут служить перемещения масс m_1 и m_2 относительно положения равновесия. Увеличивая число сосредоточенных масс колеблющейся балки, переходим в пределе к балке с распределенной по всей длине массой — колебательной системе (рис. 331) с бесконечным числом степеней свободы.

Классификации механических колебаний может быть проведена и по другим признакам. В частности, принято различать следующие четыре типа колебаний: свободные колебания, вынужденные колебания, параметрические колебания и автоколебания.

Свободными (собственными) называются колебания, возникающие в изолированной системе вследствие внешнего возбуждения («толчков»), вызывающего у точек системы начальные отклонения от положения равновесия, и продолжающиеся ватем благодаря наличию внутренних упругих сил, восстанавливающих равновесие. Необходимая энергия, обеспечивающая процесс колебаний, поступает извне в начальный момент возбуждения колебаний. Период колебаний (время одного полного колебания) или частота колебаний (величина, обратная периоду) зависит от самой системы. Частота колебаний является вполне определенной для данной системы и называется собственной частотой колебаний системы. Свободные колебания из-за потерь энергии в системе практически всегда являются затухающими, хотя при анализе свободных колебаний указанными потерями энергии часто пренебрегают.

Вынужденными назвываются колебания упругой системы, происходящие при действии на систему (в течение всего процесса колебаний) враждебных внешних периодически изменяющихся вынуждающих сил.
Характер колебательного процесса при этом определяется не только свойствами системы, но существенно зависит также от внешней силы. Примером вынужденных колебаний могут служить поперечные колебания балки (рис. 332), вызываемые неуравновешенной массой ротора и установленного на ней работающего электромотора.

Вынужденные колебания происходят с частотой вынуждающей силы и поддерживаются за счет непрерывного поступления энергии извне. При совпадении частоты вынуждающих сил с частотой собственных колебаний системы наступает резонанс, характеризующийся резким возрастанием амплитуды вынужденных колебаний, представляющим опасность для работы рассматриваемой механической колебательной системы.

Параметрическими называются колебания упругой системы, в процессе которых периодически изменяются физические параметры системы — величины, характеризующие массу или жесткость системы. При этом внешние силы не влияют непосредственно на колебательное движение, а изменяют физические параметры системы. Примером параметрических колебаний могут служить поперечные колебания массы на вращающемся стержне некруглого сечения, имеющем разный эквивалентный момент инерции относительно взаимно перпендикулярных осей.

Автоколебаниями, или самоколебаниями, упругой системы называются незатухающие колебания, поддерживающиеся такими внешними силами, характер воздействия которых определяется самим колебательным процессом. Автоколебания возникают в системе отсутствие внешних периодических воздействий. Характер колебаний определяется исключительно устройством системы. Источник энергии, восполняющий потерю энергии в системе в процессе ее колебаний, составляет неотъемлемую часть системы. Таким образом, автоколебания отличаются от свободных колебаний, являющихся затухающими, тем, что они не затухают.

С другой стороны, автоколебания отличаются от вынужденных и параметрических колебаний, вызываемых внешними силами, характер действия которых в обоих случаях задан, тем, что они являются самовозбуждающимися колебаниями, в которых процесс колебаний управляет самими колебаниями. Примером автоколебаний может служить вибрация частей самолета (флаттер), когда источником дополнительной энергии, поддерживающей колебания системы, является энергия воздушного потока, а также трепетание флага на ветру.

Классификацию колебаний принято также проводить по виду деформаций упругих элементов конструкции. В частности, применительно к стержневым системам различают продольные, поперечные и крутильные колебания.

При продольных колебаниях перемещения всех точек упругого стержня направлены вдоль оси стержня. При этом имеет место деформация удлинения или укорочения стержня, т. е. продольные колебания можно называть колебаниями растяжения — сжатия.

При поперечных (изгибных) колебаниях основные компоненты перемещений (просевы) направлены перпендикулярно к оси стержня. При крутильных колебаниях имеют место переменные деформации кручення. Возможны также изгибно-крутильные колебания, т. е. колебания, при которых одновременно имеют место переменный изгиб и крушение.

Рис. 332
19.2. Свободные колебания систем с одной степенью свободы

Простейшей колебательной системой с одной степенью свободы может служить груз, подвешенный на вертикально расположенной пружине (рис. 333).

Дифференциальное уравнение колебаний груза \(Q \) получим в виде суммы проекций всех сил (включая силы инерции согласно принципу Даламбера) на вертикальную ось, в виде

\[
Q + cx - \left(Q - \frac{Q}{g} \dot{x} \right) = 0.
\]

Отсюда

\[
\frac{Q}{g} \ddot{x} + cx = 0,
\]

или

\[
\ddot{x} + \omega^2 x = 0,
\tag{19.2}
\]

где \(x \) — вертикальное перемещение груза от положения статического равновесия; " = \(d^2x/\mathcal{d}t^2 \); \(t \) — время; \(c \) — жесткость пружины; \(g \) — ускорение свободного падения; \(\omega \) — угловая частота свободных колебаний

\[
\omega^2 = \frac{cg}{Q} = \frac{g}{\Delta_{\text{ct}}};
\tag{19.3}
\]

\(\Delta_{\text{ct}} = Q/c \) — величина удлинения пружины при статическом действии груза \(Q \).

Решением уравнения (19.2) будет

\[
x = A \cos \omega t + B \sin \omega t, \tag{19.4}
\]

где \(A \) и \(B \) — постоянные интегрирования, зависящие от начальных условий.

Если заданы начальная координата груза \(x_0 \) и начальная скорость \(v_0 = \dot{x} \) при \(t = 0 \), то из (19.4) определим

\[
A = x_0; \quad B = \frac{v_0}{\omega}. \tag{19.5}
\]

Полагая

\[
x_0 = a \sin \alpha, \quad \frac{v_0}{\omega} = a \cos \alpha, \tag{19.6}
\]

решение (19.4) можно представить в виде

\[
x = a \sin (\omega t + \alpha),
\]

где \(a \) — амплитуда колебаний, определяемая формулой

\[
a = \sqrt{A^2 + B^2} = \sqrt{x_0^2 + \frac{v_0^2}{\omega^2}}.
\]

Фаза \(\omega t + \alpha \) называется фазой колебаний, а величина \(\alpha \) — сдвиг фазы. На основании (19.6) \(\alpha \) может быть определено из условия

\[
\tan \alpha = \frac{x_0 \omega}{v_0}.
\]
Угловая частота колебаний (число колебаний, совершаемое в течение \(2\pi\) секунд) на основании (19.3) будет

\[
\omega = \sqrt{\frac{g}{\Delta_{ct}}}
\]

или

\[
\omega = \sqrt{\frac{c}{m}}
\]

gде \(m = Q/g\) — масса подвешенного груза.

Зная угловую частоту, можно определить период колебаний

\[
T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{\Delta_{ct}}{g}} = 2\pi \sqrt{\frac{c}{g}}
\]

Число колебаний в секунду, т. е. секундная частота, выражаемая в герцах, определяется формулой

\[
i = \frac{1}{T} = \frac{\omega}{2\pi}
\]

При колебаниях груза, подвешенного на конце пружины, представляющей собой стержень длиной \(l\) с жесткостью поперецного сечения на растяжение \(EF\) и жесткостью \(c = \frac{EF}{l}\),

собственная частота колебаний согласно (19.7) определяется формулой

\[
\omega = \sqrt{\frac{g}{\Delta_{ct}}} = \sqrt{\frac{EFg}{Ql}}
\]

Учитывая, что \(Q/g = m\), можно записать

\[
\omega = \sqrt{\frac{c}{m}} = \sqrt{\frac{EF}{ml}}
\]

Рис. 334

Из формул (19.10) и (19.11) видно, что частота свободных колебаний системы при неизменной массе возрастает с увеличением жесткости и уменьшается с увеличением массы при неизменной жесткости.

Отношение частот свободных колебаний грузов, прикрепленных к концам двух разных стержней, обратно пропорционально корню квадратному из отношения статических удлинений стержней.

Примером системы с одной степенью свободы может служить также колебательная система, состоящая из массивного диска, прикрепленного к нижнему концу жестко закрепленного верхним концом вала (рис. 334). Если к диску в его плоскости приложить и внезапно удалить пару сил, то возникнут свободные колебания кручения вала вместе с диском. Обозначим касательную жесткость вала (куритящий момент, вызывающий закручивание вала на один радian) через \(c\):

\[
c = \frac{GJ_P}{l} = \frac{G\pi d^4}{l \cdot 32}
\]

где \(G\) — модуль упругости при сдвиге; \(d\) — диаметр вала; \(l\) — длина вала.

514
Воспользовавшись принципом Даламбера (инерцией массы стержня не-считаем), получим дифференциальное уравнение краевого диска, приравнивая к крутящему моменту \(c \varphi \) имеющему вид при его закручивании на угол \(\varphi \), моменту сил инерции массы диска:

\[
J \frac{d^2 \varphi}{dt^2} + c \varphi = 0,
\] (19.13)

где \(J \) — момент инерции диска относительно оси стержня, перпендикулярной к плоскости диска.

Для диска постоянной толщины \(h \), изготовленного из материала с удельным весом \(\gamma \), получим

\[
J = \frac{\pi D^4 h \gamma}{32g} = \frac{QD^2}{8g}.
\] (19.14)

Здесь \(D \) — диаметр диска; \(Q \) — вес диска.

Для диска переменной толщины

\[
J = \frac{2\pi}{g} \int_0^D h(\rho) \gamma \rho^3 d\rho.
\] (19.15)

Обозначим

\[
\omega^2 = \frac{c}{J},
\] (19.16)

уравнение (19.13) перепишем в виде

\[
\frac{d^2 \varphi}{dt^2} + \omega^2 \varphi = 0.
\] (19.17)

Общее решение этого уравнения будет

\[
\varphi = A \cos \omega t + B \sin \omega t.
\] (19.18)

Период колебаний рассматриваемой системы

\[
T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{J}{c}}.
\] (19.19)

Для стержня постоянного диаметра \(d \) с учетом (19.12) имеем

\[
T = 2\pi \sqrt{\frac{32lJ}{G\pi d^4}},
\] (19.20)

а частота колебаний

\[
f = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{\pi Gd^4}{32lJ}}.
\] (19.21)

В табл. 49 приведены собственные частоты колебаний систем с одной степенью свободы.

19.3. Вынужденные колебания систем с одной степенью свободы при гармоническом возбуждении

Уравнение вынужденных колебаний системы с одной степенью свободы (рис. 333) получим, если в (19.2) кроме сил инерции \(\frac{Q}{g} \) \(\ddot{x} \).
и сил упругости, действующих на груз \(Q \), учитыв влияние периодической вынуждающей силы \(P \cos pt \)

\[
\frac{Q}{g} x + cx = P \cos pt.
\]
(19.22)

Обозначив

\[
\frac{cg}{Q} = \omega^2;
\]
(19.23)

\[
\frac{Pg}{Q} = q,
\]
(19.24)

где \(p \) — угловая частота вынуждающей силы, приведем уравнение (19.22) к виду

\[
\ddot{x} + \omega^2 x = q \cos pt.
\]
(19.25)

При \(p \) малом по сравнению с \(\omega \) членом \(\ddot{x} \) можно пренебречь и считать, что имеет место только статическая деформация, максимальное значение которой

\[
x_{ct} = \frac{q}{\omega^2}.
\]
(19.26)

Для определения динамической деформации необходимо решить уравнение (19.25). Решение уравнения (19.25) будет состоять из суммы общего решения однородного уравнения (при \(q \cos pt = 0 \))

\[
x = A \cos \omega t + B \sin \omega t
\]
(19.27)

и частного решения уравнения (19.25)

\[
x = C \cos pt.
\]
(19.28)

Подставив (19.28) в (19.25), найдем

\[
C = \frac{q}{\omega^2 - p^2}.
\]
(19.29)

Тогда общее решение уравнения (19.25) будет

\[
x = A \cos \omega t + B \sin \omega t + \frac{q}{\omega^2 - p^2} \cos pt.
\]
(19.30)

Первые два слагаемых правой части решения (19.30), характеризуют свободные колебания, которые очень быстро затухают; последнее характеризует вынужденные установившиеся колебания с угловой частотой \(p \) (с периодом \(T_1 = 2\pi/p \) или частотой \(f = p/2\pi \) Гц) и амплитудой \(C = q / (\omega^2 - p^2) \). Амплитуда вынужденных колебаний существенно зависит от соотношения собственной \(\omega \) и вынужденной \(p \) частот колебаний и может быть охарактеризована так называемым коеффициентом динамического усилени.

\[
\beta = \frac{C}{x_{ct}} = \frac{q}{\omega^2 - p^2} : \frac{q}{\omega^2} = \frac{\omega^2}{\omega^2 - p^2} = \frac{1}{1 - \frac{p^2}{\omega^2}}
\]
(19.31)

или

\[
\beta = \frac{1}{1 - \frac{T_1^2}{T_1^2}}.
\]
(19.32)
где

\[T_1 = \frac{2\pi}{\rho} \; ; \; T = \frac{2\pi}{\omega}. \]

Как видно из (19.31), при малом отношении \(p/\omega \) \(\beta \to 1 \) и \(C \to x_{ct}. \) Когда же частота вынужденных колебаний \(p \to \omega, \) т. е. \(p/\omega \to 1, \) то \(C \to \infty. \) Когда \(p = \omega, \) имеет место состояние резонанса. Соответствующая частота вынуждающей силы \(p = p_{kp} \) при этом называется критической.

График зависимости \(|\beta| = f(p/\omega), \) приведенный на рис. 335 и представляющий собой так называемую амплитудно-частотную характеристику, позволяет проанализировать поведение колебательной системы в зависимости от соотношения частот свободных \(\omega \) и вынужденных \(p \) колебаний.

Рис. 335 Рис. 336

19.4. Свободные колебания системы с одной степенью свободы с учетом сопротивления, пропорционального скорости

Уравнение свободных колебаний системы с одной степенью свободы (рис. 336, a) с учетом сопротивления, пропорционального скорости движения колеблюющегося груза, получим из рассмотрения условий его динамического равновесия:

\[Q - \frac{Q}{g} \dot{x} - \alpha x = Q + cx, \]

или

\[\ddot{x} + 2n \dot{x} + \omega^2 x = 0, \] \hspace{1cm} (19.33)

где \(\alpha \) — коэффициент пропорциональности; \(\alpha x \) — сила сопротивления.

В уравнении (19.33)

\[\omega^2 = \frac{cf}{Q}; \; \; 2n = \frac{cg}{Q}. \] \hspace{1cm} (19.34)

Обозначим

\[\omega_1^2 = \omega^2 - n^2. \] \hspace{1cm} (19.35)

Решение уравнения (19.33) будет

\[x = e^{-nt} \left(A \sin \omega_1 t + B \cos \omega_1 t \right), \] \hspace{1cm} (19.36)

где \(e = 2,718. \)
Период затухающих колебаний рассматриваемой системы

\[T = \frac{2l}{\omega_1} = \frac{2n}{\sqrt{\omega^2 - n^2}}. \quad (19.37) \]

где \(n \) — коэффициент, характеризующий демпфирующую способность колебательной системы. Из (19.36) видно, что из-за множителя \(e^{-nt} \) амплитуда колебаний с течением времени уменьшается — колебания затухают. Постоянные интегрирования \(A \) и \(B \) в решении (19.36) определяются из начальных условий. Так, полагая, что при \(t = 0 \), \(x = x_0 \), \(x = x_0 \), находим

\[B = x_0; \quad A = \frac{1}{\omega_1} (x_0 + nx_0). \]

В этом случае решение (19.36) может быть представлено в виде

\[x = e^{-nt} \left[\frac{x_0}{\omega_1} \sin \omega_1 t + x_0 \left(\cos \omega_1 t + \frac{n}{\omega_1} \sin \omega_1 t \right) \right]. \quad (19.38) \]

В частном случае, когда \(A = 0 \), т. е. когда

\[\frac{x_0}{\omega_1} + \frac{nx_0}{\omega_1} = 0, \]

уравнение (19.38) примет вид

\[x = x_0 e^{-nt} \cos \omega_1 t. \]

Графически это уравнение представлено на рис. 336, б. Уменьшение амплитуды следует геометрической прогрессии. Действительно, при \(t = 0; \, T; \, 2T; \, \ldots \) амплитуды соответственно имеют значения

\[a_0 = x_0; \quad a_1 = x_0 e^{-nT}; \quad a_2 = x_0 e^{-2nT}; \, \ldots \]

\[\frac{a_0}{a_1} = \frac{a_1}{a_2} = \ldots = \frac{a_k}{a_{k+1}} = e^{nT}, \]

откуда

\[\ln \frac{a_k}{a_{k+1}} = \ln e^{nT} = nT = \delta. \quad (19.39) \]

Величина \(\delta \) называется логарифмическим декрементом колебаний обычно является основной характеристикой затухания колебаний или характеристикой демпфирующих свойств колебательной системы.

19.5. Вынужденные колебания системы с одной степенью свободы с учетом сопротивления, пропорционального скорости

Согласно данным предыдущих разделов дифференциальное уравнение вынужденных колебаний системы, приведенной на рис. 336, а при действии внешней вынуждающей силы \(P \cdot \sin pt \) должно быть записано в окончательном виде

\[\ddot{x} + 2n \dot{x} + \omega^2 x = q \sin pt, \quad (19.40) \]

где, как и ранее,

\[\omega^2 = \frac{cg}{Q}; \quad q = \frac{Pq}{Q}; \quad n = \frac{ag}{2Q}. \quad (19.41) \]
Общее решение уравнения (19.40) будет состоять из суммы решения однородного уравнения (19.33)

\[x = e^{-nt} (A \sin \omega_1 t + B \cos \omega_1 t), \]

где \(\omega_1 = V_{\omega^2 - n^2} \), и частного решения уравнения (19.40)

\[x = K \sin pt + L \cos pt. \] (19.42)

После подстановки (19.42) в (19.40) найдем

\[K = \frac{q (\omega^2 - p^2)}{(\omega^2 - p^2)^2 + 4p^2n^2} ; \quad L = -\frac{2qpn}{(\omega^2 - p^2)^2 + 4p^2n^2}. \] (19.43)

Тогда общее решение уравнения (19.40) будет иметь вид

\[x = e^{-nt} (A \sin \omega_1 t + B \cos \omega_1 t) - \frac{2qpn}{(\omega^2 - p^2)^2 + 4p^2n^2} \cos pt - \frac{q (\omega^2 - p^2)}{(\omega^2 - p^2)^2 + 4p^2n^2} \sin pt. \] (19.44)

Поскольку со временем свободные колебания, характеризуемые членом, содержащим множитель \(e^{-nt} \), затухают, то при установившихся колебаниях вынужденные колебания системы будут характеризоваться последними двумя членами правой части решения (19.44), пропорциональными \(q \). Период незатухающих колебаний будет

\[T_1 = \frac{2\pi}{p}. \]

Если ввести следующую замену:

\[\frac{2qpn}{(\omega^2 - p^2)^2 + 4p^2n^2} = \mathcal{A} \sin \varphi; \] (19.45)

\[\frac{q (\omega^2 - p^2)}{(\omega^2 - p^2)^2 + 4p^2n^2} = \mathcal{A} \cos \varphi, \] (19.46)

то решение \(x \) для вынужденных колебаний может быть представлено в виде

\[x = \mathcal{A} (\cos \varphi \sin pt - \sin \varphi \cos pt) = \mathcal{A} \sin (pt - \varphi), \] (19.47)

где амплитуда \(\mathcal{A} \) и угол сдвига фаз \(\varphi \) на основании (19.45) и (19.46) определяются соответственно формулами

\[\mathcal{A} = \frac{q}{\sqrt{(\omega^2 - p^2)^2 + 4p^2n^2}} ; \quad \tan \varphi = \frac{2pn}{\omega^2 - p^2}, \] (19.48)

или, учитывая, что \(n = \frac{\delta \omega_1}{2\pi} \approx \frac{\delta \omega}{2\pi} \), формулами

\[\mathcal{A} = \frac{q}{\sqrt{(\omega^2 - p^2)^2 + \left(\frac{\delta}{\pi}\right)^2 \omega^2 p^2}} ; \quad \tan \varphi = \frac{\delta}{\pi} \frac{p \omega}{\omega^2 - p^2}. \] (19.49)

При \(\omega > p \) угол \(\varphi \) будет положительным и меньше \(\pi/2 \), т. е. \(0 < \varphi < \pi/2 \). При \(\omega < p \) получим \(\pi/2 < \varphi < \pi \), т. е. вынужденные колебания отстают от вынуждающей силы больше чем на \(\pi/2 \). При \(p = \omega \)
имеем \(\tan \varphi = \infty \), т. е. \(\varphi = \pi/2 \) и, следовательно, колебательная система занимает свое среднее положение в тот момент, когда вынуждающая сила имеет максимальное значение.

Учитывая, что

\[
q = \frac{\mu \rho}{Q}; \quad \omega^2 = \frac{c_p}{Q},
\]

находим

\[
g \omega^2 = \frac{gPQ}{Qc_p} = \frac{P}{c} = \Delta_{ct},
\]

где \(\Delta_{ct} \) — деформация пружины при статическом приложении амплитудного значения вынуждающей силы.

Рис. 337

Рис. 338

Учитывая (19.51), выражение для амплитуды вынужденных колебаний \(U \) (19.48) можно представить в виде

\[
U = \frac{\Delta_{ct}}{\sqrt{\left(1 - \frac{p^2}{\omega^2}\right)^2 + \frac{4p^2n^2}{\omega^4}}} = \frac{\Delta_{ct}}{\sqrt{\left(1 - \frac{p^2}{\omega^2}\right)^2 + \left(\frac{\delta}{\pi}\right)^2 \left(\frac{p}{\omega}\right)^2}}.
\]

(19.52)

Как видно, амплитуда вынужденных колебаний зависит от соотношения частот свободных (\(\omega \)) и вынужденных (\(p \)) колебаний и от демпфирующей способности колебательной системы, определяемой логарифмическим декрементом колебаний \(\delta \).

При \(p \ll \omega \) имеем \(U \to \Delta_{ct} \); при \(p \to \omega \) имеем \(U \to \Delta_{ct} \frac{\pi}{\delta} \), т. е. обратно пропорционально \(\delta \) и при \(\delta \to 0 \) \(U \to \infty \).

Коэффициент динамического усиления \(\beta \) в рассматриваемом случае определяется формулой

\[
\beta = \frac{U}{\Delta_{ct}}
\]

или с учетом (19.52)

\[
\beta = \frac{1}{\sqrt{\left(1 - \frac{p^2}{\omega^2}\right)^2 + \frac{4p^2n^2}{\omega^4}}} = \frac{1}{\sqrt{\left(1 - \frac{p^2}{\omega^2}\right)^2 + \left(\frac{\delta}{\pi}\right)^2 \left(\frac{p}{\omega}\right)^2}}.
\]

(19.53)

Амплитудно-частотные характеристики \(|\beta| = f_1 \left(p/\omega \right) \) для различных значений коэффициента \(\gamma = \delta/\pi \), характеризующего демпфирующую способность колебательной системы, показаны на рис. 337. График зависимости \(\varphi = f_2 \left(p/\omega \right) \) приведен на рис. 338.
19.6. Демпфирующая способность материала

Среди различных причин, обусловливающих гашение колебаний механических систем, особый интерес представляет естественное поглощение энергии колебаний в материале упругих элементов самой колебательной системы. Любой реальный материал способен при его циклическом деформировании в большей или меньшей степени поглощать энергию циклического деформирования, преобразуя ее в тепло, которая затем рассеивается.

Способность материала необратимо поглощать механическую энергию обусловлена его несовершенной упругостью, проявляющейся в нелинейности и неоднозначности зависимости между напряжением и деформацией при нагружении и разгрузке и приводящей к образованию петли гистерезиса (рис. 339), площадью которой характеризуется величина поглощенной (или рассеянной) в единице объема материала энергии \(\Delta U(\varepsilon_0) \) за цикл его деформирования с данной амплитудой деформации \(\varepsilon_0 \) (напряжения \(\sigma_0 \)).

В общем случае симметричного цикла деформирования уравнения восходящей (\(\sigma(\varepsilon) \)) и нисходящей (\(\sigma(\varepsilon) \)) ветвей петли гистерезиса, обусловленного несовершенной упругостью стабильного состояния материала, можно представить в виде

\[
\sigma(\varepsilon) = E \left\{ \varepsilon \pm \sum_{n} \chi_n [(\varepsilon_0 \pm \varepsilon)^n - 2^{n-1} \varepsilon_0^n] \right\},
\]

где \(n \), \(\chi_n \) — параметры петли гистерезиса, подлежащие определению.

Отмеченная способность материала начинает проявляться при амплитудах напряжений, значительно меньших макроскопического предела упругости, и для области рабочих амплитуд деформаций деталей инженерных конструкций в основном обусловливается микропластическими деформациями, связанными с перемещениями дислокаций, перемещениями межфазных границ и границ двойников, связанными с наличием обратимого мартенсита в структуре, а также магнитомеханическим гистерезисом, связанным с необратимыми смещениями границ доменов.

Применительно к инженерным задачам гашения (демпфирования) колебаний элементов конструкций рассматриваемая способность материала поглощать энергию его циклического деформирования называется демпфирующей способностью.

Эта способность материала как один из основных факторов, обусловливающих ограничение амплитуды резонансных колебаний и затухание свободных колебаний и влияющих на динамическую устойчивость и развитие автоколебаний, имеет важное значение для обеспечения не только динамической прочности выбирирующих элементов, но и устойчивой работы аппаратуры, а также улучшения комфортабельности транспортных машин и повышения эффективности работы выбирирующих машин резонансного типа. При этом, если обычно стремятся обеспечить максимальное демпфирование колебаний упругого элемента, что считается одним из условий оптимального конструирования.
ния, то, например, для резонансной системы вибрационной машины желательно иметь минимальный уровень демпфирования.

Демпфирующая способность материала обычно характеризуется относительным рассеянием энергии

$$\psi (\varepsilon_0) = \frac{\Delta U (\varepsilon_0)}{U (\varepsilon_0)},$$
(19.55)

где $U (\varepsilon_0)$ — амплитудное значение энергии упругого деформирования (площадь заштрихованного на рис. 339 треугольника), или логарифмическим декrementом колебаний

$$\delta (\varepsilon_{0,i}, \varepsilon_{0,i+N}) = \frac{1}{N} \ln \frac{\varepsilon_{0,i}}{\varepsilon_{0,i+N}} \approx \frac{2 (k - 1)}{N (k + 1)},$$
(19.56)

где $\varepsilon_{0,i}$, $\varepsilon_{0,i+N}$ — амплитуда деформации в начале и конце рассматриваемого участка в N циклов свободных затухающих колебаний; $k = \frac{e_{0,i}}{e_{0,i+N}}$; $\varepsilon_{0,i} / \varepsilon_{0,i+N}$. При этом между указанными характеристиками имеется определенная связь ($\varepsilon_{0,i} / \varepsilon_{0,i+N} = \varepsilon_0$)

$$\delta (\varepsilon_0) \approx \frac{1}{2} \psi (\varepsilon_0).$$
(19.57)

Для наиболее общего случая записи амплитудной зависимости логарифмического декретента колебаний

$$\delta (\varepsilon_0) = \sum_{n} K_n \varepsilon_0^{n-1},$$
(19.58)

между параметрами этой зависимости и уравнений петли гистерезиса установлено следующее соотношение:

$$\kappa_n = \frac{K_n (n + 1)}{\varepsilon_0^{n+1} (n - 1)}.$$
(19.59)

Демпфирующая способность конструкционных материалов зависит от многих факторов: химического состава и структуры материала, амплитуды циклической деформации (напряжения) (рис. 340) и вида напряженного состояния, температуры (рис. 341) и термической обработки (рис. 342), статической напряженности (рис. 343) и внешнего магнитного поля (рис. 342), предварительного пластического деформирования и длительности воздействия циклического деформирования и др. Демпфирующая способность рассматривается как самостоятельная характеристика материала, требующая в основном экспериментального определения с учетом реальных технологических и эксплуатационных факторов.

Известные конструкционные материалы различаются по демпфирующей способности весьма существенно — на три порядка. Ниже приведены некоторые ориентировочные данные о максимальном значении декретента колебаний различных классов материалов при амплитуде гомологического напряжения, равного примерно одной десятой предела текучести данного материала, в условиях комнатной температуры.
Сплавы
- алюминиевые 0,1—1
- магниевые (литые) 13—30
- марганцевомедные 10—25
- медноалюминиевые* 4—10
- никель-титановые 10—15
- кобальтопникелевые 6—12
- титановые** 0,05—0,15

* Сплавы с обратным мартенситом в структуре
** Для сплавов с обратным мартенситом в структуре возможно повышение демпфирующей способности на порядок и более.

Чугун с графитом пластинчатым 10—15
шаровидным 2—5

Стали
- хромистые 1—4
- углеродистые 0,2—1

Латуния и бронзы 0,1—0,3

Рис. 340

Рис. 341

Рис. 342

Рис. 343

Следует отметить, что результаты имеющихся исследований позволяют считать для области амплитуд циклических напряжений, не превышающих предела выносливости, демпфирующую способность металлических материалов независимой от частоты деформирования.
19.7. Критическая скорость вращения вала

Число оборотов, при котором вращающиеся вальы, попадая в резонанс, становятся динамически неустойчивыми, в результате чего могут возникнуть недопустимо большие колебания, называется критическим. Можно показать, что таким критическим числом является число оборотов вала в секунду, соответствующее собственной частоте его поперечных колебаний.

Рассмотрим вращение диска, насаженного на вал (рис. 344, а). Центр тяжести диска \(C \) практически всегда не совпадает с осью вращения на некоторую величину \(e \). Центробежная сила, действующая на вал при вращении диска весом \(Q \) с угловой скоростью \(\omega \), будет

\[
T = \frac{Q}{q} \rho^2 (\omega + e),
\]

где \(\omega \) — прогиб вала в месте посадки диска.

Реакция вала в месте приложения силы \(T \)

\[
P = cw.
\]

Здесь \(c \) — изгибная жесткость. В случае постоянного сечения жесткостью \(EJ \) при размещении диска посередине шарнирно опертого вала \(c = \frac{48EJ}{h^3} \).

Из условия равновесия очевидно, что \(P = T \).

Подставив вместо \(T \) и \(P \) их выражения, найдем

\[
\frac{Q}{g} (\omega + e) \rho^2 = cw
\]

или

\[
\omega = \frac{e}{c \frac{g}{\rho^2} \frac{1}{Q} - 1}.
\] (19.60)

Учитывая, что собственная частота поперечных колебаний вала

\[
\omega^2 = \frac{c^2}{Q},
\] (19.61)

уравнение (19.60) можно представить так:

\[
\omega = \frac{e}{\omega^2 - \frac{1}{\rho^2} - 1}.
\] (19.62)

Из (19.62) следует, что критическая скорость, при которой \(\omega \rightarrow \infty \), будет

\[
p_{kr} = \omega = \sqrt{\frac{c^2}{Q}}.
\] (19.63)

При \(p_{kr} > \omega \) центр тяжести диска будет располагаться между линией, соединяющей опоры, и искривленной осью вала (рис. 344, б), и уравнение для определения прогиба запишется так:

\[
\frac{Q}{g} (\omega - e) \rho^2 = cw,
\]
Из (19.64) следует, что с увеличением \(p \) прогиб \(w \to e \), т.е. при очень больших скоростях центр тяжести диска достигает линии, соединяющей опоры, и изогнутый вал вращается вокруг центра тяжести диска \(C \).

19.8. Свободные колебания упругих систем с несколькими степенями свободы

При рассмотрении колебаний упругих систем с несколькими степенями свободы дифференциальные уравнения движения во многих случаях можно получить, как и в случае системы с одной степенью свободы, пользуясь принципом Даламбера. Так, для системы с двумя степенями свободы, показанной на рис. 345, a, состоящей из двух масс

\[
\begin{align*}
\omega &= \frac{e}{1 - \frac{cg}{\rho^2 Q}} = \frac{e}{1 - \frac{\omega^2}{\rho^2}}
\end{align*}
\]

Рис. 345

\(m_1 \) и \(m_2 \) в двух пружин с жесткостями \(c_1 \) и \(c_2 \), положив, что массы могут перемещаться при отсутствии трения только в горизонтальном направлении вдоль оси \(x \), а также обозначив перемещение масс \(m_1 \) и \(m_2 \) соответственно через \(x_1 \) и \(x_2 \), получим, что на массу \(m_1 \) действуют сили натяжения пружин \(-c_1 x_1 \) и \(c_2 (x_2 - x_1) \), а также сила инерции \(-m_1 \ddot{x}_1 \). Уравнение движения массы \(m_1 \) будет

\[
-c_1 x_1 + c_2 (x_2 - x_1) - m_1 \ddot{x}_1 = 0,
\]

или

\[
m_1 \ddot{x}_1 + c_1 x_1 - c_2 (x_2 - x_1) = 0. \quad (19.65)
\]

Схема сил, действующих на \(i \)-ю массу, в общем случае показана на рис. 345, b.

На массу \(m_2 \) кроме силы натяжения в первой пружине \(c_2 (x_2 - x_1) \) и уравнением ее движения будет

\[
m_2 \ddot{x}_2 + c_2 (x_2 - x_1) = 0. \quad (19.66)
\]

Уравнения движения (19.65) и (19.66) можно было бы получить несколько иным способом. Действительно, можно считать, что имеется две связанные между собой пружины (рис. 345, a) которые подвергаются действию сил инерции \(-m_1 \ddot{x}_1 \) и \(-m_2 \ddot{x}_2 \), приложенных в точках 1 и 2. Тогда первая пружина нагружается силой \(-m_1 \ddot{x}_1 - m_2 \ddot{x}_2 \), а вторая — силой \(m_2 \ddot{x}_2 \). Перемещение первой массы при этом будет равно удлинению первой пружины:

\[
x_1 = \frac{-m_1 x_1 - m_2 x_2}{c_1},
\]

525
а перемещение второй массы
\[x_2 = x_1 - \frac{m_1 x_2}{c_1} = \frac{-m_1 x_1 - m_2 x_2}{c_1} - \frac{m_3 x_2}{c_2}. \]

Преобразовав последние уравнения, получим систему дифференциальных уравнений, эквивалентную (19.65) и (19.66):
\[x_1 c_1 + m_1 \ddot{x}_1 + m_2 \ddot{x}_2 = 0, \quad (19.67) \]
\[x_4 c_4 + c_2 (m_1 \ddot{x}_1 + m_2 \ddot{x}_2) + c_1 m_2 \ddot{x}_2 = 0. \quad (19.68) \]

Наиболее общим способом составления дифференциальных уравнений является известный из теоретической механики способ, основанный на применении уравнений Лагранжа второго рода, которые при отсутствии сил сопротивления и внешних вынуждающих сил имеют вид
\[
\frac{d}{dt} \left(\frac{\partial T}{\partial x_i} \right) - \frac{\partial T}{\partial x_i} = -\frac{\partial U}{\partial x_i}, \quad (i = 1, 2, 3, \ldots, n), \quad (19.69)
\]
где \(T \) и \(U \) — соответственно кинетическая и потенциальная энергия системы.

Применительно к системе, приведенной на рис. 345, а, будем иметь
\[
T = \frac{m_1 \dot{x}_1^2}{2} + \frac{m_2 \dot{x}_2^2}{2};
\]
\[
U = \frac{c_1 x_1^2}{2} + c_2 (x_2 - x_1)^2;
\]
\[
\frac{\partial T}{\partial x_1} = m_1 \dot{x}_1; \quad \frac{\partial T}{\partial x_2} = m_2 \dot{x}_2; \quad \frac{\partial T}{\partial x_1} = 0; \quad \frac{\partial T}{\partial x_2} = 0;
\]
\[
\frac{d}{dt} \left(\frac{\partial T}{\partial x_1} \right) = m_1 \ddot{x}_1; \quad \frac{d}{dt} \left(\frac{\partial T}{\partial x_2} \right) = m_2 \ddot{x}_2;
\]
\[
\frac{\partial U}{\partial x_1} = c_1 x_1 - c_2 (x_2 - x_1); \quad \frac{\partial U}{\partial x_2} = c_2 (x_2 - x_1).
\]

Уравнение (19.69) примет вид
\[
\begin{align*}
m_1 \ddot{x}_1 + c_1 x_1 - c_2 (x_2 - x_1) &= 0; \\
m_2 \ddot{x}_2 + c_2 (x_2 - x_1) &= 0.
\end{align*} \quad (19.70)
\]

Уравнения, полученные из уравнений Лагранжа, оказались полностью совпадающими с таковыми, полученными на основании принципа Даламбера. Такое совпадение имеет место всегда.

Решение уравнений (19.70) ищем в виде
\[
\begin{align*}
x_1 &= \lambda_1 \sin(\omega t + \alpha); \\
x_2 &= \lambda_2 \sin(\omega t + \alpha),
\end{align*} \quad (19.71)
\]
где \(\lambda_1, \lambda_2, \omega \) и \(\alpha \) — постоянные, которые должны быть выбраны так, чтобы удовлетворялись уравнения (19.70). Подставив решения (19.71) в уравнения (19.70), найдем
\[
\begin{align*}
\lambda_1 (c_1 + c_2 - m_1 \omega^2) - \lambda_2 c_2 &= 0; \\
-\lambda_1 c_2 + \lambda_2 (c_2 - m_2 \omega^2) &= 0.
\end{align*} \quad (19.72)
\]

526
В этих уравнениях неизвестными являются λ_1, λ_2 и ω. Частоту (ω) определим из (19.72), положив, что $\lambda_1 \neq 0$ и $\lambda_2 \neq 0$. Это возможно в том случае, когда определитель однородной системы относительно λ_1 и λ_2 есть и равен нулю:

$$
\begin{vmatrix}
 c_1 + c_2 - m_1 \omega^2 & -c_2 \\
 -c_2 & c_2 - m_2 \omega^2
\end{vmatrix} = 0,
$$

т.е.

$$
\omega^4 - \left(\frac{c_1 + c_2}{m_1} + \frac{c_2}{m_2} \right) \omega^2 + \frac{\epsilon_1 \epsilon_2}{m_1 m_2} = 0.
$$

Следовательно, образуется два корня ω^2:

$$
\omega^2 = \frac{1}{2} \left(\frac{c_1 + c_2}{m_1} + \frac{c_2}{m_2} \right) \pm \sqrt{\frac{1}{4} \left(\frac{c_1 + c_2}{m_1} + \frac{c_2}{m_2} \right)^2 - \frac{\epsilon_1 \epsilon_2}{m_1 m_2}}.
$$

Соответственно могут быть определены две собственные частоты

$$
\omega_1 = \sqrt{\frac{1}{2} \left(\frac{c_1 + c_2}{m_1} + \frac{c_2}{m_2} \right) - \sqrt{\frac{1}{4} \left(\frac{c_1 + c_2}{m_1} + \frac{c_2}{m_2} \right)^2 - \frac{\epsilon_1 \epsilon_2}{m_1 m_2}}},
$$

$$
\omega_2 = \sqrt{\frac{1}{2} \left(\frac{c_1 + c_2}{m_1} + \frac{c_2}{m_2} \right) + \sqrt{\frac{1}{4} \left(\frac{c_1 + c_2}{m_1} + \frac{c_2}{m_2} \right)^2 - \frac{\epsilon_1 \epsilon_2}{m_1 m_2}}}.
$$

Двухчастотный колебательный процесс в соответствии с (19.73) можно записать так:

$$
\begin{align*}
 x_1 &= \lambda_{11} \sin(\omega_1 t + \alpha_1) + \lambda_{12} \sin(\omega_2 t + \alpha_2); \\
 x_2 &= \lambda_{21} \sin(\omega_1 t + \alpha_1) + \lambda_{22} \sin(\omega_2 t + \alpha_2).
\end{align*}
$$

Первый индекс при λ показывает номер координаты, а второй — номер слагаемого в строке, или номер частоты. Из (19.72) имеем

$$
\frac{\lambda_2}{\lambda_1} = \frac{c_1 + c_2 - m_1 \omega^2}{c_2}, \quad \frac{\lambda_2}{\lambda_1} = \frac{c_2}{c_2 - m_2 \omega^2},
$$

или в соответствии с принятой индексацией

$$
\chi_{21} = \frac{\lambda_{21}}{\lambda_{11}} = \frac{c_1 + c_2 - m_1 \omega^2}{c_2},
$$

$$
\chi_{22} = \frac{\lambda_{22}}{\lambda_{12}} = \frac{c_2}{c_2 - m_2 \omega^2}.
$$

Тогда уравнения (19.74) могут быть записаны как

$$
\begin{align*}
 x_1 &= \lambda_{11} \sin(\omega_1 t + \alpha_1) + \lambda_{12} \sin(\omega_2 t + \alpha_2); \\
 x_2 &= \chi_{21} \lambda_{11} \sin(\omega_1 t + \alpha_1) + \chi_{22} \lambda_{12} \sin(\omega_2 t + \alpha_2).
\end{align*}
$$

Значения λ_{11}, λ_{12}, α_1 и α_2 определяются из начальных условий. Так, полагая при $t = 0$

$$
\begin{align*}
 x_1(0) &= 0; \quad x_2(0) = 0; \\
 \dot{x}_1(0) &= 0; \quad \dot{x}_2(0) = c_0,
\end{align*}
$$

527
из (19.69) находим

\[\lambda_{11} \sin \alpha_1 + \lambda_{12} \sin \alpha_2 = 0; \]
\[\chi_{21} \lambda_{11} \sin \alpha_1 + \chi_{22} \lambda_{12} \sin \alpha_2 = 0; \]
\[\lambda_{11} \omega_1 \cos \alpha_1 + \lambda_{12} \omega_2 \cos \alpha_2 = 0; \]
\[\chi_{21} \lambda_{11} \omega_1 \cos \alpha_1 + \chi_{22} \lambda_{12} \omega_2 \cos \alpha_2 = v_0. \]

Отсюда, поскольку \(\omega_1, \omega_2, \chi_{21} \) и \(\chi_{22} \) известны, получаем

\[\alpha_1 = \alpha_2 = 0; \quad \lambda_{11} = \frac{v_0}{\omega_1 \chi_{21} - \chi_{22}}; \quad \lambda_{12} = \frac{v_0}{\omega_2 \chi_{22} - \chi_{21}}. \]

Подбирая начальные условия так, чтобы \(\lambda_{12} \) было равно нулю, получаем одночастотные колебания, описываемые одной гармоникой:

\[x_{11} = \lambda_{11} \sin (\omega_1 t + \alpha_1); \]
\[x_{21} = \chi_{21} \lambda_{11} \sin (\omega_1 t + \alpha_1). \]

Рис. 346

Колебания, описываемые одной гармоникой, называются первыми нормальными колебаниями.

Очевидно, при условиях, когда \(\lambda_{11} = 0 \), колебания будут происходить по второй форме. Вторые нормальные колебания будут описываться формулами

\[x_{12} = \lambda_{12} \sin (\omega_2 t + \alpha_2); \]
\[x_{22} = \chi_{22} \lambda_{12} \sin (\omega_2 t + \alpha_2). \]

Число нормальных форм колебаний и равное ему число собственных частот совпадают с числом степеней свободы колебательной системы.

В табл. 49 приведены собственные частоты колебаний систем с двумя степенями свободы.

Характерными колебательными системами со многими степенями свободы являются упругие валы с насаженными на них дисками (рис. 346, а).

Пусть \(J_1, J_2, J_3, \ldots, J_n \) — моменты инерции масс дисков относительно оси вала; \(\phi_1, \phi_2, \phi_3, \ldots, \phi_n \) — углы поворота дисковых колебаний; \(c_1, c_2, c_3, \ldots, c_n \) — жесткости при кручении различных участков вала:

\[c_t = \frac{GJ_d}{l_t}, \]

где \(J_d \) — полярный момент инерции площади сечения вала; \(l_t \) — длина соответствующего участка.

Тогда величины крутящих моментов, возникающих в сечениях различных участков вала при взаимном повороте дисковых колебаний, соответственно будут \(c_1 (\phi_1 — \phi_3); c_2 (\phi_2 — \phi_3) \) и т. д. (рис. 346, б). Кинетическую и потенциальную энергию системы с \(n \) степенями свободы (пренебре
момент инерции массы вращающегося вала по сравнению с моментами инерции дисков) можно представить в виде

$$
\begin{align*}
T &= \sum_{i=1}^{n} \frac{J_i \dot{\varphi}_i^2}{2}; \\
U &= \sum_{i=1}^{n} \frac{M_{kp} \varphi_i}{2},
\end{align*}
$$

где $M_{kp} = c_i (\varphi_i - \varphi_{i+1})$.

Полагавая (19.76) в уравнения Лагранжа (19.69), получим следующую систему дифференциальных уравнений свободных крутильных колебаний вала с n степенями свободы:

$$
\begin{align*}
J_1 \ddot{\varphi}_1 + c_1 (\varphi_1 - \varphi_2) &= 0; \\
J_2 \ddot{\varphi}_2 + c_2 (\varphi_2 - \varphi_3) - c_1 (\varphi_1 - \varphi_2) &= 0; \\
J_3 \ddot{\varphi}_3 + c_3 (\varphi_3 - \varphi_4) - c_2 (\varphi_2 - \varphi_3) &= 0; \\
&\cdots \\
J_{n-1} \ddot{\varphi}_{n-1} + c_{n-1} (\varphi_{n-1} - \varphi_n) - c_{n-2} (\varphi_{n-2} - \varphi_{n-1}) &= 0; \\
J_n \ddot{\varphi}_n - c_{n-1} (\varphi_{n-1} - \varphi_n) &= 0.
\end{align*}
$$

(19.77)

Суммируя эти уравнения, получаем

$$
J_1 \ddot{\varphi}_1 + J_2 \ddot{\varphi}_2 + \cdots + J_n \ddot{\varphi}_n = 0,
$$

откуда

$$
J_1 \dot{\varphi}_1 + J_2 \dot{\varphi}_2 + \cdots + J_n \dot{\varphi}_n = \text{const},
$$

t. е. момент количества движения системы вокруг оси вала при свободных колебаниях остается постоянным. Обычно момент количества движения принимают равным нулю и тем самым исключают из рассмотрения любое вращение вала как твердого тела и рассматривают только колебательное движение, вызываемое скручиванием вала.

Решение уравнений (19.77) ищем в виде

$$
\begin{align*}
\varphi_1 &= \lambda_1 \cos (\omega t + \alpha); \\
\varphi_2 &= \lambda_2 \cos (\omega t + \alpha); \\
&\cdots \\
\varphi_n &= \lambda_n \cos (\omega t + \alpha).
\end{align*}
$$

(19.78)

Полагавая (19.72) в (19.71), находим

$$
\begin{align*}
J_1 \lambda_1 \omega^2 - c_1 (\lambda_1 - \lambda_2) &= 0; \\
J_2 \lambda_2 \omega^2 + c_1 (\lambda_1 - \lambda_2) - c_2 (\lambda_2 - \lambda_3) &= 0; \\
&\cdots \\
J_n \lambda_n \omega^2 + c_{n-1} (\lambda_{n-1} - \lambda_n) &= 0.
\end{align*}
$$

(19.79)

Исключая из этих уравнений $\lambda_1, \lambda_2, \ldots, \lambda_n$, получаем уравнение частоты.

Так, в случае трех дисков (рис. 347) система уравнений (19.79) принимает вид

$$
\begin{align*}
J_1 \lambda_1 \omega^2 - c_1 (\lambda_1 - \lambda_2) &= 0; \\
J_2 \lambda_2 \omega^2 + c_1 (\lambda_1 - \lambda_2) - c_2 (\lambda_2 - \lambda_3) &= 0; \\
J_3 \lambda_3 \omega^2 + c_2 (\lambda_2 - \lambda_3) &= 0.
\end{align*}
$$

(19.80)

529
Сложив эти уравнения, получим

\[J_1 \lambda_1 + J_2 \lambda_2 + J_3 \lambda_3 = 0 \] \hspace{1cm} (19.81)

Из первого и третьего уравнений системы (19.80) найдем

\[\lambda_1 = \frac{-c_1 \lambda_2}{J_1 \omega^2 - c_3}; \quad \lambda_3 = \frac{-c_2 \lambda_2}{J_3 \omega^2 - c_3}. \] \hspace{1cm} (19.82)

Подставив (19.82) в (19.81), получим

\[\frac{J_1 J_2 J_3 \omega^4}{c_1 c_2} - \left(\frac{J_1 J_3 + J_2 J_3}{c_1} + \frac{J_2 J_3}{c_2} \right) \omega^2 + \left(J_1 J_3 + J_2 + J_3 \right) = 0. \] \hspace{1cm} (19.83)

Решая это уравнение относительно \(\omega^2 \), можно получить два корня \(\omega_1^2 \) и \(\omega_2^2 \), соответствующие двум главным формам колебаний. Подставив затем \(\omega_1^2 \) и \(\omega_2^2 \) в уравнение (19.82), получим отношения амплитуд \(\lambda_1 / \lambda_2 \) и \(\lambda_2 / \lambda_3 \) для двух главных форм колебаний и тем самым установим состояние системы во время колебаний. Указаные две формы колебаний для трехмассовой колебательной системы представлены на рис 347 в графических I и II соответственно для одноуязловой и двухуязловой форм колебаний.

В качестве другого примера системы со многими степенями свободы рассмотрим поперечные колебания упругой балки, несущей ряд сосредоточенных точечных масс (рис 348). Прогибы в местах приложения масс \(m_1, m_2, \ldots, m_n \) могут быть выражены через силы инерции в следующем каноническом виде

\[
\begin{align*}
\omega_1 &= -m_1 \ddot{w}_1 \delta_{11} - m_2 \ddot{w}_2 \delta_{12} - \cdots - m_n \ddot{w}_n \delta_{1n}; \\
\omega_2 &= -m_1 \ddot{w}_1 \delta_{21} - m_2 \ddot{w}_2 \delta_{22} - \cdots - m_n \ddot{w}_n \delta_{2n}; \\
&\vdots \\
\omega_n &= -m_1 \ddot{w}_1 \delta_{n1} - m_2 \ddot{w}_2 \delta_{n2} - \cdots - m_n \ddot{w}_n \delta_{nn};
\end{align*}
\] \hspace{1cm} (19.84)

где (см. раздел 12.4)

\[\delta_{ik} = \sum_0^l \frac{\bar{M}_i \bar{M}_k}{EJ} dz \]

(индексы \(ik \) при \(\delta \) выражают перемещения в направлении \(i \), вызванные единичной силой, действующей в направлении \(k \)); \(\bar{M}_i (z) \), \(\bar{M}_k (z) \) — изгибающие моменты, вызванные соответственно единичными силами \(\bar{P}_i = -m_i \ddot{w}_i = 1; \bar{P}_k = -m_k \ddot{w}_k = 1. \)

Коэффициенты \(\delta_{ik} \) удобно определять по формуле Верещагина (раздел 12.10)

\[\delta_{ik} = \sum \frac{\Omega_j \bar{M}_k}{EJ}, \]

530
где Ω — площадь эпюры \bar{M}_l (или ее части); \bar{M}_{l_p} — ордината эпюры \bar{M}_l.

Для системы с одной степенью свободы на основании (19.84) будем иметь уравнение с одним неизвестным

$$\omega_1 = -m\ddot{\omega}_1$$

Это уравнение эквивалентно известному уравнению

$$m\ddot{\omega} + c\omega = 0,$$

поскольку

$$c = \frac{1}{\delta_{11}}.$$

Для системы с двумя степенями свободы неизвестные функции прогиба ω_1 и ω_2 согласно (19.84) выражаются так

$$\omega_1 = -m_1\ddot{\omega}_1\delta_{11} - m_2\ddot{\omega}_2\delta_{12};$$

$$\omega_2 = -m_1\ddot{\omega}_1\delta_{21} - m_2\ddot{\omega}_2\delta_{22}.$$

В общем случае при решении уравнений (19.84) функцию прогиба следует искать в виде

$$\omega_i = \lambda_i \sin (\omega t + \alpha)$$

(19.85)

Подставляя (19.85) в (19.84), находим

$$\begin{align*}
\lambda_1 (m_1\delta_{11}\omega^2 - 1) + \lambda_2 m_2\delta_{12}\omega^2 + \cdots + \lambda_n m_n\delta_{1n}\omega^2 &= 0; \\
\lambda_1 m_1\delta_{21}\omega^2 + \lambda_2 (m_2\delta_{22}\omega^2 - 1) + \cdots + \lambda_n m_n\delta_{2n}\omega^2 &= 0; \\
\cdots & \\
\lambda_1 m_1\delta_{n1}\omega^2 + \lambda_2 m_2\delta_{n2}\omega^2 + \cdots + \lambda_n (m_n\delta_{nn}\omega^2 - 1) &= 0.
\end{align*}$$

(19.86)

При наличии колебаний амплитуда λ_i не обращается в нуль, если определитель, составленный из коэффициентов системы уравнений (19.86) при λ_i, равен нулю:

$$\begin{vmatrix}
\begin{array}{cccc}
m_1\delta_{11}\omega^2 - 1 & m_2\delta_{12}\omega^2 & \cdots & m_n\delta_{1n}\omega^2 \\
m_1\delta_{21}\omega^2 & m_2\delta_{22}\omega^2 - 1 & \cdots & m_n\delta_{2n}\omega^2 \\
\cdots & \cdots & \cdots & \cdots \\
m_1\delta_{n1}\omega^2 & m_2\delta_{n2}\omega^2 & \cdots & m_n\delta_{nn}\omega^2 - 1
\end{array}
\end{vmatrix} = 0.$$

(19.87)

Записав этот определитель в развернутом виде, будем иметь

$$1 - \alpha_1\omega^2 + \alpha_2\omega^4 - \alpha_3\omega^6 + \cdots + (-1)^n\alpha_n\omega^{2n} = 0,$$

(19.88)

где α_i — коэффициенты при различных степенях угловой частоты ω.

Из (19.88) можно найти выражения для частот $\omega_1, \omega_2, \ldots, \omega_n$ ($\omega_1 > \omega_2 > \ldots > \omega_n$).

Общее решение системы уравнений (19.86) будет

$$\omega_i = \lambda_{i1} \sin (\omega_1 t + \alpha_1) + \lambda_{i2} \sin (\omega_2 t + \alpha_2) + \cdots + \lambda_{in} \sin (\omega_n t + \alpha_n),$$

и т. д.

$$\omega_1 = \lambda_{11} \sin (\omega_1 t + \alpha_1) + \lambda_{12} \sin (\omega_2 t + \alpha_2) + \cdots + \lambda_{1n} \sin (\omega_n t + \alpha_n);$$

$$\omega_2 = \lambda_{21} \sin (\omega_1 t + \alpha_1) + \lambda_{22} \sin (\omega_2 t + \alpha_2) + \cdots + \lambda_{2n} \sin (\omega_n t + \alpha_n);$$

$$\cdots$$

$$\omega_n = \lambda_{n1} \sin (\omega_1 t + \alpha_1) + \lambda_{n2} \sin (\omega_2 t + \alpha_2) + \cdots + \lambda_{nn} \sin (\omega_n t + \alpha_n)$$

531
В частном случае системы с двумя степенями свободы уравнения (19.86) и (19.87) будут иметь вид

\[
\begin{align*}
\dot{\lambda}_1 (m_1 \delta_1 \omega^2 - 1) + \lambda_2 m_2 \delta_1 \omega^2 = 0, \\
\lambda_1 m_1 \delta_2 \omega^2 + \lambda_2 (m_2 \delta_2 \omega^2 - 1) = 0,
\end{align*}
\]

\[
\begin{vmatrix}
 m_1 \delta_1 \omega^2 - 1 & m_2 \delta_1 \omega^2 \\
 m_1 \delta_2 \omega^2 & m_2 \delta_2 \omega^2 - 1
\end{vmatrix} = 0,
\]

\[
\omega^4 (\delta_{11} \delta_{22} - \delta_{12}^2) = m_1 m_2 - \omega^2 (\delta_{11} m_1 + \delta_{22} m_2) + 1 = 0.
\]

Решив последнее уравнение, получим выражения для частот \(\omega_1 \) и \(\omega_2 \):

\[
\omega_1 = \sqrt{\frac{1}{2 (\delta_{11} \delta_{22} - \delta_{12}^2) m_2 \left[\delta_{11} + \delta_{22} \frac{m_2}{m_1} \right] +}
\]

\[
+ \sqrt{\left(\delta_{11} + \delta_{22} \frac{m_2}{m_1} \right)^2 - 4 \left(\delta_{11} \delta_{22} - \delta_{12}^2 \right) \frac{m_2}{m_1}}
\]

\[
\omega_2 = \sqrt{\frac{1}{2 (\delta_{11} \delta_{22} - \delta_{12}^2) m_2 \left[\delta_{11} + \delta_{22} \frac{m_2}{m_1} \right] -}
\]

\[
- \sqrt{\left(\delta_{11} + \delta_{22} \frac{m_2}{m_1} \right)^2 - 4 \left(\delta_{11} \delta_{22} - \delta_{12}^2 \right) \frac{m_2}{m_1}}
\]

19.9. Продольные и крутильные колебания стержней

При продольных колебаниях стержня все его частицы движутся параллельно оси. При выводе дифференциального уравнения продольных колебаний стержня с жесткостью поперечного сечения при растяжении EF рассмотрим условие динамического равновесия участка стержня длиной \(dz \) (рис. 349, a), ограниченного сечениями \(a \) и \(b \). Обозначим перемещение сечения \(a \) через \(u \), а сечения \(b \) через \(u + \frac{du}{dz} \), найдем продольные усилия, действующие в сечениях \(a \) и \(b \) (имея в виду, что относительное удлинение \(e = \frac{du}{dz} \)):

\[
N_a = -EF \frac{du}{dz};
\]

\[
N_b = EF \left[\frac{du}{dz} + \frac{\partial}{\partial z} \left(\frac{du}{dz} \right) dz \right].
\]

Рис. 349

Сила инерции элемента стержня длиной \(dz \) при распределенной массе стержня \(\rho F \) (где \(\rho \) — плотность материала) и длине \(l \) будет

\[
P_{w} = \rho F \frac{\partial^2 u}{\partial t^2} dz.
\]

Тогда, пользуясь принципом Даламбера, условие динамического равновесия элемента стержня запишем в виде

\[
N_b - N_a = P_{w}.
\]

532
Если

$$EI \frac{\partial}{\partial z} \left(\frac{\partial u}{\partial z} \right) dz = \rho F \frac{\partial^2 u}{\partial t^2} dz.$$

Сократив на dz и на F, представим дифференциальное уравнение продольных колебаний стержня в виде

$$E \frac{\partial^2 u}{\partial z^2} = \rho \frac{\partial^2 u}{\partial t^2}. \quad (19.59)$$

Обозначив $E/\rho = a^2$, уравнение (19.89) запишем так:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial z^2}. \quad (19.90)$$

Решение уравнения (19.90), следуя методу Фурье, ищем в виде

$$u = ZT, \quad (19.91)$$

где

$$Z = f_1(z); \quad T = f_2(t).$$

Продифференцировав уравнение (19.91) по z и t, получим

$$\frac{\partial^2 u}{\partial t^2} = Z \frac{d^2 T}{dt^2}; \quad \frac{\partial^2 u}{\partial z^2} = T \frac{d^2 Z}{dz^2}. \quad (19.92)$$

Подставив (19.92) в (19.90), найдем

$$Z \frac{d^2 T}{dt^2} = a^2 T \frac{d^2 Z}{dz^2},$$

или

$$\frac{1}{T} \frac{d^2 T}{dt^2} = a^2 \frac{d^2 Z}{dz^2}.$$

Приравнивая правую и левую части последнего уравнения к одной и той же постоянной величине ω^2, получаем два обычных уравнения второго порядка

$$\frac{d^2 T}{dt^2} = -\omega^2 T; \quad (19.93)$$

$$\frac{d^2 Z}{dz^2} = -\frac{\omega^2}{a^2} Z. \quad (19.94)$$

Частными решениями этих уравнений соответственно будут

$$T = \cos \omega t; \quad \sin \omega t;$$

$$Z = \cos \frac{\omega}{a} z; \quad \sin \frac{\omega}{a} z. \quad (19.95)$$

Для получения общего решения уравнения (19.93), составленного из частных решений (19.95), необходимо учитывать граничные условия стержня. Так, если оба конца свободны, то должны удовлетворять следующие условия:

$$\left(\frac{\partial u}{\partial z} \right)_{z=0} = 0; \quad \left(\frac{\partial u}{\partial z} \right)_{z=l} = 0. \quad (19.96)$$

Подстановкой решений (19.95) в (19.93) и (19.94) убеждаемся, что реше-
нение син \frac{\omega}{a} z уравнения (19.94) следует исключить как не соответствующее первому условию (19.95).

Для обеспечения второго условия (19.96) необходимо, чтобы выполнялось равенство

\[
\sin \frac{\omega}{a} l = 0.
\tag{19.97}
\]

Полученное уравнение частоы будет удовлетворено при

\[
\frac{\omega}{a} l = i\pi,
\]

где \(i = 1, 2, 3, ...\)

Частоту основного тона колебаний будем иметь при \(i = 1:\)

\[
\omega_1 = \frac{a\pi}{l} = \frac{\pi}{l} \sqrt{\frac{E}{\rho}}.
\tag{19.98}
\]

Соответствующий период колебаний

\[
\tau_1 = \frac{2\pi}{\omega_1} = 2l \sqrt{\frac{\rho}{E}}.
\tag{19.99}
\]

Форма этого вида колебаний показана на рис. 349, б кривой I,

для которой

\[
Z_1 = C_1 \cos \frac{\omega_1 z}{a} = C_1 \cos \frac{\pi z}{l}.
\]

Форма второго вида колебаний, для которого

\[
\frac{\omega_2}{a} = 2\pi, \quad Z_2 = C_2 \cos \frac{2\pi z}{l},
\]

приведена на рис. 349, б (кривая II).

Общий вид частного решения уравнения (19.90) при \(i\)-й форме колебаний будет

\[
u = \cos \frac{i\pi z}{l} \left(A_i \cos \frac{i\pi a t}{l} + B_i \sin \frac{i\pi a t}{l} \right). \tag{19.100}
\]

Наложением подобных частных решений любое продольное колебание стержня можно представить в виде

\[
u = \sum_{i=1, 2, 3, ...} \cos \frac{i\pi z}{l} \left(A_i \cos \frac{i\pi a t}{l} + B_i \sin \frac{i\pi a t}{l} \right), \tag{19.101}
\]

где произвольные постоянные \(A_i\) и \(B_i\) должны выбираться из начальных условий.

Например, пусть при \(t = 0\) \((u)_{t=0} = f(z)\); \((u')_{t=0} = f_1(z)\). Тогда из (19.101) при \(t = 0\) находим

\[
f(z) = \sum_{i=1}^{\infty} A_i \cos \frac{i\pi z}{l};
\]

\[
f_1(z) = \sum_{i=1}^{\infty} \frac{i\pi a}{l} B_i \cos \frac{i\pi z}{l},
\]

534
откуда, используя метод Фурье, получаем

\[A_i = \frac{2}{l} \int_0^l f(z) \cos \frac{1}{l} \frac{1}{2} dz; \]

\[B_i = \frac{2}{l a} \int_0^l f(z) \cos \frac{1}{l} \frac{1}{2} dz. \]

Критические колебания стержня (например, цилиндрического) легко охарактеризовать посредством вычисления волнстой линии на развернутой поверхности стержня (рис 350, a). Обозначим угол закручивания сечения, находящегося на расстоянии \(z \) от начала движения сечения через \(\Phi \), а угол закручивания сечения с координатой \(z + dz \) через \(\Phi + \frac{d\Phi}{dz} dz \) (рис. 350, б). Тогда относительный угол закручивания элемента длиной \(dz \) будет \(\frac{d\Phi}{dz} \), а крутящие моменты (см. раздел 8.2) в сечениях стержня с крутильной жесткостью \(GJ_\rho \), ограничивающих элементарную его длину \(dz \) слева и справа, соответственно будут

\[GJ_\rho \frac{d\Phi}{dz} \quad \text{и} \quad GJ_\rho \left(\frac{d\Phi}{dz} + \frac{d^2\Phi}{dz^2} dz \right). \]

Рис. 350

Приравнивая равнодействующую этих крутящих моментов моменту инерции вращения элемента длиной \(dz \), равному \(\rho J_\rho \frac{d^2\Phi}{dt^2} dz \), где \(\rho \) — плотность материала, получаем дифференциальное уравнение крутильных колебаний стержня

\[GJ_\rho \frac{d^2\Phi}{dz^2} dz = \rho J_\rho \frac{d^2\Phi}{dt^2} dz, \]

или после сокращения на \(J_\rho \) и \(dz \)

\[G \frac{d^2\Phi}{dz^2} = \rho \frac{d^2\Phi}{dt^2}. \]

(19.102)

Обозначая \(G/\rho \) через \(a^2 \), уравнение (19.102) можно представить в виде

\[\frac{d^2\Phi}{dt^2} = a^2 \frac{d^2\Phi}{dz^2}. \]

(19.103)

Решение уравнения такого вида рассмотрено выше для случая продольных колебаний стержня.

В табл. 50 приведены частотные уравнения и собственные формы продольных и крутильных колебаний стержней при различных граничных условиях.

19.10. Поперечные колебания призматических стержней

Дифференциальное уравнение поперечных колебаний стержня получим из рассмотрения динамического равновесия элемента \(dz \) (рис. 351), выделенного из произвольно закрепленного стержня.
Практически все силы, действующие на рассматриваемый элемент (включая в соответствии с принципом Даламбера силы инерции), на вертикальную ось w, будем иметь

$$Q - q_d dz - Q - \frac{\partial Q}{\partial z} dz = 0,$$

откуда

$$q_d = - \frac{\partial Q}{\partial z}, \quad (19.104)$$

где Q — поперечная сила; q_d — интенсивность сил инерции массы:

$$q_d = \rho F \frac{\partial^2 w}{\partial t^2}, \quad (19.105)$$

(F — площадь поперечного сечения; ρ — плотность материала; w — поперечное перемещение; t — время).

Подставив (19.105) в (19.104), найдем уравнение поступательного движения элемента колеблющегося стержня:

$$\rho F \frac{\partial^2 w}{\partial t^2} = - \frac{\partial Q}{\partial z}, \quad (19.106)$$

Для получения уравнения вращательного движения элемента стержня в плоскости wz сложим угол поворота сечения θ, вызванный изгибом, с углом сдвига γ, обусловленным действием поперечной силы:

$$\frac{\partial w}{\partial z} = \theta + \gamma. \quad (19.107)$$

В силу известной связи между изгибающим моментом M и углом поворота θ (раздел 10.5)

$$M = EJ \frac{d\theta}{dz}, \quad (19.108)$$

и между поперечной силой Q и углом сдвига γ для принятой в нашем случае системы координат (раздел 12.3)

$$Q = - k \gamma FG, \quad (19.109)$$

(k — коэффициент, учитывающий форму сечения стержня) выражение для Q в соответствии с (19.107) — (19.109) может быть представлено так:

$$Q = - k FG \left(\frac{\partial w}{\partial z} - \theta \right). \quad (19.110)$$

Так как момент инерции вращения массы рассматриваемого элемента равен

$$\frac{\partial^2 \theta}{\partial t^2} \int y^2 dm = \frac{\partial^2 \theta}{\partial t^2} \int y^2 \rho F dz = \rho J \frac{\partial^2 \theta}{\partial t^2} dz,$$

уравнение вращательного движения элемента на основании принципа Даламбера может быть записано в виде

$$Q dz - \frac{\partial M}{\partial z} dz = - \rho J \frac{\partial^2 \theta}{\partial t^2} dz.$$
или после сокращения на dz и подстановки (19.108) — следующим образом

$$kGF \left(\frac{\partial^2 \varphi}{\partial z^2} - \dot{\theta} \right) + EJ \frac{\partial^2 \theta}{\partial z^2} - \rho \frac{\partial^2 \varphi}{\partial t^2} = 0.$$

Продифференцировав это уравнение по z, получим

$$kGF \left(\frac{\partial^2 \varphi}{\partial z^2} - \frac{\partial \theta}{\partial z} \right) + EJ \frac{\partial^2 \theta}{\partial t^2} - \rho J \frac{\partial^2 \varphi}{\partial z \partial t^2} = 0. \quad (19.111)$$

Подставив (19.110) в (19.106), будем иметь

$$\rho F \frac{\partial^2 \varphi}{\partial t^2} - kGF \left(\frac{\partial^2 \varphi}{\partial z^2} - \frac{\partial \theta}{\partial z} \right) = 0. \quad (19.112)$$

Исключив из (19.111) и (19.112) угол θ, получим дифференциальное уравнение свободных поперечных колебаний стержня

$$EJ \frac{\partial^4 \varphi}{\partial z^4} - \rho J \left(1 + \frac{E}{kG} \right) \frac{\partial^4 \varphi}{\partial z^4 \partial t^2} + \rho F \frac{\partial^2 \varphi}{\partial t^2} + \frac{\rho^2 J \partial^4 \varphi}{kG} = 0. \quad (19.113)$$

Если пренебречь силами инерции вращения элемента и влиянием на прогиб поперечной силы, уравнение (19.113) можно представить в виде

$$EJ \frac{\partial^4 \varphi}{\partial z^4} + \rho F \frac{\partial^2 \varphi}{\partial t^2} = 0. \quad (19.114)$$

Простейшим периодическим решением уравнения (19.114) является так называемое главное колебание, в котором функция прогиба колеблющегося стержня изменяется с течением времени по гармоническому закону

$$w = \varphi (z) \sin (\omega t + \alpha). \quad (19.115)$$

Функция $\varphi (z)$, устанавливющая закон распределения максимальных отклонений точек оси стержня, называется формой главного колебания или собственной формой.

Для получения уравнений собственных форм подставим (19.115) в (19.114) и после сокращения на $\sin (\omega t + \alpha)$ получим

$$\frac{d^4 \varphi}{dz^4} - k^4 \varphi = 0, \quad (19.116)$$

где

$$k^4 = \frac{\rho F \omega^2}{EJ}. \quad (19.117)$$

Общее решение уравнения (19.116) имеет вид

$$\varphi (z) = A \cos kz + B \sin kz + C \text{ch} kz + D \text{sh} kz, \quad (19.118)$$

или, будучи выражено через функции Крылова, значения которых приведены в Приложении 3, записывается так:

$$\varphi (z) = C_1 S (kz) + C_2 T (kz) + C_3 U (kz) + C_4 V (kz).$$

Здесь A, B, C, D (или C_1, C_2, C_3, C_4) — постоянные интегрирования, определяемые из условий закрепления стержня. Так, для шарниро-закрепленного стержня (рис. 352) условия на концах будут

$$\varphi (0) = 0; \quad \varphi'' (0) = 0 \quad \text{при} \quad z = 0;$$

$$\varphi (l) = 0; \quad \varphi'' (l) = 0 \quad \text{при} \quad z = l.$$
Исходя из этих условий и из (19.118), будем иметь

\[A + C = 0, \quad B \sin kl + D \sinh kl = 0 \]

откуда

\[A = C = D = 0, \quad B \sin kl = 0 \]

но так как \(B \neq 0 \) следовательно \(\sin kl = 0 \) Из полученного частного уравнения находим

\[l, i = n \pi \quad (i = 1, 2, 3, \ldots) \]

из равенства

\[k_i^4 = \frac{\nu^2 \omega_i^2}{EJ} = \frac{m \omega_i^2}{EJ} \]

определим собственную круговую частоту

\[\omega_i = k_i^2 \sqrt{\frac{EJ}{m}} = \frac{i^2 \pi^2}{l^2} \sqrt{\frac{EJ}{m}}, \quad (19.119) \]

период

\[T = \frac{2\pi}{\omega_i} = \frac{2l^2}{i^2 \pi} \sqrt{\frac{m}{EJ}} \]

и частоту колебаний (в герцах)

\[l = \frac{1}{T} = \frac{i^2 \pi}{2l^2} \sqrt{\frac{EJ}{m}} \quad (19.120) \]

Уравнение собственных колебаний стержня будет

\[\varphi_i(z) = B \sin \frac{i\pi z}{l}. \quad (19.121) \]

Первые три собственные формы колебаний балки на двух опорах показаны на рис 352

Общее решение дифференциального уравнения (19.114) применимо к рассматриваемой балке на двух опорах может быть записано в виде

\[w(z, t) = \sum_{i=1}^{\infty} \left(a_i \cos \omega_i t + b_i \sin \omega_i t \right) \sin \frac{i\pi z}{l}, \quad (19.122) \]

где \(a_i \) и \(b_i \) должны быть подобраны из начальных условий (при \(t = 0 \)).

Частотные уравнения и их корни, а также уравнения собственных форм поперечных колебаний стержней при различных закреплениях их концов приведены в табл 51. Корни частотных уравнений поперечных колебаний стержней на упругих опорах приведены в табл 52; стержней с сосредоточенными массами — в табл 53 В табл 54 приведены значения некоторых интегралов, встречающихся при расчетах поперечных колебаний стержней.

Если колеблющийся стержень испытывает действие продольной сжимающей силы \(N \), то дифференциальное уравнение упругой линии имеет вид

\[EJ \frac{d^2 w}{dz^2} = M(z) - Nw. \]
После двойного дифференцирования и замены согласно принципу Д'Аркаберра \[\frac{d^{2}M}{dz^{2}} = - \rho f \frac{d^{2}x}{dt^{2}} \] получим дифференциальное уравнение собственных колебаний стержня

\[EJ \frac{d^{4}z}{dz^{4}} - \lambda \frac{d^{2}z}{dz^{2}} - \rho I \frac{d^{4}x}{dt^{4}} = 0 \]

Собственная форма колебаний определяется в этом случае выражением

\[\varphi(z) = A \cos \frac{\pi}{2} z + B \sin \frac{\pi}{2} z + C \sin k_{1}z + D \sin k_{2}z, \]

где

\[k_{1} = \sqrt{\frac{1}{2} + \sqrt{\frac{1}{4} + a^{4}}}, \]

\[k_{2} = \sqrt{- \frac{1}{2} - \sqrt{\frac{1}{4} - a^{4}}}, \]

\[a^{2} = \frac{\lambda}{EJ}. \]

Величина \(k \) определяется по формуле (19.117).
Выражения для собственных частот поперечных колебаний стержней нагруженных продольными силами, приведены в табл. 55.

19.11. Закон сохранения энергии при колебаниях

Из принципа сохранения энергии при колебаниях вытекает, что сумма кинетической и потенциальной энергии колебательной механической системы в любой момент времени остается постоянной (энергетическими потерями пренебрегаем) т.е

\[T + U = \text{const} \] (19.123)

В частности, применительно к системе с одной степенью свободы (рис 353), для которой

\[T = \frac{Q}{2g} x^{2}; \]

\[U = \frac{cx^{2}}{2}, \]

уравнение (19.123) примет вид

\[\frac{Q}{2g} x^{2} + \frac{cx^{2}}{2} = \text{const}, \] (19.124) Рис 353

где \(c \) — жесткость пружины.

Правая часть уравнения (19.124) зависит от начальных условий. Полагая, например, что при \(t = 0 \) перемещение \((x)_{t=0} = x_{0} \), а начальная скорость \((x)_{t=0} = 0 \), получаем

\[\frac{Q}{2g} x^{2} + \frac{cx^{2}}{2} = \frac{cx_{0}^{2}}{2}, \] (19.125)

т.е при колебаниях сумма кинетической и потенциальной энергий остается равной начальной энергии деформации пружины, растянутой на величину \(x_{0} \).
Из анализа уравнения (19.125) видно, что в момент, когда колеблющийся груз находится в среднем положении \(x = 0 \), энергия системы определяется кинетической энергией, т. е. максимальная кинетическая энергия

\[
T_{\text{max}} = \frac{Qx_0^2}{2g} = \frac{cx_0^2}{2}, \tag{19.126}
\]

а в момент, когда груз находится в крайнем положении \(x_{\text{max}} \), энергия системы определяется потенциальной энергией, поскольку \(x = 0 \), т. е. максимальная потенциальная энергия

\[
U_{\text{max}} = \frac{cx_{\text{max}}^2}{2} = \frac{Qx_0^2}{2}. \tag{19.127}
\]

Как видно,

\[
T_{\text{max}} = U_{\text{max}}. \tag{19.128}
\]

Уравнения (19.126), (19.127) могут быть использованы для определения частоты колебаний. Действительно, положив

\[
x = x_0 \cos \omega t; \ x_{\text{max}} = x_0; \ x_{\text{max}} = x_0 \omega,
\]

после подстановки значения \(x_{\text{max}} \) в (19.126) или \(x_{\text{max}} \) в (19.127) получим

\[
\frac{Qx_0 \omega^2}{2g} = \frac{cx_0^2}{2},
\]

откуда

\[
\omega^2 = \frac{c g}{Q}
\]

и

\[
\omega = \sqrt{\frac{c g}{Q}} = \sqrt{\frac{g}{\Delta_{\text{ct}}}}, \tag{19.129}
\]

что совпадает с полученной ранее формулой (19.3).

Заметим, что исходя из уравнения (19.124), выражающего закон сохранения энергии при колебаниях, легко получить дифференциальное уравнение движения колеблющегося груза. Для этого достаточно уравнение (19.124) проинтегрировать по времени \(t \) и произвести соответствующее сокращение.

19.12. Некоторые приближенные методы определения собственных частот колебаний упругих систем

Способ Рэлея. Частота колебаний определяется из рассмотрения баланса энергии системы при определенных допущениях относительной деформации колебательной упругой системы. В частности, для учета массы пружины в колебательной системе с одной степенью свободы (рис. 353) делается допущение, что масса пружины мала по сравнению с массой подвешенного груза \(Q \), форма колебаний не зависит существенно от массы пружины и с достаточной точностью можно принять, что перемещение любого ее поперечного сечения на расстоянии \(\eta \) от закрепленного конца такое же, как если бы пружина была невесомой, и равно \(\eta l/(l - \text{длина пружины}) \).
При весе единицы длины пружины q кинетическая энергия элемента пружины длиной $d\eta$ будет

$$dT_n = \frac{q}{2g} \left(\frac{\eta}{l} \frac{dx}{dt} \right)^2 \ d\eta,$$

а полная кинетическая энергия всей пружины выражается интегралом

$$T_n = \int_0^l \frac{q}{2g} \left(\frac{\eta}{l} \frac{dx}{dt} \right)^2 \ d\eta = \frac{1}{2g} \left(\frac{dx}{dt} \right)^2 \frac{ql}{3}.$$

Это значение кинетической энергии пружины следует прибавить к кинетической энергии груза

$$T_Q = \frac{Q}{2g} \left(\frac{dx}{dt} \right)^2.$$

Тогда полная кинетическая энергия будет

$$T = T_Q + T_n = \frac{1}{2g} \left(\frac{dx}{dt} \right)^2 \left(Q + \frac{ql}{3} \right).$$

Выражение потенциальной энергии остается прежним:

$$U = \frac{cx^2}{2}.$$

Теперь условие сохранения энергии колеблющейся системы может быть представлено в виде

$$\frac{1}{2g} \left(\frac{dx}{dt} \right)^2 \left(Q + \frac{ql}{3} \right) + \frac{cx^2}{2} = \frac{cx_0^2}{2}.$$

Сравнивая это уравнение с (19.125), находим, что для оценки влияния массы пружины на частоту собственных колебаний нужно к весу груза прибавить одну треть веса пружины. Таким образом, угловая частота определяется формулой

$$\omega = \sqrt{\frac{c g}{Q + \frac{ql}{3}}}.$$ (19.130)

Рассмотрим колебания груза, расположенного посередине балки (рис. 354). Следуя методу Рэлея, полагаем, что вес балки ql мал сравнительно с грузом Q и что кривая прогиба балки при колебаниях имеет такую же форму, как и кривая статического прогиба. Обозначив через f перемещение груза Q при колебаниях, получим выражение поперечного перемещения любого элемента балки длиной dz и весом qdz, находящегося на расстоянии z от опоры (стр. 295):

$$w = f \frac{3zl^2 - 4z^3}{l^3}.$$ (19.131)

Кинетическая энергия самой балки

$$T_6 = 2 \frac{\gamma F}{2g} \int_0^{l/2} \left(\frac{df}{dt} \frac{3zl^2 - 4z^3}{l^3} \right)^2 \ dz = \frac{17}{35} \frac{\gamma FL}{2g} \left(\frac{df}{dt} \right)^2,$$
где γ — удельный вес материала, F — площадь поперечного сечения балки.

Кинетическая энергия груза

$$T_r = \frac{Q}{2g} \left(\frac{df}{dt} \right)^2.$$

Полная кинетическая энергия системы будет

$$T = T_r + T_0 = \frac{Q}{2g} \frac{17}{35} \gamma FL \left(\frac{df}{dt} \right)^2.$$

(19.132)

Пользуясь известным выражением для потенциальной энергии деформации изгиба балки с изгибной жесткостью поперечного сечения EJ

$$U = \int_0^L \frac{M^2dz}{2EJ},$$

а также учитывая, что изгибающий момент

$$M = EJ \frac{d^2w}{dz^2},$$

где для рассматриваемого случая согласно (19.131)

$$\frac{d^2w}{dz^2} = -\frac{24}{l^3} j(z),$$

находим

$$U = 2 \int_0^{l/2} \frac{EJ}{2} \left(\frac{24}{l^3} j(z) \right)^2 dz = \frac{24 EJ}{l^3} f^2.$$

Условие сохранения энергии при колебаниях примет вид

$$T + U = \frac{Q}{2g} \frac{17}{35} \gamma FL \left(\frac{df}{dt} \right)^2 + \frac{24 EJ}{l^3} f^2 = \text{const.}$$

Продифференцировав последнее уравнение по времени t, после сокращения получим

$$\frac{d^2f}{dt^2} + \frac{48 EJ}{l^3} \frac{g}{Q + \frac{17}{35} \gamma FL} f = 0,$$

или, введя понятие приведенного прогиба

$$\delta_{pr} = \frac{Q + \frac{17}{35} \gamma FL}{48 EJ \frac{g}{l^3}},$$

(19.133)

dифференциальное уравнение колебаний груза на балке с учетом массы последней (19.133) окончательно можно представить в виде

$$\frac{d^2f}{dt^2} + \frac{g}{\delta_{pr}} f = 0.$$
Огюста круговая частота колебаний груза согласно (19.129) определяется формулой

\[\omega = \sqrt{\frac{\varepsilon}{\delta_{np}}}. \quad (19.134) \]

Из (19.133) следует, что для учета массы балки при определении частоты собственных колебаний груза, расположенного посередине балки, достаточно к весу последней прибавить \(\frac{17}{35} = 0,483 \) веса груза.

В числе \(\frac{17}{35} \sqrt{\frac{A}{g}} \) называется приведенной массой балки.

Используем метод Рэлея для определения частоты поперечных колебаний стержня с сосредоточенными массами (рис 348). Полагая, что все массы колеблются синфазно с одинаковой частотой, перемещение сечения балки с абсциссой \(z \) в функции времени \(t \) жем описать синусоидальным законом

\[q (z, t) = \omega (z) \cos (\omega t + \alpha), \]

где \(\omega (z) \) — функция, определяющая форму колебаний.

Скорость перемещения оси балки будет

\[u (z, t) = \frac{\partial q (z, t)}{\partial t} = \omega \omega (z) \cos (\omega t + \alpha), \]

\[u_{\text{max}} = \omega \omega (z). \]

Максимальное значение кинетической энергии в сосредоточенных точечных массах \(m_1, \ldots, m_n \) и непрерывно распределенной массы упругой балки \(\rho F \) (где \(\rho \) — плотность материала; \(F \) — площадь поперечного сечения балки)

\[T = \frac{1}{2} \sum_{i=1}^{n} m_i \omega_i^2 + \int_0^l \rho F \omega^2 dz, \quad (19.135) \]

где \(\omega_i \) — амплитудное значение прогиба в месте \(i \)-й сосредоточенной массы; \(l \) — длина балки.

Максимальная потенциальная энергия деформации балки

\[U = \frac{1}{2} \int_0^l EJ \left(\frac{d^2w}{dz^2} \right)^2 dz, \quad (19.136) \]

где \(EJ \) — изгибающая жесткость поперечного сечения.

Приравнивая правые части уравнений (19.135) и (19.136) исходя из условия \(T_{\text{max}} = U_{\text{max}} \) и решая полученное уравнение относительно \(\omega^2 \), находим

\[\omega^2 = \frac{\int_0^l EJ \left(\frac{d^2w}{dz^2} \right)^2 dz}{\sum_{i=1}^{n} m_i \omega_i^2 + \int_0^l \rho F \omega^2 dz}. \quad (19.137) \]
Если действительная формула колебаний \(w(z) \) известна, формула (19.137) дает точное значение частоты. Обычно функция прогиба \(w(z) \) заранее не известна, и ее, следуя методу Рэлея, приходится задавать. При этом на функции \(w(z) \) накладываются граничные условия \(w = 0; \frac{d^2w}{dz^2} = 0 \) в шарнирно опертых сечениях и \(w = 0; \frac{dw}{dz} = 0 \) в закрепленных сечениях.

В случае продольных колебаний стержня с постоянной жесткостью \(EF \) поперечного сечения при растяжении и несущего \(n \) сосредоточенных масс \(m_1, \ldots, m_n \)

\[
\omega^2 = \frac{\int_0^l EF \left(\frac{du}{dz} \right)^2 \, dz}{\sum_{i=1}^n m_i u_i + \int_0^l \rho F u^2 \, dz},
\]

где \(\rho \) — плотность материала; \(F \) — площадь поперечного сечения стержня; \(u \) — продольное перемещение.

В закрепленных сечениях \(u(z) \) должно удовлетворять условию \(u = 0 \).

В случае крутильных колебаний стержня с постоянной крутильной жесткостью \(GJ_\rho \) поперечного сечения и насаженными \(n \) дисками (рис. 346)

\[
\omega^2 = \frac{\int_0^l GJ_\rho \left(\frac{d\varphi}{dz} \right)^2 \, dz}{\sum_{i=1}^n J_i \varphi_i + \int_0^l J_\rho \varphi^2 \, dz},
\]

где \(J_\rho \) — полярный момент инерции площади поперечного сечения; \(\varphi \) — плотность материала стержня; \(J_i \) — момент инерции массы \(i \)-го диска относительно оси стержня, \(\varphi \) — угол поворота сечений стержня (в закрепленных сечениях \(\varphi = 0 \)).

На рис. представленные формулы Рэлея (19.137) — (19.139) существуют иные варианты их записи, приведенные в табл. 56. В первом варианте задаются внутренними усилиями в стержне \(N(z), M_{kr}(z) \), \(M(z) \) и путем интегрирования соотношений

\[
N = EF \frac{du}{dz}, \quad M_{kr} = GJ_\rho \frac{d\varphi}{dz}; \quad M = EJ \frac{d^2w}{dz^2};
\]

определяют соответствующие функции \(u(z), \varphi(z) \) и \(w(z) \). Во втором варианте задаются некоторыми распределенными нагрузками: продольной — \(p(z) \), моментной — \(M_{kr}(z) \) и поперечной — \(q(z) \), а затем определяют вызываемые этими нагрузками соответственно перемещения \(u(z), \varphi(z) \) и \(w(z) \). В третьем варианте задаваемая нагрузка содержит сосредоточенные силы \(N_i, P_i \), или сосредоточенные крутящие моменты \(M_{kr} \).

В четвертом варианте в качестве нагрузок учитывают фактическую массу стержня и имеющуюся сосредоточенные массы. Последний вариант, обладая наибольшей определенностью, дает повышенные значения частот.

544
Оставшиеся варианты могут дать точные результаты, если принимаемые внутренние усилия соответствуют истинной форме колебаний, а при переменные нагрузки (второй и третий варианты) пропорциональны действием силы инерции при колебаниях.

Формула Граммеля. В отличие от способа Рэя здесь предусматривается вычисление потенциальной энергии деформаций U упругой системы по внутренним усилиям (N, M_1, M_2, M_3), определенным от действия силы инерции массы системы, найденным, как и кинетическая энергия T системы, для выбранной формы колебаний $(u(z), v(z), w(z))$. При этом в виде найденные выражения для T_{max} и U_{max} находят значение собственной частоты по формулам, приведенным в табл. 57. Формула Граммеля при том же выборе формы колебаний (u, v, w) дает более точные результаты, чем формула Рэя.

Формула Донкерлея. В отличие от формул Рэя и Грахмеля форма Донкерлея является наиболее простой и дает заниженные значения низшей собственной частоты колебаний. Это позволяет, используя формулы Рэя и Донкерлея, определять интервал, в котором находится истинное значение собственной частоты.

По формуле Донкерлея квадрат собственной частоты продольных и изгибных колебаний

$$\omega^2 = \frac{1}{\rho} \left[\int_0^l \rho F dz \left(\frac{d^2 w}{dz^2} \right)^2 + \sum m_i \delta (z_i, z) \right], \quad (19.40)$$

а крутильных колебаний

$$\omega^2 = \frac{1}{\rho} \left[\int_0^l \rho J \rho dz \left(\frac{d^2 \varphi}{dz^2} \right)^2 + \sum J_i \delta (z_i, z) \right], \quad (19.41)$$

где $\delta (z, z)$ — функция влияния, т. е. продольное (u), поперечное (w) или угловое (φ) перемещение сечения с абсциссой z под действием единичной продольной, поперечной силы или единичного крутящего момента соответственно при продольных, изгибающих или крутильных колебаниях.

Способ Ритца является дальнейшим развитием способа Рэя. В уравнение упругой линии колеблющейся системы вводятся некоторые параметры, величина которых подбирается таким образом, чтобы частота основного тона была минимальной. Так, при поперечных колебаниях стержня функция прогиба выбирается в виде ряда

$$w(z) = a_1 \omega_1(z) + a_2 \omega_2(z) + \ldots, \quad (19.42)$$

каждый член которого должен удовлетворять граничным условиям для перемещений, а коэффициенты ряда a_1, a_2, a_3, \ldots должны выбираться из условия минимума частоты.

$$\delta \left[\int_0^l E J \left(\frac{d^2 w}{dz^2} \right)^2 + \sum m_i \delta (z_i, z) \right] \frac{\partial}{\partial a_i} = 0, \quad (19.43)$$

$$\int_0^l \rho F w^2 dz = 0, \quad (19.44)$$
Продифференцировав это выражение и разделив результат на \[
\int_0^l \rho F w^2 dz,
\]
с учетом (19.137) для случая \(m_1 = 0 \) получим

\[
\frac{\partial}{\partial a_i} \left(\int_0^l \left[E J \left(\frac{d^2 w}{dz^2} \right)^2 - \omega^2 \rho F w^2 \right] dz \right) = 0. \tag{19.144}
\]

Таких уравнений будет столько, сколько членов в ряде (19.142). Полученная система уравнений будет однородна относительно коэффициентов \(a_1, a_2, a_3, \ldots, a_n \).

Приравнив определитель этой системы нулю, получим частотное уравнение. Этот метод позволяет найти не только низшую частоту собственных колебаний, но и значения высших частот, хотя и с меньшей точностью.

Способ Бубнова—Галеркина. Применим этот способ при решении, например, задачи о поперечных колебаниях стержня переменного сечения, описываемых дифференциальным уравнением

\[
\frac{\partial^2}{\partial z^2} \left[E J (z) \frac{\partial^2 w}{\partial z^2} \right] - \rho F (z) \frac{\partial^2 w}{\partial t^2} = 0, \tag{19.145}
\]

где \(\rho, E \) — плотность и модуль упругости материала; \(F (z), J (z) \) — площадь и осевой момент инерции площади поперечного сечения стержня.

Решение этого уравнения можно найти с помощью подстановки

\[w = Z (z) T (t), \]

используя которую, получим дифференциальное уравнение для определения функции прогиба \(Z (z) \):

\[
\frac{d^2}{dz^2} \left[E J (z) \frac{d^2 Z}{dz^2} \right] - \rho F (z) \omega^2 Z = 0. \tag{19.146}
\]

Согласно способу Бубнова — Галеркина действительная кривая прогиба, выражаемая функцией \(Z (z) \), заменяется некоторой приближенной функцией \(\psi (z) \), удовлетворяющей граничным (геометрическим и статическим) условиям задачи. Функция \(\psi (z) \) должна быть ортогональна исходному дифференциальному оператору. С этой целью обраzuем интеграл

\[
\int_0^l \left\{ \frac{d^2}{dz^2} \left[E J (z) \frac{d^2 \psi (z)}{dz^2} \right] - \rho F (z) \omega^2 \psi (z) \right\} \psi (z) dz = 0. \tag{19.147}
\]

Отсюда, в частности, может быть получена формула Рэлея

\[
\omega^2 = \frac{\int_0^l \left[E J (z) \psi'' (z) \right] \psi (z) dz}{\int_0^l \rho F (z) \psi^2 (z) dz}. \tag{19.148}
\]

546
Если представить $\psi(z)$ в виде ряда

$$\psi(z) = a_1 \psi_1(z) + a_2 \psi_2(z) + \cdots \quad (19.14)$$

и рассмотреть каждое из слагаемых $\psi_j(z)$ как возможное перемещение, то вместо (19.147) получим соотношение, выражающее равенство нуля виртуальной работы.

$$\int_0^l \left\{ [EJ(z) \psi''(z)] - \rho F(z) \omega^2 \psi(z) \right\} \psi_j(z) dz = 0. \quad (19.150)$$

Таких равенств можно записать столько, сколько слагаемых имеется принятого для $\psi(z)$ выражение (19.149).

Каждое из уравнений (19.150) однородно и содержит неизвестные коэффициенты a_1, a_2, a_3, \ldots в первой степени.

Приравнив нулю определитель системы уравнений (19.150), получим частотное уравнение, из которого может быть определена угловая частота собственных колебаний.

19.13. Общий метод расчета колебаний механических систем с учетом рассеяния энергии

Любая реальная механическая колебательная система обладает источниками поглощения энергии колебаний. За счет применения соответствующих материалов и конструкции узлов сочленения механических систем их диссипативные свойства могут существенно изменяться, следовательно, может изменяться и степень динамической напряженности отдельных элементов конструкции, особенно при попадании этих элементов в резонанс. В связи с этим большой практический интерес представляет разработка эффективных методов расчета колебаний механических систем с учетом рассеяния энергии в системе с целью оценки уровня динамической напряженности в резонансной и в околорезонансной зонах. Здесь возникают сложности как в описании физически обоснованных гистерезисных зависимостей между внутренними силовыми факторами и соответствующими деформациями (перемещениями), так и в решении получаемых в этом случае нелинейных дифференциальных уравнений колебаний.

Из анализа возможных гистерезисных зависимостей (19.54), описывающих диссипативные свойства материала, следует, что в общем случае напряжение можно представить как сумму упругой и неупругой составляющих, определяющих нелинейность и неоднозначность уравнений восходящей (\rightarrow) и нисходящей (\leftarrow) ветвей петли гистерезиса (рис. 355):

$$\frac{\sigma}{\varepsilon} = \sigma_y + \sigma_z = E\varepsilon + \frac{E}{\varepsilon} (\varepsilon, \varepsilon_0) \quad (19.151)$$

для нормальных напряжений;

$$\frac{\tau}{\gamma} = \tau_y + \tau_z = G\gamma + \frac{G}{\gamma} (\gamma, \gamma_0) \quad (19.152)$$

18°
для касательных напряжений. При этом разность интегралов от усредненной составляющей восходящей и нисходящей ветвей в пределах цикла деформирования материала с амплитудой деформации e_0 определяет площадь петли гистерезиса

$$
\Delta W (e_0) = E \int_{-e_0}^{e_0} f (e, e_0) \, de - E \int_{-e_0}^{e_0} f (e, e_0) \, de,
$$

(19.153)

которая может быть выражена согласно (19.55), (19.57) через логарифмический декrement колебаний:

$$
\Delta W (e_0) \approx \Psi (e_0) W (e_0) = E \delta (e_0) e_0^2.
$$

(19.154)

Аналогично зависимостям (19.151), (19.152) можно в общем виде записать и внутренние усилия (продольную силу \overrightarrow{N}, крутящий \overrightarrow{M}_k или изгибающий \overrightarrow{M} моменты) как функции соответствующих перемещений (продольного u, угла закручивания φ и поперечного ω) с учетом несвершенной упругости материала деформируемого стержня:

$$
\overrightarrow{N} = N_y + \overrightarrow{N}_s = EF \frac{\partial u}{\partial z} + \int_F \overrightarrow{\sigma}_s \rho dF;
$$

$$
\overrightarrow{M}_k = M_{ky} + \overrightarrow{M}_{ks} = GJ \frac{\partial \varphi}{\partial z} + \int_F \tau_s \rho dF;
$$

$$
\overrightarrow{M} = M_y + \overrightarrow{M}_s = EJ \frac{\partial^2 \omega}{\partial z^2} + \int_F \overrightarrow{\sigma}_y y dF,
$$

(19.155)

где EF, GJ, EJ — жесткость поперечного сечения стержня соответственно при растяжении, кручении и изгибе; z — координата, направленная вдоль оси стержня.

Такого рода зависимостями можно формально описать несовершенную упругость колебательной системы, обусловленную не только рассеянием энергии в материале ее деформируемых элементов, но и относительным перемещением контактирующих поверхностей различного рода соединений (так называемый конструкционный гистерезис) и сопротивлением обтекающей систему среды, определяющим аэродинамическое демпфирование колебаний, а также их совместным проявлением.

Рассмотрим расчет колебаний механической системы, обладающей какой-либо несовершенной упругостью, на наиболее простом примере крутильных колебаний диска с моментом инерции массы J, насаженного на конце вертикального стержня с жесткостью поперечного сечения на крушение GJ_ρ и длиной l (рис. 334).

Пользуясь принципом Даламбера и пренебрегая силами инерции массы стержня, получаем уравнение свободных колебаний диска, приравнивая крутящий момент в стержне \overrightarrow{M}_k (19.155), при учете, что $\frac{d\varphi}{dz} = \frac{\varphi}{l}$,

моменту сил инерции массы диска $J \frac{d^2 \varphi}{dt^2}$:

$$
J \frac{d^2 \varphi}{dt^2} + c [\varphi + \varepsilon \Phi (\varphi)] = 0,
$$

(19.156)

548
где c — жесткость стержня при кручении; $c = \frac{GJp}{l}$; $\Phi = \frac{1}{c M_{kr}}$. Здесь введение множителя малого параметра ε отражает малость рассматриваемой незначительности.

Дифференциальное уравнение вынужденных колебаний диска в действием внешнего периодического момента $M = M_0 \sin pt$ в реальной зоне можно записать в виде

$$ J \frac{d^2\Phi}{dt^2} + c [\Phi + \varepsilon \Phi(\Phi)] = \varepsilon M_0 \sin pt \quad (19.157) $$

$$ \frac{d^2\Phi}{dt^2} + \omega^2 \Phi = \varepsilon m_0 \sin pt - \varepsilon \Phi(\Phi), \quad (19.158) $$

gде $M_0 = M_0/J$; ω — собственная частота колебаний;

$$ \omega^2 = \frac{GJp}{J} \quad \Phi(\Phi) = \frac{\varepsilon}{J} M_{kr} \quad t \quad \text{— время}. \quad (19.159) $$

Здесь внешний момент M имеет тот же порядок малости, что и несовершенная упругость стержня, о чем свидетельствует стоящий множителем малый параметр ε.

В соответствии с асимптотическими методами решения слабонелинейных дифференциальных уравнений общее решение уравнения (19.158) ищем в виде следующего разложения по степеням малого параметра:

$$ \Phi = a \cos \tau + \varepsilon u_1 (a, \tau) + \varepsilon^2 u_2 (a, \tau) + \cdots, \quad (19.160) $$

gде $\tau = pt + \Psi$; p — частота вынуждающей силы; Ψ — сдвиг фаз.

Амплитуду колебаний a и фазу τ определяем из дифференциальных уравнений

$$ \frac{da}{dt} = \varepsilon A_1 (a) + \varepsilon^2 A_2 (a) + \cdots; \quad (19.161) $$

$$ \frac{d\tau}{dt} = \omega + \varepsilon B_1 (a) + \varepsilon^2 B_2 (a) + \cdots $$

Следует заметить, что для рассматриваемых слабонелинейных диссипативных систем оказывается достаточным решение задачи в первом приближении. Поэтому в дальнейшем ограничиваемся членами, содержащими малый параметр ε в первой степени.

Для обеспечения однозначности определения искомых функций $A_1 (a)$ и $B_1 (a)$ будем полагать, что члены ряда (19.160) u_i не содержат главных гармоник и являются периодическими функциями угла τ с периодом 2π, т. е.

$$ \int_0^{2\pi} u_i (a, \tau) \cos \tau dt = \int_0^{2\pi} u_i (a, \tau) \sin \tau dt = 0. $$

Взяв вторую производную от выражения угла закручивания согласно (19.160) с учетом (19.161), подставив ее в левую часть уравнения (19.158) с учетом (19.161) и затем в полученном выражении ссбрав члены при ε в первой степени и приравнив их правой части уравнения
(19.158), содержащего также малый параметр в первой степени, получим

\[-2\omega_1 A_1 \sin \tau - 2\omega B_1 \cos \tau + \omega^2 \left(\frac{\partial^2 u_1}{\partial \tau^2} + u_1 \right) = m_0 \cos pt - \frac{\Phi}{\tau}.\]

(19.162)

Умножая уравнение (19.162) на \(\sin \tau dt\) и \(\cos \tau dt\) и интегрируя от 0 до 2\(\pi\), получаем

\[\omega^2 \int_0^{2\pi} \left(\frac{\partial^2 u_1}{\partial \tau^2} + u_1 \right) \sin \tau dt = 2\pi \omega A_1 +\]

\[+ m_0 \int_0^{2\pi} \cos pt \sin \tau dt - \int_0^{2\pi} \Phi(\tau) \sin \tau dt = \]

(19.163)

\[\omega^2 \int_0^{2\pi} \left(\frac{\partial^2 u_1}{\partial \tau^2} - u_1 \right) \cos \tau dt = 2\pi \omega B_1 +\]

\[+ m_0 \int_0^{2\pi} \cos pt \cos \tau dt - \int_0^{2\pi} \Phi(\tau) \cos \tau dt.\]

(19.164)

Поскольку при установившихся вынужденных колебаниях в резонансе \(d\psi/dt = 0\), т. е. \(\psi = \text{const}\), то обозначая \(\theta = pt\), имеем

\(\tau = \theta + \psi; \quad d\tau = d\theta;\)

\[\int_0^{2\pi} \cos pt \cos \tau dt = \cos \psi \int_0^{2\pi} \cos^2 \theta d\theta - \sin \psi \int_0^{2\pi} \cos \theta \sin \theta d\theta = \pi \cos \psi;\]

\[\int_0^{2\pi} \cos pt \sin \tau dt = \cos \psi \int_0^{2\pi} \cos \theta \sin \theta d\theta + \sin \psi \int_0^{2\pi} \cos^2 \theta d\theta = \pi \sin \psi.\]

Учитывая также, что

\[\int_0^{2\pi} \left(\frac{\partial^2 u_1}{\partial \tau^2} + u_1 \right) \sin \tau dt = 0;\]

\[\int_0^{2\pi} \left(\frac{\partial^2 u_1}{\partial \tau^2} - u_1 \right) \cos \tau dt = 0,\]

так как

\[\int_0^{2\pi} \frac{\partial^2 u_1}{\partial \tau^2} \sin \tau dt = -\int_0^{2\pi} u_1 \sin \tau dt = 0,\]

550
из уравнений (19.163) и (19.164) соответственно находим

\[A_1 = \frac{1}{2\pi \omega} \left[\int_0^{2\pi} \Phi (\varphi) \sin \tau \, d\tau - \pi m_0 \sin \varphi \right] \quad (19.165) \]

\[B_1 = \frac{1}{2\pi \omega} \left[\int_0^{2\pi} \Phi (\varphi) \cos \tau \, d\tau - \pi m_0 \cos \varphi \right] \quad (19.166) \]

Подставляя полученные выражения \(A_1 \) и \(B_1 \) в (19.161), для случая установившихся колебаний \(da/dt = 0; \, d\tau/dt = \varphi \), будем иметь выражение для синуса сдвига фаз

\[\sin \varphi = \frac{1}{\pi m_0} \int_0^{2\pi} e^{i\Phi (\varphi)} \sin \tau \, d\tau \quad (19.167) \]

и выражение для амплитудно-частотной зависимости, или резонансной кривой:

\[\rho = \omega - \frac{\pi m_0 \cos \varphi - \int_0^{2\pi} e^{i\Phi (\varphi)} \cos \tau \, d\tau}{2\pi \omega} \quad (19.168) \]

Из (19.167) можно найти косинус сдвига фаз:

\[\cos \varphi = \pm \frac{1}{\pi m_0} \sqrt{\left(\pi m_0 \right)^2 \pi^2 - \left[\int_0^{2\pi} e^{i\Phi (\varphi)} \sin \tau \, d\tau \right]^2} \quad (19.169) \]

Тогда, подставляя (19.169) в (19.168), получаем уравнение резонансной кривой

\[\rho = \omega - \frac{1}{2\pi \omega} \int_0^{2\pi} e^{i\Phi (\varphi)} \cos \tau \, d\tau \]

\[= \frac{1}{2\pi \omega} \sqrt{\pi^2 \left(\pi m_0 \right)^2 - \left[\int_0^{2\pi} e^{i\Phi (\varphi)} \sin \tau \, d\tau \right]^2} \quad (19.170) \]

Интеграл \(\int_0^{2\pi} e^{i\Phi (\varphi)} \cos \tau \, d\tau \) определяет сдвиг \(\Delta \omega (\alpha) \) резонансной час-
точно относительно собственной частоты колебаний системы ω (рис. 356):}
\[
\int_0^{2\pi} e^{i\Phi(\varphi)} \cos \tau d\tau = 2\pi a\omega \cdot \Delta \omega (a).
\]

Следовательно, резонансная частота системы $\omega (a)$ при данной амплитуде ее колебаний будет
\[
\omega (a) = \omega + \Delta \omega (a) = \omega - \frac{1}{2\pi a\omega} \int_0^{2\pi} e^{i\Phi(\varphi)} \cos \tau d\tau. \tag{19.171}
\]

Интеграл $\int_0^{2\pi} e^{i\Phi(\varphi)} \sin \tau d\tau$ характеризует величину необратимо поглощенной энергии $\Delta W (a)$ в системе за цикл ее деформирования с амплитудой a:
\[
aJ \int_0^{2\pi} e^{i\Phi(\varphi)} \sin \tau d\tau = \frac{\Delta W (a)}{aJ}. \tag{19.172}
\]

Учитывая, что $\Delta W (a) \approx 2\delta (a) W (a)$, где значение потенциальной энергии деформации системы $W (a)$ можно определить через максимальную кинетическую энергию
\[
W (a) = \frac{1}{2} J a^2 \omega^2 (a) \approx \frac{1}{2} J a^2 \omega^2, \tag{19.173}
\]
интеграл (19.172) можно выразить через логарифмический декrement колебаний
\[
\int_0^{2\pi} e^{i\Phi(\varphi)} \sin \tau d\tau = a\omega^2 (a) \delta (a) \approx a\omega^2 \delta (a), \tag{19.174}
\]
и, как видно из (19.170), значение интеграла или декремента определяет при заданной амплитуде выпуклого момента m_0 ширину пики $\Delta \rho (a)$ резонансной кривой (рис. 356) на данном уровне амплитуды колебаний a:
\[
\Delta \rho (a) = \frac{1}{\pi a \omega^2} \sqrt{\pi^2 (e m_0)^2 - \left[\int_0^{2\pi} e^{i\Phi(\varphi)} \sin \tau d\tau \right]^2} = \sqrt{\left(\frac{m_0}{a\omega} \right)^2 - \left(\frac{\delta (a)}{\pi} \right)^2 \omega^2}. \tag{19.175}
\]

С учетом (19.171), (19.174) формулы (19.169) и (19.170) можно представить в виде
\[
\cos \psi = \pm \frac{\sqrt{\pi^2 (e m_0)^2 - \left(\omega^2 a \delta (a) \right)^2}}{\pi e m_0}; \tag{19.176}
\]
\[
\rho = \omega (a) \mp \frac{1}{2} \sqrt{\left(\frac{e m_0}{a\omega} \right)^2 - \left(\frac{\delta (a)}{\pi} \right)^2 \omega^2}. \tag{19.177}
\]
При несовершенной упругости колебательной системы, обусловленной гистерезисом рассеянием энергии в материале стержня, описывают гистерезисными зависимостями в виде (19.54) при \(\sigma = \tau \) и \(\varepsilon = \gamma \), и

найденный функционал \(\varepsilon \Phi (\gamma) \) (19.159) можно (с учетом того, что \(\gamma = \rho \frac{q}{l} \), \(q = a \cos \tau \)) представить в виде

\[
\varepsilon \Phi (\gamma) = \frac{1}{J} \int_{F} \varepsilon_{s} \delta dF = \frac{G}{J} \sum_{n} \kappa_{n} \left(\frac{a}{l} \right)^{n} \left[(1 \pm \cos \tau)^{n} - 2^{n-1} \right] \int_{F} \rho^{n-1} dF.
\]

(19.178)

Подставляя (19.178) в (19.171), (19.174) и выражая параметр \(\alpha_{n} \) согласно (19.59) через параметры амплитудной зависимости логарифмического декремента материала (19.58), где \(\varepsilon_{0} = \gamma_{0} \), получаем следующие выражения для \(\omega (a) \) и \(\delta (a) \):

\[
\omega (a) = \omega \left[1 - \sum_{n} \frac{\Gamma (2n)}{2^{2n} (n-1) \Gamma (n)^{2}} \kappa_{n} \left(\frac{a}{l} \right)^{n-1} \int_{F} \rho^{n-1} dF \right] \int_{F} \rho^{n-1} dF.
\]

(19.179)

\[
\delta (a) = \frac{2^{n+1} (n-1)}{n-1},
\]

(19.180)

где \(\Gamma \) — гамма-функция.

Выражения (19.176) и (19.177) являются окончательными формулами, пользуясь которыми можно построить резонансные амплитудно-частотную и фазо-частотную зависимости вынужденных колебаний системы с одной степенью свободы как крутильных, так и продольных и изгибных. В случае продольных колебаний груза массой \(M \), подвещенного к стержню, под \(m_{0} \) следует понимать амплитуду продольной внешней силы \(P = P_{0} \sin \omega t \), приходящуюся на единицу массы груза (т. е. \(m_{0} = P_{0}/M \)) и приложенную к этому грузу. Также и в случае изгибных колебаний безмассового стержня с точечным грузом массой \(M \), к которому приложена внешняя поперечная сила \(Q = Q_{0} \sin \omega t, m_{0} = = Q_{0}/M \). Под \(a \) понимается амплитуда соответственно продольного и поперечного перемещений груза.

Максимальная резонансная амплитуда \(\bar{a} \) определяется из уравнения, получаемого из условия равенства нулю подкоренного выражения

\[
\bar{a} = \frac{\pi m_{0}}{\omega^{2} \delta (a)}.
\]

(19.181)

В качестве другого примера рассмотрим расчет вынужденных поперечных колебаний балки постоянного поперечного сечения. Дифференциальное уравнение установившихся колебаний балки с упруго несовершенной упругостью колебательной системы может быть представлено следующим образом

\[
EJ \frac{d^{4} \omega}{dz^{4}} + m \frac{d^{2} \omega}{dt^{2}} + \frac{\varepsilon_{s}}{E} \left(\frac{\partial^{2} \omega}{dx^{2}} \right)^{2} \Phi \left(\frac{\partial^{2} \omega}{dx^{2}} \right) = \varepsilon_{q} (z) \cos \omega t,
\]

(19.182)

где \(\omega (z, t) \) — функция деформации прогиба; \(\varepsilon_{q}(z) \) — амплитуда...
вынуждающей распределенной силы; \(m \) — масса единицы длины; \(\rho \) — круговая частота внешней вынуждающей силы; \(z \) — координата, направленная вдоль оси стержня; \(t \) — время; \(\varepsilon \) — малый параметр;

\[
\frac{\partial^2}{\partial z^2} \left[\varepsilon \Phi \left(\frac{\partial^2 \omega}{\partial z^2} \right) \right] — \text{некоторый функционал, характеризующий несовершенную упругость колебательной системы такого же порядка малости, как и внешняя вынуждающая сила; при этом функционал } \varepsilon \Phi \left(\frac{\partial^2 \omega}{\partial z^2} \right) \text{ представляет собой момент сил неупругого сопротивления (см. (19.155))}.
\]

Для решения рассматриваемого слабонелинейного уравнения (19.182), содержащего малый параметр \(\varepsilon \), также целесообразно применить асимптомотические методы нелинейной механики. Следуя этим методам, функцию деформации \(\omega (z, t) \), квадрат частоты колебаний \(p \) и сдвиг фаз \(\Psi \) представим в виде следующих асимптотических разложений:

\[
\omega (z, t) = \alpha \Phi (z) \cos (\pi t + \Phi) + \varepsilon u_1 (z, t) + \varepsilon^2 u_2 (z, t) + \ldots \quad (19.183)
\]

\[
p^2 = \omega^2 + \varepsilon \Delta_1 + \varepsilon^2 \Delta_2 + \ldots \quad (19.184)
\]

\[
\Psi = \phi + \varepsilon \Phi_1 + \varepsilon^2 \Phi_2 + \ldots \quad (19.185)
\]

При этом предполагаем, что \(u_1 (z, t); u_2 (z, t) \) и т. д. не содержат главных гармоник.

После подстановки разложений (19.183) — (19.185) в уравнение (19.182) и приравнивания множителей, стоящих при различных степенях малого параметра \(\varepsilon \), уравнение (19.182) распадается на систему уравнений

\[
EJ \frac{d^4 \Phi (z)}{dz^4} - m \omega^2 \Phi (z) = 0; \quad (19.186)
\]

\[
EJ \frac{\partial^4 u_1}{\partial z^4} + \omega^2 \frac{\partial^2 u_1}{\partial \theta^2} - m \Delta_1 \alpha \Phi (z) \cos \theta - q \cos (\theta - \phi) +
\]

\[
+ \frac{\partial^2}{\partial z^2} \left[\Phi \left(\alpha q (z) \cos \theta \right) \cos \theta \right] = 0; \quad (19.187)
\]

Здесь \(\theta = \pi t + \Phi \).

Для определения функции деформации \(\Phi (z) \) и собственной частоты колебаний \(\omega \) в нулевом приближении, т. е. без учета рассеяния энергии в колебательной системе, необходимо решить уравнение (19.186), представляющее собой нечто иное, как уравнение (19.182) при \(\varepsilon = \theta \), т. е. уравнение (19.114), где \(p = m \) и решение которого известно (19.118).

Для решения задачи об учете демпфирования в первом приближении рассмотрим уравнение (19.187). Пользуясь принципом энергетического баланса, согласно которому изменение энергии колеблющейся системы за цикл равно нулю, умножим уравнение (19.187) один раз на \(\Phi (z) \cos \theta dz d\theta \), а второй раз на \(\Phi (z) \sin \theta dz d\theta \). Полученные уравнения преобразуем по длине стержня \(l \) и по циклу колебаний. Ин-
тегрируя по частям по \(z \) и \(\theta \) и учитывая при этом граничные условия, а также то, что функция \(u_1 (z, \theta) \) не содержит главной гармоники, получаем следующую систему четырех уравнений:

\[
\begin{align*}
\int_0^{2\pi} \int_0^l \left[E J \frac{\partial^4 u_1}{\partial z^4} + m \omega^2 \frac{\partial^2 u_1}{\partial \theta^2} \right] \varphi (z) \cos \theta \, dz \, d\theta &= 0; \\
\int_0^{2\pi} \int_0^l \left\{-amA_1 \varphi (z) \cos \theta - q \cos (\theta - \psi) \right\} \varphi (z) \cos \theta \, dz \, d\theta &= 0; \\
\int_0^{2\pi} \int_0^l \left[E J \frac{\partial^4 u_1}{\partial z^4} + m \omega^2 \frac{\partial^2 u_1}{\partial \theta^2} \right] \varphi (z) \sin \theta \, dz \, d\theta &= 0; \\
\int_0^{2\pi} \int_0^l \left\{-amA_1 \varphi (z) \cos \theta - q \cos (\theta - \psi) \right\} \varphi (z) \sin \theta \, dz \, d\theta &= 0.
\end{align*}
\] (19.188, 19.189, 19.190, 19.191)

Решая уравнения (19.188) — (19.191) относительно искомых величин \(\sin \psi \) и \(A_1 \), находим

\[
\sin \psi = \frac{\int_0^l \int_0^{2\pi} \frac{\partial^2}{\partial z^2} \left[\frac{\partial \varphi}{\partial \Phi} (\varphi^*(z) \cos \theta) \right] \varphi (z) \sin \theta \, dz \, d\theta}{\pi \int_0^l \varepsilon \varphi (z) \, dz};
\] (19.192)

\[
A_1 = \frac{\int_0^{2\pi} \int_0^l \frac{\partial}{\partial z^2} \left[\frac{\partial \varphi}{\partial \Phi} (\varphi^*(z) \cos \theta) \right] \varphi (z) \cos \theta \, dz \, d\theta - \pi \cos \psi \int_0^l \varepsilon \varphi (z) \, dz}{\pi a m \int_0^l \varphi^2 (z) \, dz}.
\] (19.193)

Подставляя в (19.184) значение \(A_1 \) и выражая \(\cos \psi \) через значение \(\sin \psi \), получаем амплитудно-частотную зависимость первого приближения.
\[
\rho^2 = \omega^2 + \omega \sqrt{\frac{\int_0^t \int_0^t \frac{\partial^2}{\partial z^2} \left[e \Phi (a \psi'' (z) \cos \theta) \right] \Phi (z) \cos \theta \, dz \, d\theta}{\left(\int_0^t \Phi (z) \, dz \right)^2}}
\]

Здесь первые два члена определяют квадрат резонансной частоты колебаний системы \(\omega^2 (a) \) с учетом ее несвершенной упругости при данной амплитуде колебаний \(a \):

\[
\omega^2 (a) = \omega^2 + \frac{\int_0^t \int_0^t \frac{\partial^2}{\partial z^2} \left[e \Phi (a \psi'' (z) \cos \theta) \right] \Phi (z) \cos \theta \, dz \, d\theta}{\left(\int_0^t \Phi (z) \, dz \right)^2}
\]

а двойной интеграл в подкоренном выражении пропорционален энергии, рассеиваемой в стержне за цикл колебаний с амплитудой \(a \):

\[
\int_0^t \int_0^t \frac{\partial^2}{\partial z^2} \left[e \Phi (a \psi'' (z) \cos \theta) \right] \Phi (z) \cos \theta \, dz \, d\theta = \frac{\Delta W (a)}{a}
\]

Учитывая, что \(\Delta W (a) = 2 \delta (a) W (a) \), где

\[
W (a) = \frac{1}{2} a^2 \omega^2 (a) m \int_0^t \Phi^2 (z) \, dz \approx \frac{1}{2} a^2 \omega^2 m \int_0^t \Phi^2 (z) \, dz
\]

указанный двойной интеграл можно выразить через значение логарифмического декремента колебаний

\[
\int_0^t \int_0^t \frac{\partial^2}{\partial z^2} \left[e \Phi (a \psi'' (z) \cos \theta) \right] \Phi (z) \cos \theta \, dz \, d\theta = \delta (a) \omega^2 (a) am \int_0^t \Phi^2 (z) \, dz
\]

С учетом (19.198) зависимость (19.194) примет вид

\[
\rho^2 = \omega^2 (a) \mp \omega \sqrt{\frac{\int_0^t \Phi (z) \, dz}{a \omega m \int_0^t \Phi^2 (z) \, dz \left(\frac{\delta (a)}{\pi} \right)^2}}
\]
\[p = \omega (a) \pm \frac{1}{2} \sqrt{\left[\int_0^l q' (z) \, dz \right]^2 + \int_0^l \lambda q^2 (z) \, dz} \]

Максимальная резонансная амплитуда \(\tilde{a} \) (рис. 33б) при данных \(a \) и \(\gamma \) топологии возбуждения \(q \) определяется из уравнения

\[\frac{\pi \int_0^l q q' (z) \, dz}{\omega \delta (a) m \int_0^l q^2 (z) \, dz} = \frac{\pi}{\omega} \frac{\tilde{a}}{\omega^2 \delta (a) m} \int_0^l q^2 (z) \, dz \]

Для несовершенной упругости колебательной системы, обусловленной рассеянием энергии в материале балки и описываемой гистерезисными зависимостями (19.54), нелинейный функционал \(\Phi (a q' (z) \cos \theta) \) можно (учитывая, что \(\varepsilon = y \frac{\partial^2 w}{\partial z^2} \) в \(w = a q (z) \cos \theta \) представить в следующем виде:

\[\Phi (a q'' (z) \cos \theta) = \int_F \sigma_{su} dF = E \sum_n \chi_n a^n \left(\frac{d^2 q}{d z^2} \right)^n (1 \pm \cos \theta)^n - 2^{n-1} \int_F \theta^{n+1} dF. \] (19.202)

Подставляя (19.202) в (19.195) и (19.198) и учитывая (19.59), а также то, что \(\omega^2 (a) - \omega^2 \approx \omega (a) - \omega \) \(2\omega \) и \(\omega^2 m \int_0^l q^2 (z) \, dz = EJ \int_0^l \left(\frac{d^2 q}{d z^2} \right)^2 dz \), получаем выражения для \(\omega (a) \) и \(\delta (a) \):

\[\omega (a) = \omega \left[1 - \sum_n \frac{\Gamma (2n) \Gamma (n) \kappa_n a^{n-1}}{2^{2n} (n - 1) \Gamma (n)} \right] \]

\[\times \left[\int_0^l \left(\frac{d^2 q}{d z^2} \right)^n dz \int_F \theta^{n+1} dF \right] \int_0^l \frac{\theta^2 dz}{\int_F \theta^2 dF} \] (19.203)
\[\delta (a) = \sum_{n} k_{n} a^{n-1} \left(\int_{0}^{l} \left(\frac{d^{2} \varphi}{dz^{2}} \right)^{n} dz \right) \left(\int_{0}^{l} \frac{y^{n+1}dF}{F} \right) \left(\int_{0}^{l} \frac{y^{2}dF}{F} \right) . \] (19.204)

Следует отметить, что выражения (19.199) — (19.201) пригодны в случае рассмотрения продольных и крутильных колебаний стержня постоянного поперечного сечения. При продольных колебаниях по \(q (z) \) понимается амплитуда продольной распределенной внешней нагрузки, а при крутильных — амплитуда распределенного внешнего крутящего момента \(m_{kr} (z) \). В последнем случае под распределенной массой стержня \(m \) в формулах следует понимать распределенный момент инерции массы стержня относительно его продольной оси, равный \(\rho J_{p} \), где \(\rho \) — плотность материала, \(J_{p} \) — полярный момент инерции площади поперечного сечения стержня.

Полученные уравнения (19.177), как и (19.199), (19.200), показывают, что для построения амплитудно-частотной характеристики колебательной системы с учетом ее несовершенной упругости, независимо от физической природы последней, необходимо знать не только интегральную характеристику ее диссипативных свойств — логарифмический декремент колебаний \(\delta (a) \), но и интегральную характеристику ее нелинейной упругости — резонансную частоту \(\omega (a) \), причем обе характеристики выступают как функции амплитуды колебаний. Это усложняет решение задачи, хотя, как видно из определений указанных характеристик, не исключена возможность их аналитической связи, так как обе определяются через один и тот же функционал, характеризующий несовершенную упругость колебательной системы.

Так, в случае несовершенной упругости, обусловленной рассеянием энергии в материале и описываемой гистерезисными зависимостями между напряжением и деформацией в виде (19.54), как видно из (19.179), (19.180) или (19.203), (19.204), эти характеристики как при крутильных, так и изгибающих колебаниях выражаются через параметры \((k_{n}, n)\) амплитудной зависимости логарифмического декремента материала (19.58).

В общем случае колебаний деформируемого тела при известных собственной частоте \(\omega \) и распределении деформаций \(\varepsilon \) по объему \(V \) тела, определяемых из решения задачи в нулевом приближении, т. е. без учета рассеяния энергии, логарифмический декремент \(\delta (a) \) и резонансная частота \(\omega (a) \) тела могут быть выражены через указанные параметры амплитудной зависимости логарифмического декремента материала следующим образом:

\[\delta (a) = \frac{\int_{V}^{\delta (a) \varepsilon_{0}^{2}dV}}{\int_{V}^{\varepsilon_{0}^{2}dV}} = \sum_{n} k_{n} \frac{\int_{V}^{\varepsilon_{0}^{n+1}dV}}{\int_{V}^{\varepsilon_{0}^{2}dV}} ; \] (19.205)
\[\omega(a) = \omega \left[1 - \sum_{n}^{k_{n}d_{n}} \frac{\int \varepsilon_{0}^{n+1} dV}{\int \varepsilon_{0}^{3} dV} \right], \quad (19.206) \]

где
\[d_{n} = \frac{\Gamma(2n)}{2^{2n} (n - 1) \left[\Gamma(n) \right]^{2}}. \quad (19.207) \]

Для целого положительного \(n \)
\[d_{n} = \frac{(2n - 1) \Gamma}{2^{2n} (n - 1) \left[(n - 1)! \right]^{2}}. \quad (19.208) \]

Амплитуда колебаний \(a \) деформируемого тела обычно связывается со значением максимальной амплитуды деформации в теле \(\varepsilon_{0\text{max}} \).

Для степенной зависимости логарифмического декремента материала от амплитуды деформации \((\delta(\varepsilon_{0}) = ke_{0}^{n-1}) \) будем иметь
\[\delta(a) = k \frac{\int \varepsilon_{0}^{n+1} dV}{\int \varepsilon_{0}^{2} dV}; \quad (19.209) \]
\[\omega(a) = \omega [1 - d_{n}\delta(a)]. \quad (19.210) \]

В этом случае уравнение резонансной кривой, например (19.177), принимает вид
\[p = \omega [1 - d_{n}\delta(a)] \mp \frac{1}{2} \sqrt{\left(\frac{m_{0}}{a\omega} \right)^{2} - \left(\frac{\delta(a)}{\pi} \right)^{2}} \omega^{2}. \quad (19.211) \]

Здесь \(d_{n} \) определяется выражениями (19.207), (19.208) и \(d_{2} = 3/8 \) при \(n = 2; \ d_{3} = 15/64 \) при \(n = 3; \ d_{4} = 35/192 \) при \(n = 4. \)
<table>
<thead>
<tr>
<th>Схема колебательной системы</th>
<th>Число степеней свободы</th>
<th>Собственная частота f, Гц</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>$f = \frac{1}{2\pi} \sqrt{\frac{c}{m}}$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>$f = \frac{1}{2\pi} \sqrt{\frac{Gd^4}{8nmD^3}}$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>$f = \frac{1}{2\pi} \sqrt{\frac{EF}{ml}}$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>$f = \frac{1}{2\pi} \sqrt{\frac{c_1c_2}{m(c_1 + c_2)}}$</td>
</tr>
</tbody>
</table>

m — масса груза; c — жесткость упругого элемента; l — длина стержня; E — модуль упругости при сдвиге; EF — жесткость поперечного сечения стержня при растяжении; GJ_p — жесткость поперечного сечения стержня при кручении; EJ — жесткость поперечного сечения стержня при изгибе.
<table>
<thead>
<tr>
<th>Схема колебательной системы</th>
<th>Число степеней свободы</th>
<th>Собственная частота (f), Гц</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>(f = \frac{1}{2\pi} \sqrt{\frac{c_1 + c_2}{m}})</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(f = \frac{1}{2\pi} \sqrt{\frac{c(m_1 + m_2)}{m_1 \cdot m_2}})</td>
</tr>
</tbody>
</table>
| ![Diagram 3](image3) | 1 | \(f = \frac{1}{2\pi} \sqrt{\frac{GJ_p}{lJ}} \)

\(J \) — момент инерции массы диска относительно оси стержня |
| ![Diagram 4](image4) | 1 | \(f = \frac{1}{2\pi} \sqrt{\frac{GJ_p (J_1 + J_2)}{lJ_1 \cdot J_2}} \)

\(J_1, J_2 \) — моменты инерции масс дисков |
| ![Diagram 5](image5) | 1 | \(f = \frac{1}{2\pi} \sqrt{\frac{3EJ}{ml^2}} \) |
| ![Diagram 6](image6) | 1 | \(f = \frac{1}{2\pi ab} \sqrt{\frac{3EJ_1 J_2}{m (aJ_2 + bJ_1)}} \)

при \(J_1 = J_2 = J \) |
<p>| | 1 | (f = \frac{1}{2\pi ab} \sqrt{\frac{3EJ_1}{m}}) |</p>
<table>
<thead>
<tr>
<th>Схема колебательной системы</th>
<th>Число степеней свободы</th>
<th>Собственная частота (f), Гц</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>при (J_1 = J_2 = J) и (a = b = \frac{l}{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f = \frac{2}{\pi} \sqrt{\frac{3EJ}{ml^3}})</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

		при \(a = b = \frac{l}{2} \)
		\(f = \frac{8}{\pi} \sqrt{\frac{3EJ}{7ml^3}} \)
	1	

		при \(a = b = \frac{l}{2} \)
		\(f = \frac{4}{\pi} \sqrt{\frac{3EJ}{ml^3}} \)
	1	

| | | \(f = \frac{1}{\pi b} \sqrt{\frac{3EJ}{m (3a + 4b)}} \) |
| | 1 | |

		при \(J_1 = J_2 = J \)
		\(f = \frac{1}{2\pi b} \sqrt{\frac{3EJ_1J_2}{m (aJ_2 + bJ_1)}} \)
	1	

562
<table>
<thead>
<tr>
<th>Схема колебательной системы</th>
<th>Число степеней свободы</th>
<th>Собственная частота $f_1, \text{Гц}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>$f_{1,2} = \frac{1}{2\pi} \sqrt{\frac{1}{2} \left[\left(\frac{c_2}{m_2} + \frac{c_1 + c_2}{m_1} \right)^2 - 4 \frac{c_1 c_2}{m_1 m_2} \right]}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= \sqrt{\left(\frac{c_2}{m_2} + \frac{c_1 + c_2}{m_1} \right)^2 - 4 \frac{c_1 c_2}{m_1 m_2}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= \frac{1}{2\pi} \sqrt{\frac{1}{2} \left[\left(\frac{c_1 + c_2}{m_1} + \frac{c_2}{m_2} \right)^2 - 4 \frac{c_2^2}{m_1 m_2} \right]}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= \sqrt{\left(\frac{c_1 + c_2}{m_1} - \frac{c_2}{m_2} \right)^2 + 4 \frac{c_2^2}{m_1 m_2}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>При $c_1 = c_2 = c$ и $m_1 = m_2 = m$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f_{1,2} = \frac{1}{2\pi} \sqrt{\frac{3}{2}} \frac{\sqrt{3} c}{m}$</td>
</tr>
</tbody>
</table>

<p>| | | $f_{1,2} = \frac{1}{2\pi} \sqrt{\frac{1}{2} \left[\left(\frac{c_1 + c_3}{m_1} + \frac{c_2 + c_3}{m_2} \right)^2 - 4 \frac{c_1 c_2 + c_1 c_3 + c_2 c_3}{m_1 m_2} \right]}$ |
| | | $= \sqrt{\left(\frac{c_1 + c_3}{m_1} + \frac{c_2 + c_3}{m_2} \right)^2 - 4 \frac{c_1 c_2 + c_1 c_3 + c_2 c_3}{m_1 m_2}}$ |
| | | $= \frac{1}{2\pi} \sqrt{\frac{1}{2} \left[\left(\frac{c_1 + c_3}{m_1} + \frac{c_2 + c_3}{m_2} \right)^2 \right]}$ |
| | | $= \sqrt{\left(\frac{c_1 + c_3}{m_1} - \frac{c_2 + c_3}{m_2} \right)^2 + 4 \frac{c_2^2}{m_1 m_2}}$ |
| | | $+ 4 \frac{c_3^2}{m_1 m_2}$ |</p>
<table>
<thead>
<tr>
<th>Схема колебательной системы</th>
<th>Число степеней свободы</th>
<th>Собственная частота (f), Гц</th>
</tr>
</thead>
<tbody>
<tr>
<td>Заполните таблицу</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

при \(c_1 = c_2 = c \) и \(m_1 = m_2 = m \)

\[
f_1 = \frac{1}{2\pi} \sqrt{\frac{c}{m}} \quad \text{и} \quad f_2 = \frac{1}{2\pi} \sqrt{\frac{c + 2c}{m}}
\]

\[
f_{1,2} = \frac{1}{2\pi} \sqrt{\frac{1}{2} \left[\left(\frac{c_1}{m_1} + \frac{c_1}{m_2} \right) + \left(\frac{c_2}{m_2} + \frac{c_2}{m_3} \right) \right] - \left(\frac{c_2}{m_2} + \frac{c_2}{m_3} \right)^2 + 4 \frac{c_1c_2}{m_3}}
\]

при \(c_1 = c_2 = c \) и \(m_1 = m_2 = m_3 = m \)

\[
f_1 = \frac{1}{2\pi} \sqrt{\frac{c}{m}} \quad \text{и} \quad f_2 = \frac{1}{2\pi} \sqrt{\frac{3c}{m}}
\]

\[
f_{1,2} = \frac{1}{2\pi} \sqrt{\frac{1}{2} \left[\left(\frac{c_2}{J_2} + \frac{c_1 + c_2}{J_1} \right) + \left(\frac{c_2}{J_2} + \frac{c_1 + c_2}{J_1} \right) \right] - 4 \frac{c_1c_2}{J_1J_2}}
\]
<table>
<thead>
<tr>
<th>Схема колебательной системы</th>
<th>Число степеней свободы</th>
<th>Собственная частота f, Гц</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>$f_{1,2} = \frac{1}{2\pi} \sqrt{\frac{1}{2} \left(\frac{c_1 + c_3}{J_1} + \frac{c_2 + c_3}{J_2} \right)}$</td>
</tr>
</tbody>
</table>

J_1, J_2 — моменты инерции масс дисков относительно оси вала при $c_1 = c_2 = c$ и $J_1 = J_2 = J$.

При $c_1 = c_2 = c$ и $J_1 = J_2 = J$,

$$f_{1,2} = \frac{1}{2\pi} \sqrt{\frac{3 + \sqrt{5}}{2} \cdot \frac{c}{J}}$$

| ![Diagram](image) | 2 | $f_{1,2} = \frac{1}{2\pi} \sqrt{\frac{1}{2} \left(\frac{c_1 + c_3}{J_1} + \frac{c_2 + c_3}{J_2} \right)}$ |

J_1, J_2 — моменты инерции масс дисков относительно оси вала при $c_1 = c_2 = c$ и $J_1 = J_2 = J$.

При $c_1 = c_2 = c$ и $J_1 = J_2 = J$,

$$f_{1,2} = \frac{1}{2\pi} \sqrt{\frac{1}{2} \left(\frac{c_1 + c_3}{J_1} + \frac{c_2 + c_3}{J_2} \right)} = \frac{1}{2\pi} \sqrt{\frac{1}{2} \left(\frac{c_1 + c_3}{J_1} + \frac{c_2 + c_3}{J_2} \right)}$$

J_1, J_2 — моменты инерции масс дисков относительно оси вала при $c_1 = c_2 = c$ и $J_1 = J_2 = J$.

При $c_1 = c_2 = c$ и $J_1 = J_2 = J$,

$$f_{1,2} = \frac{1}{2\pi} \sqrt{\frac{1}{2} \left(\frac{c_1 + c_3}{J_1} + \frac{c_2 + c_3}{J_2} \right)}$$
<table>
<thead>
<tr>
<th>Схема колебательной системы</th>
<th>Число степеней свободы</th>
<th>Собственная частота (f), Гц</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_1, J_2) — моменты инерции масс дисков относительно оси вала при (c_1 = c_2 = c) и (J_1 = J_2 = J)</td>
<td>2</td>
<td>(f_1 = \frac{1}{2\pi} \sqrt{\frac{c}{J}}; f_2 = \frac{1}{2\pi} \sqrt{\frac{c+2c_3}{J}})</td>
</tr>
</tbody>
</table>

\[
f_{1,2} = \frac{1}{2\pi} \sqrt{\frac{1}{2} \left[\left(\frac{c_1}{J_1} + \frac{c_2}{J_3} \right) + \left(\frac{c_1}{J_1} + \frac{c_2}{J_2} \right) \right] + \frac{4c_1c_2}{J_2J_3} - 4c_1c_2 J_1J_2J_3} = \frac{1}{2\pi} \sqrt{\frac{1}{2} \left[\left(\frac{c_1}{J_1} + \frac{c_1}{J_2} \right) + \left(\frac{c_2}{J_2} + \frac{c_2}{J_3} \right) \right] + \left(\frac{c_2}{J_2} + \frac{c_2}{J_3} \right)^2 - \frac{4c_1c_2}{J_2^2}} \]

\(J_1, J_2, J_3 \) — моменты инерции масс дисков относительно оси вала при \(c_1 = c_2 = c \) и \(J_1 = J_2 = J_3 = J \)

\[
f = \frac{1}{2\pi} \sqrt{\frac{2c + c}{J}}
\]
Продолжение табл. 41

<table>
<thead>
<tr>
<th>Схема колебательной системы</th>
<th>Число степеней свободы</th>
<th>Собственная частота (f), Гц</th>
</tr>
</thead>
</table>
| ![Схема колебательной системы](image1.png) | 2 | \[
\frac{f_{1,2}}{2\pi} = \sqrt{\frac{1}{2 \left(\delta_{11} \delta_{22} - \delta_{12}^2 \right) m_2}} \times \left[\delta_{11} + \delta_{22} \frac{m_2}{m_1} \right]^{-1} \times \sqrt{\left(\delta_{11} + \delta_{22} \frac{m_2}{m_1} \right)^2 - \left(-4 \left(\delta_{11} \delta_{22} - \delta_{12}^2 \right) \frac{m_2}{m_1} \right)}
\] |

\(\delta_{ik} \) — прогиб оси балки в сечении от единичной силы, приложенной в сечении \(k \); \(\delta_{ik} = \delta_{ki} \)

<table>
<thead>
<tr>
<th>Схема колебательной системы</th>
<th>Число степеней свободы</th>
<th>Собственная частота (f), Гц</th>
</tr>
</thead>
</table>
| ![Схема колебательной системы](image2.png) | 2 | \[
\frac{f_{1,2}}{2\pi} = \sqrt{\frac{6EJ}{ml^3} \left(1 + \frac{l^2}{3i_0^2} \right)} \times \sqrt{1 + \frac{l^2}{3i_0^2} + \frac{l^2}{9i_0^4}}
\] |

\(i_0 \) — радиус инерции груза относительно его центра тяжести

при \(l \gg i_0 \)

\[
f_1 \approx \frac{1}{2\pi} \sqrt{\frac{3EJ}{ml^3} \left(1 - \frac{3i_0^2}{l^2} \right)}
\]

\[
f_3 \approx \frac{1}{2\pi} \sqrt{\frac{3EJ}{ml^3} \left(3 + \frac{4l^2}{3i_0^2} \right)}
\]
Таблица 50. Частотные уравнения и собственные формы продольных и крутильных колебаний стержней постоянного сечения

<table>
<thead>
<tr>
<th>Схема закрепления стержня</th>
<th>Частотное уравнение</th>
<th>Корни частотного уравнения*</th>
<th>Собственная форма колебаний</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sin kl = 0$</td>
<td>$k_i l = i\pi$</td>
<td>$\varphi(x) = C \cos kl$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$i = 1, 2, 3, ...$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\cos kl = 0$</td>
<td>$k_i l = \frac{\pi}{2} (2i - 1)$</td>
<td>$\varphi(x) = C \sin kl$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$i = 1, 2, 3, ...$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sin kl = 0$</td>
<td>$k_i l = i\pi$</td>
<td>$\varphi(x) = C \sin kl$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$i = 1, 2, 3, ...$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\tan kl = \frac{k l}{\alpha}$</td>
<td></td>
<td>$\varphi(x) = C \sin kl$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>При продольных колебаниях $\alpha = \frac{cl}{EF}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>При крутильных колебаниях</td>
<td></td>
</tr>
</tbody>
</table>
\[\alpha = \frac{cI}{GJ_p}, \]
где \(F \) и \(J_p \) — площадь и полярный момент инерции поперечного сечения стержня; \(c \) — жесткость опоры относительно продольных или крутильных перемещений.

\[\tan kl = \alpha kl \]

При продольных колебаниях

\[\alpha = \frac{pFl}{m}; \]

при крутильных колебаниях

\[\alpha = \frac{pJ_p l}{J}. \]

где \(m \) — масса груза; \(J \) — момент инерции массы груза относительно оси стержня; \(F \) — площадь сечения; \(J_p \) — полярный момент инерции сечения стержня.

\[\varphi (z) = C \cos kz \]

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>0</th>
<th>0,5</th>
<th>1,0</th>
<th>10</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_1 l)</td>
<td>(\pi)</td>
<td>4,26</td>
<td>4,50</td>
<td>4,69</td>
<td>(\frac{3}{2} \pi)</td>
</tr>
<tr>
<td>Схема закрепления стержня</td>
<td>Частотное уравнение</td>
<td>Корни частотного уравнения*</td>
<td>Собственная форма колебаний</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$kl \cdot \tan kl = \alpha$</td>
<td>α</td>
<td>$0,01$</td>
<td>$0,05$</td>
<td>$0,20$</td>
</tr>
<tr>
<td></td>
<td>При продольных колебаниях</td>
<td>k_{l1}</td>
<td>$0,10$</td>
<td>$0,21$</td>
<td>$0,42$</td>
</tr>
<tr>
<td></td>
<td>$\alpha = \frac{pFl}{m}$</td>
<td>α</td>
<td>$0,90$</td>
<td>$1,00$</td>
<td>$1,50$</td>
</tr>
<tr>
<td></td>
<td>при крутильных колебаниях</td>
<td>k_{l1}</td>
<td>$0,82$</td>
<td>$0,86$</td>
<td>$0,98$</td>
</tr>
<tr>
<td></td>
<td>$\alpha = \frac{pF}{J}$</td>
<td>α</td>
<td>$5,00$</td>
<td>$10,0$</td>
<td>$20,0$</td>
</tr>
</tbody>
</table>

где m — масса груза; I — момент инерции массы груза относительно оси стержня; F — площадь сечения; J_p — полярный момент инерции сечения стержня.
Продольные колебания

\[
\left[m_1m_2 \left(\frac{k}{\rho F} \right)^2 - 1 \right] \tan kl - (m_1 + m_2) \frac{k}{\rho F} = 0;
\]

крутильные колебания

\[
\left[J_1J_2 \left(\frac{k}{\rho J_p} \right)^2 - 1 \right] \tan kl - (J_1 + J_2) \frac{k}{\rho J_p} = 0,
\]

где \(m_1, m_2 \) — массы грузов; \(J_1, J_2 \) — моменты инерции массы грузов относительно оси стержня; \(F \) — площадь сечения; \(J_p \) — полярный момент инерции сечения стержня.

\[\varphi(z) = C \left(\cos kz - \frac{m_2}{\rho F} k \sin kz \right) \]

\[\varphi(z) = C \left(\cos kz - \frac{J_p}{\rho J_p} k \sin kz \right) \]

* Сопротивляемые частоты определяют по формуле \(f = \frac{k}{2\pi} a \), где \(a = \sqrt{\frac{E}{D}} \) для продольных и \(a = \sqrt{\frac{E}{J}} \) для крутильных колебаний.
Продолжение табл. 51

<table>
<thead>
<tr>
<th>Схема закрепления стержня</th>
<th>Частотное уравнение</th>
<th>Корни частотного уравнения*</th>
<th>Собственные формы колебаний</th>
</tr>
</thead>
<tbody>
<tr>
<td>lFEJ</td>
<td>$\tan kl = \tanh kl$</td>
<td>1: 0</td>
<td>$\varphi (z) = (\cosh kl +$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2: 3,927</td>
<td>$+ \cosh kl) \sinhz +$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3: 7,069</td>
<td>$- \sinhz) -$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4: 10,210</td>
<td>$(\sinh kl -$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5: 13,352</td>
<td>$+ \cosh kl)$</td>
</tr>
<tr>
<td>$i > 1$</td>
<td>$\frac{\pi}{4} (4i - 3)$</td>
<td></td>
<td>$+ \sinhz)$</td>
</tr>
</tbody>
</table>

* Собственные частоты определяют по формуле $f_i = \frac{(k_i l)^2}{2\pi^2} \sqrt{\frac{E J}{\rho F}} = \frac{k_i^2}{2\pi} \sqrt{\frac{E J}{m}}$, где $m = \rho F$.

Таблица 52. Корни частотных уравнений поперечных колебаний стержней постоянного сечения на упругих опорах*

<table>
<thead>
<tr>
<th>Схема закрепления стержня</th>
<th>График для определения коэффициентов k_l</th>
</tr>
</thead>
<tbody>
<tr>
<td>lFEJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ρFEJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Схема закрепления стержня | График для определения коэффициентов kI

![Diagram](image)

$\frac{EJ}{EI} = \frac{l_1}{l_2}, \frac{l_2}{l_1}$

- Собственные частоты определяют по формуле $\omega = \frac{(kl)^2}{2\pi} \sqrt{\frac{EI}{\rho F}}$
- \[= \frac{k^2}{2\pi} \sqrt{\frac{EJ}{m}}, \text{где} \ m = \rho F. \]

Таблица 53. Корни частотных уравнений поперечных колебаний стержней постоянного сечения с сосредоточенными массами m^*

<table>
<thead>
<tr>
<th>Схема стержня</th>
<th>График для определения коэффициентов kI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$k_1 \approx 1.875$

$k_2 \approx 4.694$

$\frac{EJ}{EI} = \frac{1}{2}$

$\frac{l_1}{l_2}, \frac{l_2}{l_1}$
Собственные частоты определяют по формуле \(\omega = \frac{(l_1 l_2)^{1/2}}{2\pi l_1} \sqrt{\frac{EJ}{pL}} \).

Таблица 54. Значения некоторых интегралов, встречающихся при расчетах поперечных колебаний стержней (\(\phi_i \) — i-я собственная форма колебаний)

<table>
<thead>
<tr>
<th>Схема закрепления стержня</th>
<th>(\int \frac{1}{l_1} \int \frac{1}{l_2} \phi_i dx)</th>
<th>(\int \frac{1}{l_1} \int \phi_i'' dx)</th>
<th>(\int \frac{1}{l_2} \int (\phi_i')^2 dx)</th>
<th>(\int \frac{1}{l_2} \int (\phi_i'')^2 dx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,6366</td>
<td>0,5</td>
<td>4,9343</td>
<td>48,705</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0,5</td>
<td>19,739</td>
<td>779,28</td>
</tr>
<tr>
<td>3</td>
<td>0,2122</td>
<td>0,5</td>
<td>44,413</td>
<td>3945,1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0,5</td>
<td>78,955</td>
<td>12468</td>
</tr>
<tr>
<td>5</td>
<td>0,1273</td>
<td>0,5</td>
<td>123,37</td>
<td>30440</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Схема закрепления стержня</th>
<th>(\int \frac{1}{l_1} \int \phi_i dx)</th>
<th>(\int \frac{1}{l_2} \int \phi_i'' dx)</th>
<th>(\int \frac{1}{l_2} \int (\phi_i')^2 dx)</th>
<th>(\int \frac{1}{l_2} \int (\phi_i'')^2 dx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,8445</td>
<td>1,0359</td>
<td>12,775</td>
<td>518,52</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0,9984</td>
<td>45,977</td>
<td>3797,1</td>
</tr>
<tr>
<td>3</td>
<td>0,3637</td>
<td>1,0000</td>
<td>98,920</td>
<td>14619</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1,0000</td>
<td>171,58</td>
<td>39940</td>
</tr>
<tr>
<td>5</td>
<td>0,2314</td>
<td>1,0000</td>
<td>264,01</td>
<td>89138</td>
</tr>
</tbody>
</table>
П р о д о л ж е н и е т а б л . 5 4

<table>
<thead>
<tr>
<th>Схема закрепления стержня</th>
<th>(i)</th>
<th>(\frac{1}{l} \int_{0}^{l} \Phi_{i} , dx)</th>
<th>(\frac{1}{l} \int_{0}^{l} \Phi_{i}^{2} , dx)</th>
<th>(\frac{1}{l} \int_{0}^{l} (\Phi_{i}')^{2} , dx)</th>
<th>(l^2 \int_{0}^{l} (\Phi_{i}'')^{2} , dx)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0,6147</td>
<td>0,4996</td>
<td>5,5724</td>
<td>118,80</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0,0586</td>
<td>0,5010</td>
<td>21,451</td>
<td>1250,40</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,2364</td>
<td>0,5000</td>
<td>47,017</td>
<td>5433,00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0,0310</td>
<td>0,5000</td>
<td>82,462</td>
<td>15892</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,1464</td>
<td>0,5000</td>
<td>127,79</td>
<td>36998</td>
</tr>
</tbody>
</table>

	1	1,6667	1,8556	8,6299	22,933
	2	0,4252	0,9639	20,176	467,97
	3	0,2549	1,0014	77,763	3808,5
	4	0,1819	1,0000	152,83	14619
	5	0,1415	1,0000	205,52	39940

Т а б л и ц а 5 5. Собственные частоты поперечных колебаний стержней постоянного сечения, нагруженных продольными силами

<table>
<thead>
<tr>
<th>Схема стержня</th>
<th>Собственная частота колебаний</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(f_{1} = \frac{0,562}{l^2} \sqrt{\frac{EJ}{\rho F} \left(1 + \frac{5NI^{2}}{14EJ}\right)})</td>
</tr>
<tr>
<td></td>
<td>(f_{1} = \frac{0,562}{l^2} \sqrt{\frac{EJ}{\rho F} \left(1 + \frac{qI^{2}}{8EJ}\right)})</td>
</tr>
<tr>
<td></td>
<td>(f_{i} = \frac{\pi}{2} \frac{i^2}{l^2} \sqrt{\frac{EJ}{\rho F} \left(1 + \frac{NI^{2}}{i^2 \pi^2 EJ}\right)})</td>
</tr>
</tbody>
</table>

76
<table>
<thead>
<tr>
<th>Номер варианта</th>
<th>Продольные</th>
<th>Крутильные</th>
<th>Изгибные</th>
</tr>
</thead>
</table>
| 1 | \[
\int_0^l \frac{N_i^2}{E \bar{E}} \, dz + \int_0^l \rho F_i u_i \, dz = \sum m_i u_i^2 + \int_0^l \rho F_i u_i \, dz\] | \[
\int_0^l \frac{M_i^2}{G J_p} \, dz = \sum J_i \varphi_i^2 + \int_0^l \rho J_p \varphi_i^2 \, dz\] | \[
\int_0^l \frac{L_i^2}{E I} \, dz = \sum m_i w_i^2 + \int_0^l \rho F_i w_i \, dz\] |
| 2 | \[
\int_0^l p(z) u_i \, dz = \sum m_i u_i^2 + \int_0^l \rho F_i u_i \, dz\] | \[
\int_0^l m_{i p}(z) \varphi_i \, dz = \sum J_i \varphi_i^2 + \int_0^l \rho J_p \varphi_i^2 \, dz\] | \[
\int_0^l q(z) w_i \, dz = \sum m_i w_i^2 + \int_0^l \rho F_i w_i \, dz\] |
| 3 | \[
\int_0^l p(z) u_i \, dz + \sum N_{i j} u_j = \sum m_i u_i^2 + \int_0^l \rho F_i u_i \, dz + \sum M_{i k p} \varphi_j\] | \[
\int_0^l m_{i p}(z) \varphi_i \, dz + \sum M_{i p} \varphi_j = \sum J_i \varphi_i^2 + \int_0^l \rho J_p \varphi_i^2 \, dz\] | \[
\int_0^l q(z) w_i \, dz + \sum P_i w_i = \sum m_i w_i^2 + \int_0^l \rho F_i w_i \, dz\] |
| 4 | \[
\int_0^l \rho F_i u_i \, dz + \sum m_i u_i\] | \[
\int_0^l \rho F_i w_i \, dz + \sum m_i w_i\] | \[
\sum m_i w_i^2 + \int_0^l \rho F_i w_i \, dz\] |
Таблица 57. Выражения для определения квадрата собственной частоты по способу Граммеля

<table>
<thead>
<tr>
<th>Вид колебаний</th>
<th>Формула</th>
</tr>
</thead>
<tbody>
<tr>
<td>Продольные</td>
<td>$\sum m_i u_i^2 + \int_0^l \rho F u^2 dz \div \int_0^l \frac{N^2 dz}{EF}$</td>
</tr>
<tr>
<td>Крутильные</td>
<td>$\sum J_i \varphi_i^2 + \int_0^l \rho J_p \varphi^2 dz \div \int_0^l \frac{M_{kp}^2 dz}{GJ_p}$</td>
</tr>
<tr>
<td>Изгибные</td>
<td>$\sum m_i w_i^2 + \int_0^l \rho F w^2 dz \div \int_0^l \frac{M^2 dz}{EJ}$</td>
</tr>
</tbody>
</table>
20.1. Явление усталости материалов

Усталостью материалов (в частности, металлов) называется явление разрушения при многократном повторении напряжений. Способность материалов сопротивляться разрушению при повторно-переменных напряжениях называется выносливостью материала.

Усталостное разрушение наблюдается при наличии одной из следующих особенностей нагружения:
1) при многократном нагружении одного знака, например, периодически изменяющегося от нуля до максимума (рис. 357, а);
2) при многократном нагружении, периодически изменяющемся не только по величине, но и по знаку (знакопеременное нагружение), когда на выносливость материала одновременно оказывает влияние и повторность, и переменность напряжения. При этом различают симметричное нагружение (рис. 357, б) и несимметричное (рис. 357, в, г).

Для разрушения от усталости недостаточно переменности напряжений. Необходимо также, чтобы напряжения имели определенную величину. Максимальное напряжение, при котором материал способен сопротивляться, не разрушаясь, при любом произвольно большом числе повторений нагружений, называется пределом выносливости.

Усталостный излом металла имеет характерный вид (рис. 358). На нем обычно можно наблюдать две зоны: одна из них (A) гладкая,
притертая, образованная вследствие постепенного развития трещины; другая (B) крупнозернистая, образованная при окончательном наклоне ослабленного развитшейся усталостной трещиной сечения детали. Зона B у хрупких материалов имеет крупнокристаллическое, а у вязких — волокнистое строение.

Механизм образования трещин при повторно-переменном напряжении весьма сложен и не может считаться полностью изученным. Из несовмещённых положений теории усталости можно отметить следующие:

1) процессы, происходящие в материале при повторно-переменном нагружении носят резко выраженный местный характер;

2) решающее влияние на явление усталости до образования первой трещины оказывают касательные напряжения, вызывающие пластические сдвиги и разрушение путем среза. Развитие усталостных трещин ускоряется при наличии растягивающих напряжений и у пластичных, и в особенности у хрупких материалов (типа чугуна), в которых появление трещин отрыва значительно повышает чувствительность к растягивающим напряжениям.

Предел выносливости определяется экспериментально на соответствующих испытательных машинах путем испытания партии образцов из данного материала в количестве не менее 6—12 штук. Предел выносливости зависит от многих факторов, в том числе от формы и размера образца или детали, способа ее обработки, состояния поверхности, вида напряженного состояния (растяжение — сжатие, крушение, изгиб), закона изменения нагрузки во времени при испытании, температуры и т. п.

В большинстве случаев переменные напряжения, вызывающие разрушение от усталости, представляют собой функцию времени \(a = \hat{f}(t) \) с периодом, равным \(T \). Совокупность всех значений напряжений за один период, называется циклом напряжений (рис. 359, a). На величину предела выносливости оказывают влияние максимальные \(p_{\text{max}} \) и минимальные \(p_{\text{min}} \) напряжения цикла. Основной характеристикой цикла является коэффициент асимметрии цикла

\[
R = \frac{p_{\text{min}}}{p_{\text{max}}}. \quad (20.1)
\]

Рис. 359

ных, и в особенности у хрупких материалов (типа чугуна), в которых появление трещин отрыва значительно повышает чувствительность к растягивающим напряжениям.

Предел выносливости определяется экспериментально на соответствующих испытательных машинах путем испытания партии образцов из данного материала в количестве не менее 6—12 штук. Предел выносливости зависит от многих факторов, в том числе от формы и размера образца или детали, способа ее обработки, состояния поверхности, вида напряженного состояния (растяжение — сжатие, крушение, изгиб), закона изменения нагрузки во времени при испытании, температуры и т. п.

В большинстве случаев переменные напряжения, вызывающие разрушение от усталости, представляют собой функцию времени \(a = \hat{f}(t) \) с периодом, равным \(T \). Совокупность всех значений напряжений за один период, называется циклом напряжений (рис. 359, a). На величину предела выносливости оказывают влияние максимальные \(p_{\text{max}} \) и минимальные \(p_{\text{min}} \) напряжения цикла. Основной характеристикой цикла является коэффициент асимметрии цикла

\[
R = \frac{p_{\text{min}}}{p_{\text{max}}}. \quad (20.1)
\]

Рис. 359

ных, и в особенности у хрупких материалов (типа чугуна), в которых появление трещин отрыва значительно повышает чувствительность к растягивающим напряжениям.

Предел выносливости определяется экспериментально на соответствующих испытательных машинах путем испытания партии образцов из данного материала в количестве не менее 6—12 штук. Предел выносливости зависит от многих факторов, в том числе от формы и размера образца или детали, способа ее обработки, состояния поверхности, вида напряженного состояния (растяжение — сжатие, крушение, изгиб), закона изменения нагрузки во времени при испытании, температуры и т. п.

В большинстве случаев переменные напряжения, вызывающие разрушение от усталости, представляют собой функцию времени \(a = \hat{f}(t) \) с периодом, равным \(T \). Совокупность всех значений напряжений за один период, называется циклом напряжений (рис. 359, a). На величину предела выносливости оказывают влияние максимальные \(p_{\text{max}} \) и минимальные \(p_{\text{min}} \) напряжения цикла. Основной характеристикой цикла является коэффициент асимметрии цикла

\[
R = \frac{p_{\text{min}}}{p_{\text{max}}}. \quad (20.1)
\]

Рис. 359
Различают также среднее напряжение цикла (рис. 359, б)

\[p_c = \frac{p_{\text{max}} + p_{\text{min}}}{2} \]

и амплитуду цикла

\[p_a = \frac{p_{\text{max}} - p_{\text{min}}}{2}. \]

Среднее напряжение цикла может быть как положительным, так и отрицательным; амплитуда цикла определяется абсолютной величиной (без учета знака).

В соответствии с (20.2) и (20.3), очевидно,

\[p_{\text{max}} = p_c + p_a; \quad p_{\text{min}} = p_c - p_a. \]

Наиболее опасным циклом является так называемый симметричный цикл (когда \(p_{\text{max}} = -p_{\text{min}} \) и \(p_c = 0 \)), при котором

\[R = \frac{p_{\text{min}}}{p_{\text{max}}} = -1. \]

Предел выносливости при симметричном цикле обозначается \(p_{-1} \).

При пульсирующем цикле, когда \(p_{\text{min}} = 0 \),

\[R = \frac{0}{p_{\text{max}}} = 0, \]

предел выносливости обозначают через \(p_0 \). При постоянной нагрузке, когда \(p_{\text{max}} = p_{\text{min}} = p \),

\[R = \frac{p}{p} = 1. \]

В самом общем случае при коэффициенте асимметрии \(R \) предел выносливости обозначают \(p_R \). В частном случае, например при \(R = 0,5 \), предел выносливости обозначают \(p_{-0,5} \). Циклы, имеющие одинаковые характеристики \(R \), называют подобными. Характеристика цикла, или коэффициент асимметрии, может изменяться от \(-\infty \) до \(+\infty \) (см. табл. 58).

Следует иметь в виду, что в случаях, когда речь идет об усталости при растяжении — сжатии или изгибе, вместо обозначений \(p_a, p_c, p_0, p_{\text{max}}, p_{\text{min}} \) и т. д. необходимо использовать обозначения соответственно \(\sigma_a, \sigma_c, \sigma_0, \sigma_{\text{max}}, \sigma_{\text{min}} \) и т. д., а в случае рассмотрения сопротивления материалов действию повторно-переменных касательных напряжений (при циклическом кручене) следует применять обозначения \(\tau_a, \tau_c, \tau_0, \tau_{\text{max}}, \tau_{\text{min}} \) и т. д.

20.2. Методы определения предела выносливости.

Диаграммы усталости

При испытании материала на выносливость чаще всего используют гладкие цилиндрические образцы диаметром 7—10 мм.

В зависимости от типа действующих в образце повторно-переменных напряжений (растяжения — сжатия, переменного изгиба, пере-
менного кручения), а также характеристики цикла (коэффициента асимметрии R), значения предела выносливости будут различными. Поэтому, ставя перед собой цель получить пределы выносливости материала, следует заранее указать, при каком виде деформации (нагибе, кручення и т. п.), а также при каком характере изменения напряжений за цикл, т. е. при каком значении R, требуется определить предел выносливости.

В соответствии с поставленной задачей выбирают испытательную машину. Для испытания на усталость при нагибе применяют машину (рис. 360), в которых циклические симметричные напряжения в испытываемом образце возникают за счет вращения образца, нагруженного укрепленным на конце с помощью шарикового подшипника грузом. Число оборотов в минуту таких машин обычно составляет около 3000 (50 Гц). Для испытаний используют также вибрационные машины с механическим (назначенные — до 50—100 Гц), электромагнитным (обычно на фиксированных частотах 50 и 100 Гц, возможно, с частотами от 15 до 500 Гц), электродинамическим (обычно в диапазоне частот от 5 до 5000 Гц), гидродинамическим и гидроэлектродинамическим (в большинстве конструкций частота возбуждения до 100 Гц, иногда до 400 Гц) возбуждением вибрации, а также магнитострикционные установки, частотный диапазон которой составляет 1—20 кГц.

Испытания проводятся при симметричном и асимметричном циклах нагружения в основном при нагибе или при растяжении — сжатии образцов.

При испытании партии образцов с целью определения предела выносливости необходимо обеспечивать в отдельных образцах различные напряжения для выявления закономерности наменения числа циклов до разрушения при тех или иных уровнях напряжений.

Обработка получаемых экспериментальных данных осуществляется путем построения кривых усталости, часто называемых кривыми Веллера (рис. 361).

Кривая усталости строится по точкам в координатах: максимальное напряжение цикла R_{max} (σ_{max} или t_{max}) — число циклов до разрушения N. Каждой точке соответствует один разрушенный образец, проработавший N циклов с заданным R_{max}.

По мере снижения напряжения образцы выдерживают до разрушения все большее число циклов, а кривая усталости $R_{\text{max}} = f(N)$ как бы приближается к некоторой асимптоте, параллельной оси абсцисс N. Число циклов, при котором кривая усталости практически начинает совпадать с асимптотой, может быть принято за базу испытания на выносливость, т. е. за такое число циклов, превышение которого при данном напряжении практически не должно приводить к разрушению образца. Таким образом, базовой испытанием на выносливость называется наибольшее число повторно-переменных нагружений, существен-
ние превышение которого не должно приводить к усталостным разруше-
ниям испытываемого образца при данном напряжении.
Для черных материалов (сталь, чугун и т. п.) в инженерной прак-
тике за базу испытания принимают 10 млн. циклов; для цветных
(медь, алюминий и т. п.) — база испытания берется в 5—10 раз больше,
чем для черных металлов.
В некоторых случаях, особенно для цветных материалов, кривая
усталости в координатах \(N, \sigma \) медленно стремится к асимптоте, по-
этому базу испытания приходится выбирать значительной большей.
В таких случаях вообще трудно говорить об истинном, так называемом
физическом пределе выносливости, поскольку такой практике
отсутствует. Говорят об условном пределе выносливости, понимая под
ним максимальное напряжение, при котором не происходит разрушения
при осуществлении определенного наперед заданного числа циклов,
принимаемого за базу испытания.
Кроме построения первичных диаграмм уста-
лости в координатах \(N, \sigma \max \) при растяжении —
сжатии и изгибе или в координатах \(N, \tau \max \) при
крещении, эти диаграммы строят также в полу-
логарифмических координатах \(\lg N, \sigma \max \) (рис. 362)
или \(\lg N, \tau \max \). В этом случае предел выносливости
будет характеризоваться ординатой горизонталь-
ного прямого участка кривой усталости.
Как показывают многочисленные испытания на усталость, для не-
которых материалов можно заметить следующие соотношения между
пределами выносливости при симметричном цикле, полученными при
изгибе \(\sigma \max _1 \), кручен и \(\tau \max _1 \) и растяжении —
сжатии \(\sigma \max _1 \) на гладких образцах. Для стали \(\sigma \max _1 = 0,7 \sigma \max _1 \), для чугуна \(\sigma \max _1 = 0,65 \sigma \max _1 \), \(\tau \max _1 = 0,8 \sigma \max _1 \),
для сталей и легких сплавов \(\tau \max _1 = 0,5 \sigma \max _1 \). Замечено также, что для
стали существуют следующие соотношения указанных пределов выносли-
вости с временем сопротивления при растяжении: \(\sigma \max _1 = 0,2 \sigma \max _1 \);
\(\sigma \max _1 = 0,4 \sigma \max _1 \); \(\tau \max _1 = 0,2 \tau \max _1 \). Для цветных металлов \(\sigma \max _1 = (0,24 — 0,50) \sigma \max _1 \).
Диаграмма предельных напряжений. Для характеристик сопро-
тивляемости материала повторно-переменным напряжениям при раз-
личной асимметрии цикла строится так называемая диаграмма предель-
ных напряжений (рис 363) в координатах \(\sigma \max _1, \sigma \min _1 \) — \(\sigma _c \) (диаграмма
Смита).
Ординаты кривой \(CAV \) диаграммы соответствуют значениям пред-
елов выносливости (максимальным значениям напряжения) при раз-
личной асимметрии циклов, которые берутся из первичных диаграмм
усталости.
Тангенс угла наклона луча, проведенного из начала координат до
пересечения с предельной кривой \(CAV \) и образующего угол \(\beta \) с осью
абсцисс \(\sigma _c \), будет
\[
\operatorname{tg} \beta = \frac{\sigma \max _1}{\sigma _c} = \frac{2\sigma \max _1}{\sigma \max _1 + \sigma \min _1} = \frac{2}{1 + R}.
\] (20.4)
Ординаты луча под углом \(\beta = 45^\circ \) определяют среднее напряжение
цикла \(\sigma _c \).
Диаграммы предельных напряжений обычно ограничивают в верх-
ней части пределом прочности или пределом текучести материала.
Примерный вид диаграммы предельных напряжений, ограниченной пределом текучести \(\tau_t \), для случая циклического кручения приведен на рис. 364.

Можно строить также диаграмму предельных амплитуд напряжений в координатах \(\sigma_a - \sigma_c \) (диаграмма Хейя). В этом случае (рис. 365) тангенс угла \(\beta \), образованного лучом, проведенным из начала координат, с предельной кривой будет выражаться так:

\[
\tan \beta = \frac{\sigma_a}{\sigma_c} = \frac{\sigma_{\text{max}} - \sigma_{\text{min}}}{\sigma_{\text{max}} + \sigma_{\text{min}}} = \frac{1 - R}{1 + R}.
\] (20.5)

Рис. 363

Рис. 364

Рис. 365

Рис. 366

Для оценки сопротивляемости материалов повторно-переменным напряжениям при сложном напряженном состоянии, например при совместном действии циклического изгиба и кручения, используют соответствующие усталостные машины, позволяющие получать интересующее нас напряженное состояние.

На рис. 366 приведены результаты экспериментов с гладкими образцами при различном сочетании переменных нормальных (\(\sigma \)) и касательных (\(\tau \)) напряжений при симметричном цикле. Через \(\sigma_1 \) и \(\tau_1 \) обозначены пределы выносливости соответственно только при изгибе и только при кручении, а через \(\sigma_a \) и \(\tau_a \) — предельные амплитуды при одновременном действии изгиба и кручения. Экспериментальные данные группируются около кривой, которая с достаточной степенью точ-
ности может быть аппроксимирована для конструкционных сталей тугой круга (рис. 366, кривая 1), описываемой уравнением
\[
\left(\frac{\sigma_a}{\sigma_{-1}} \right)^2 + \left(\frac{\tau_a}{\tau_{-1}} \right)^2 = 1. \tag{20.6}
\]

Для высокопрочных сталей и чугунов экспериментальные данные располагаются ближе к эллиптическим дугам (рис. 366, кривая 2).

В случае симметричного цикла с соблюдением синхронности и синфазности напряжений условие прочности в амплитудах главных напряжений в соответствии с третьей теорией прочности записывается так
\[
(\sigma_1)_a - (\sigma_b)_a = C_1.
\tag{20.7}
\]

а по четвертой теории прочности
\[
[(\sigma_1)_a - (\sigma_b)_a]^2 + [(\sigma_2)_a - (\sigma_b)_a]^2 + [(\sigma_3)_a - (\sigma_b)_a]^2 = 2C_1^2. \tag{20.8}
\]

При сложном напряженном состоянии, характеризуемом совместным действием циклического изгиба и кручения, условие прочности (20.8) с учетом соотношения \(\sigma_{-1} \approx \sqrt{3} \tau_{-1} \) будет иметь вид
\[
\sqrt{\frac{\sigma_a^2}{\sigma_{-1}^2} + \left(\frac{\tau_{a}^2}{\tau_{-1}^2} \right) + C_1^2} = \sigma_{-1}.
\tag{20.9}
\]

Это условие совпадает с выражением (20.6), вытекающим из экспериментальных данных.

20.3. Влияние на предел выносливости конструктивно-технологических факторов

Влияние концентрации напряжений. Наибольшее влияние на предел выносливости оказывает концентрация напряжений, степень которой характеризуется теоретическим коэффициентом концентрации \(\alpha \) (раздел 4.4). Как показывают опыты, предел выносливости образцов с концентраторами напряжений \(\rho_{-1k} \) оказывается больше вычисленного через теоретический коэффициент концентрации \(\alpha \), т. е.
\[
\rho_{-1k} \gg \frac{\rho_{-1}}{\alpha}.
\]

Поэтому наряду с теоретическим коэффициентом концентрации введен понятие эффективного, или действительного, коэффициента концентрации \(k \). Эти коэффициенты обозначены так: для нормальных напряжений
\[
k_\sigma = \frac{\sigma_{-1}}{\sigma_{-1k}},
\]

для касательных напряжений
\[
k_\tau = \frac{\tau_{-1}}{\tau_{-1k}},
\]

где \(\sigma_{-1} \) и \(\tau_{-1} \) — пределы выносливости, полученные при действии циклических нормальных и касательных напряжений на гладких образцах, \(\sigma_{-1k} \) и \(\tau_{-1k} \) — пределы выносливости образцов с концентраторами напряжений.
Практически оказалось удобнее определять эффективный коэффициент концентрации через так называемый коэффициент чувствительности материала к концентрации напряжений

$$q = \frac{k - 1}{\alpha - 1}.$$ \hspace{1cm} (20.10)

Коэффициент чувствительности материала к концентрации напряжений зависит от самого материала и величины коэффициента концентрации α. Ниже приведены ориентировочные значения коэффициента q_σ для различных материалов.

![Рис. 367](image1)

![Рис. 368](image2)

Материалы \hspace{1cm} q_σ

Литые материалы и материалы с внутренними источниками концентрации и дефектами (серый чугун и др.) \hspace{1cm} 0,1—0,2

Литые жаропрочные сплавы, стальное и алюминиевое литье, модифицированные чугуны \hspace{1cm} 0,1—0,4

Низкоуглеродистые стали, жаропрочные деформируемые сплавы, аустенитные коррозионноустойчивые стали, алюминиевые деформируемые сплавы \hspace{1cm} 0,3—0,5

Среднеуглеродистые стали, низколегированные стали \hspace{1cm} 0,4—0,6

Конструкционные легированные стали \hspace{1cm} 0,5—0,7

Высоколегированные стали (типа коррозионноустойчивых сталей мартенситного класса), титановые сплавы \hspace{1cm} 0,7—0,9

Для определения коэффициента чувствительности q в литературе имеются графики (рис. 367). Зная q, а также теоретический коэффициент концентрации напряжения α, можно определить согласно (20.10) эффективный коэффициент концентрации по формуле

$$k = 1 + q (\alpha - 1).$$ \hspace{1cm} (20.11)

Для материала, чувствительного к концентрации напряжения, когда $q \to 1$, $k \to \alpha$. Для материала, не чувствительного к концентрации напряжения, когда $q \to 0$, $k \to 1$.

Влияние концентрации напряжений при сложном напряженном состоянии оценивается на основе испытания образцов с концентраторами и получения соответствующих диаграмм (рис. 368), которые ана-
Логично диаграммам, приведенным для гладких образцов (рис. 366), описываются эллиптической зависимостью

\[
\frac{(\sigma_{\mathrm{ak}})}{(\sigma_{-1k})^2} + \frac{(\tau_{\mathrm{ak}})}{(\tau_{-1k})^2} = 1,
\]

(20.12)

где \(\sigma_{-1k}, \tau_{-1k}\) — пределы выносливости при симметричном цикле для образцов с концентраторами только при изгибе и только при кручении соответственно; \(\sigma_{\mathrm{ak}}, \tau_{\mathrm{ak}}\) — амплитудные значения напряжений при одновременном синхронном и синфазном изменении напряжений при сложном напряженном состоянии и различных сочетаниях переменных нормальных и касательных напряжений.

Влияние размеров (масштабный фактор). Эксперименты показывают, что с увеличением размеров образца предел выносливости падает. Это снижение обычно учитывается с помощью некоторого коэффициента, обозначаемого, например, применительно к нормальному напряжениям так:

\[
e_{\sigma} = \frac{(\sigma_{-1})_d}{(\sigma_{-1})_{d_0}},
\]

(20.13)

где \((\sigma_{-1})_{d_0}\) — предел выносливости гладкого лабораторного образца диаметром \(d_0 = 7 — 10\) мм; \((\sigma_{-1})_d\) — предел выносливости рассматриваемой детали диаметром \(d > d_0\). Поскольку \((\sigma_{-1})_d < (\sigma_{-1})_{d_0}\) то, очевидно, коэффициент влияния абсолютных размеров \(e_{\sigma} < 1\).

При наличии концентратора влияние масштаба оценивается также, как и для гладких образцов, с помощью коэффициента

\[
e_{\sigma_k} = \frac{(\sigma_{-1k})_d}{(\sigma_{-1k})_{d_0}}.
\]

(20.14)

Здесь \((\sigma_{-1k})_d\) и \((\sigma_{-1k})_{d_0}\) — пределы выносливости детали и лабораторного образца соответственно. На рис. 369 приведены кривые зависимости \(e = f(d)\). Здесь кривая 1 соответствует детали из углеродистой стали без концентратора; кривая 2 — детали из легированной стали \(\sigma_{\mathrm{b}} = 1000 — 1200\) МПа при отсутствии концентратора и из углеродистой стали при наличии концентратора; кривая 3 соответствует детали из легированной стали при наличии концентратора; кривая 4 — для любой стали при весьма большой концентрации напряжений (например, при концентрате типа надреза).

Снижение предела выносливости с увеличением размеров особенно сильно выражено у неоднородных материалов. Так, с увеличением размера образца из серого чугуна с 5—10 мм до 50 мм снижение \(\sigma_{\mathrm{b}}\) и \(\sigma_{-1}\) может достигнуть 60—70 %. Для углеродистой стали увеличение диаметра образца с 7 мм до 150 мм приводит к снижению предела выносливости примерно на 45 %.

Кроме эффективного коэффициента концентрации \((k_{\sigma})_d\) для образца вводят понятие эффективного коэффициента концентрации напря-
жений для детали \((k_0)_d\) учитывающего одновременно и размеры и концентрацию:

\[
(k_0)_d = \frac{(\sigma_{-1})_d}{(\sigma_{-1} \kappa)_d}.
\]
(20.15)

Рис. 370
Рис. 371

Если \((k_0)_d\) определяется на образцах достаточно большого диаметра (когда дальнейшее увеличение диаметра мало влияет на \((k_0)_d\)), то

\[
(k_0)_d = \frac{(\sigma_{-1})_d}{(\sigma_{\sigma})_d ((\sigma_{-1} \kappa))_d}.
\]
(20.16)

Влияние концентраторов напряжения существенно зависит от вида напряженного состояния. При циклическом кручении, например, коэффициент концентрации оказывается более низким, чем при изгибе при той же форме концентратора. Это видно, в частности, из рис. 370 и 371, на которых приведены значения эффективных коэффициентов концентрации для ступенчатых валов с галтелью соответственно для изгиба и кручения. Соотношение между \(k_\tau\) и \(k_\sigma\) может быть представлено формулой

\[
k_\tau = 1 + 0,6 (k_\sigma - 1).
\]

На рис. 372 приведены графики, характеризующие эффективные коэффициенты концентрации при растяжении — сжатии. Из графиков (рис. 370 и 372) видно, что значения эффективных коэффициентов при растяжении — сжатии несколько превышают таковые при изгибе. Более полное данные о коэффициентах концентрации и чувствительности к концентрации напряжений приведены в Приложении 2.

Влияние состояния поверхности. На предел выносливости существенное влияние оказывает состояние поверхности детали или образца. Это объясняется тем, что на поверхности почти всегда имеют место
дефекты, связанные с качеством ее механической обработки, а также с коррозией под влиянием окружающей среды. Поэтому усталостные трещины, как правило, начинаются с поверхности, а плохое качество последней приводит к снижению предела выносливости.

Влияние качества механической обработки поверхности на выносливость можно оценить некоторым коэффициентом $\beta \leq 1$, который зависит от материала, предела выносливости испытуемого образца и других факторов. На рис. 373 приведена зависимость коэффициента β от предела прочности для различных видов обработки поверхностей стальных образцов. Кривая 1 соответствует полированным образцам; 2 — шлифованным; 3 — образцам с тонкой обточкой; 4 — образцам с грубой обточкой; 5 — с наличием окиси. Из графика видно, что при грубой обточке предел выносливости снижается на 40%, а при наличии окиси — на 70%.

Влияние коррозии в процессе испытания на предел выносливости при ротационном изгибе показано в виде графиков на рис. 374, где по оси ординат отложено значение коэффициента

$$\beta_k = \frac{\sigma_{-1}^k}{\sigma_{-1}}$$

выражающего отношение предела выносливости корродированного образца σ_{-1}^k к пределу выносливости полированного образца σ_{-1}, а по оси абсцисс — время выдержки образца на испытаниях в воде при наличии концентратов напряжений; 2 — в пресной воде при отсутствии концентратов; 3 — в морской воде при отсутствии концентратов.

Влияние пауз. На предел выносливости влияют влияние пауз (перерывы нагружения). Иногда за счет пауз число циклов до разрушения увеличивается на 15—20%. Увеличение числа циклов тем больше, чем чаще паузы и чем они длительнее (последний фактор влияет слабее).

Влияние перегрузок (нагрузок, больших предела выносливости) на величину предела выносливости зависит от характера перегрузок. При малых перегрузках до определенного числа циклов сопротивление усталостному разрушению повышается, при больших перегрузках после определенного числа циклов — понижается.

Влияние тренировки. Если создавать в образце напряжения немного ниже предела выносливости, а затем постепенно их увеличивать, то сопротивление усталостному разрушению повышается, что свидетельствует о том, что материал способен выдержать большие нагрузки без разрушения.
пользуется в технике. Особого эффекта можно достигнуть при постепенном увеличении перегрузки. При этом упрочнение можно получить при сравнительно кратковременных тренировках (порядка 50 000 циклов), но при сильных перегрузках.

Влияние температуры. Применительно к обычным конструкционным материалам повышение температуры приводит к снижению предела выносливости, а снижение температуры — к повышению предела выносивости как гладких образцов, так и образцов с концентраторами.

Для стали при температурах выше 573 К с повышением на каждые 100 К предел выносливости падает на 15—20 %. Однако для некоторых сталей с повышением температуры от 293 до 573 К наблюдается некоторое повышение предела выносливости. Это повышение, по-видимому, связано с физико-химическими процессами, протекающими в материале под одновременным воздействием температуры и циклических напряжений. Влияние концентрации напряжений на выносливость, как правило, с повышением температуры уменьшается.

При понижении температуры от 293 до 83 К предел выносливости у некоторых сталей увеличивается более чем вдвое, хотя ударная вязкость при этом существенно падает.

20.4. Расчет на прочность при повторно-переменных нагрузках

При простых видах деформации детали, работающей при симметричном цикле, например, при циклическом растяжении — сжатии или изгибе и фактически действующем знакопеременном напряжении \(\sigma_a \), запас прочности можно определить по формуле

\[
n_\sigma = \frac{(\sigma_{-1})_d}{\sigma_a},
\]

где \((\sigma_{-1})_d \) — предел выносливости детали при растяжении — сжатии или изгибе, который может быть определен по пределу выносливости лабораторных полированных образцов \((\sigma_{-1})_d \), с учетом эффективного коэффициента концентрации \(k_{\sigma} \), масштабного фактора \(\varepsilon_{\sigma} \), состояния поверхности и среды, характеризуемых соответственно коэффициентами \(\beta \) и \(\beta_{\kappa} \), по формуле

\[
(\sigma_{-1})_d = \frac{(\sigma_{-1})_d}{(k_{\sigma})_d \varepsilon_{\sigma} \beta \beta_{\kappa}}.
\]

В случае сложного напряженного состояния согласно (20.9)

\[
(\sigma_{-1})_d = \sqrt{\sigma_a^2 + \left(\frac{(\sigma_{-1})_d}{(\tau_{-1})_d}\right)^2 \tau_a^2}
\]

или согласно (20.6)

\[
\frac{\sigma_a^2}{(\sigma_{-1})_d^2} + \frac{\tau_a^2}{(\tau_{-1})_d^2} = 1.
\]

(20.17)

Тогда, учитывая, что коэффициенты запаса прочности

\[
n_{\sigma} = \frac{(\sigma_{-1})_d}{\sigma_a}
\]}
\[n_\tau = \frac{(\tau - \tau_K)}{\tau_a}, \]
на основании (20.17) получаем
\[\frac{1}{n^2} = \frac{1}{n_\sigma^2} + \frac{1}{n_\tau^2}, \]
откуда запас прочности при сложном напряженном состоянии определяется формулой
\[n = \frac{n_\sigma n_\tau}{\sqrt{n_\sigma^2 + n_\tau^2}}. \]
(20.18)

В случае определения запаса прочности при асимметричном цикле и любом виде циклического нагружения (изгиб, растяжение — сжатие, крушение) можно исходить из схематизированной диаграммы предельных напряжений для гладких образцов (рис. 375), представляя её в виде прямой, проходящей через точки A и B с координатами 0, \(\sigma_0 \) и \(\sigma_0/2, \sigma_0 \), уравнение которой имеет вид
\[\sigma_{\text{max}} = \sigma_{-1} + \frac{\sigma_0 - \sigma_{-1}}{\sigma_0} \sigma_c = \sigma_{-1} + \]
\[+ \left(1 - \frac{2\sigma_{-1} - \sigma_0}{\sigma_0}\right) \sigma_c \]
или
\[\sigma_{\text{max}} = \sigma_{-1} + (1 - \psi_\sigma) \sigma_c, \]
(20.19)
где \(\psi_\sigma \) — коэффициент чувствительности материала к асимметрии цикла:
\[\psi_\sigma = \frac{2\sigma_{-1} - \sigma_0}{\sigma_0}. \]
(20.20)

При действия касательных напряжений уравнение предельной кривой максимальных напряжений по аналогии с (20.19) имеет вид
\[\tau_{\text{max}} = \tau_{-1} + (1 - \psi_\tau) \tau_c. \]
(20.21)

Значения коэффициентов \(\psi_\sigma \) и \(\psi_\tau \) для сталей с различным временным сопротивлением приведены ниже.

<table>
<thead>
<tr>
<th>(\sigma_b), МПа</th>
<th>(\psi_\sigma)</th>
<th>(\psi_\tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>350—550</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>520—750</td>
<td>0,05</td>
<td>0</td>
</tr>
<tr>
<td>700—1000</td>
<td>0,1</td>
<td>0,05</td>
</tr>
<tr>
<td>1000—1200</td>
<td>0,2</td>
<td>0,10</td>
</tr>
<tr>
<td>1200—1400</td>
<td>0,25</td>
<td>0,15</td>
</tr>
</tbody>
</table>

Предельная амплитуда напряжений для гладкого образца на основании (20.19) может быть выражена формулой
\[\sigma_a = \sigma_{\text{max}} - \sigma_c = \sigma_{-1} - \psi_\sigma \sigma_c. \]
Пределная амплитуда напряжений для детали \((\sigma_{ak})_d\) будет

\[
(\sigma_{ak})_d = \frac{\sigma_a}{(k_o)_D} = \frac{\sigma_{-1} - \Psi_0 \sigma_a}{(k_o)_D},
\]

(20.22)

а уравнение кривой предельных напряжений для детали (рис. 376) может быть записано в виде

\[
(\sigma_{\text{max}})_d = (\sigma_{ak})_d + \sigma_c = \frac{\sigma_{-1}}{(k_o)_D} + \left[1 - \frac{\Psi_0}{(k_o)_D}\right] \sigma_c.
\]

(20.23)

Для определения запаса прочности детали, напряжение в которой на диаграмме предельных напряжений (рис. 377) характеризуется точкой \(M\) с координатами \(\sigma_a, \sigma_c\), необходимо найти координаты точки \(N\), находящейся на пересечении луча, выходящего из начала координат, с кривой предельных напряжений для детали. Координаты точки \(N\) определяются из совместного рассмотрения уравнений кривой (линии) \(AN\) предельных напряжений для детали

\[
(\sigma'_{\text{max}}, k)_d = \frac{\sigma_{-1}}{(k_o)_D} + \left[1 - \frac{\Psi_0}{(k_o)_D}\right] \sigma_c'
\]

(20.24)

и уравнения луча

\[
\sigma'_{\text{max}} = \frac{\sigma_{\text{max}}}{\sigma_c} \sigma_c' = \tan \beta \cdot \sigma_c',
\]

(20.25)

где штрихами обозначены текущие координаты.

Ордината точки \(N\), лежащей на пересечении прямых \(AN\) и \(0N\), будет одна и та же, т. е.

\[
(\sigma_{\text{max}}, k)_d = \sigma'_{\text{max}},
\]

или

\[
\frac{\sigma_{-1}}{(k_o)_D} + \left[1 - \frac{\Psi_0}{(k_o)_D}\right] \sigma_c = \frac{\sigma_{\text{max}}}{\sigma_c} \sigma_c',
\]

592
откуда находим абсциссу точки N:

$$\sigma_c' = \frac{\sigma_1}{(k_\sigma)d \left[\frac{\sigma_{\text{max}}}{\sigma_c} - 1 - \frac{\psi_\sigma}{(k_\sigma)d} \right]} = \frac{\sigma_{-1}\sigma_c}{(k_\sigma)d \sigma_{\text{max}} - \sigma_c (k_\sigma)d + \psi_\sigma\sigma_c}.$$

Учитывая, что $\sigma_a = \sigma_{\text{max}} - \sigma_c$, получаем

$$\sigma_c' = \frac{\sigma_{-1}\sigma_c}{(k_\sigma)d \sigma_a + \psi_\sigma\sigma_c}.$$

Подставляя это значение σ_c' в (20.25) и обозначая эту ординату $(\sigma_{\text{max}})'$ через $(\sigma_{rk})_d$, находим

$$(\sigma_{rk})_d = \frac{\sigma_{-1}\sigma_{\text{max}}}{(k_\sigma)d \sigma_a + \psi_\sigma\sigma_a}.$$

Таким образом, окончательное выражение для запаса прочности записывается так:

$$n_\sigma = \frac{(\sigma_{rk})_d}{\sigma_{\text{max}}} = \frac{\sigma_{-1}}{(k_\sigma)d \sigma_a + \psi_\sigma\sigma_a}.$$

(20.27)

Аналогично при кручении

$$n_\tau = \frac{\tau_{-1}}{(k_\tau)d \tau_a + \psi_\tau\tau_a}.$$

(20.28)

При сложном сопротивлении и несимметричном цикле запас прочности может быть определен по формуле

$$n = \frac{n_\sigma n_\tau}{\sqrt{n_\sigma^2 + n_\tau^2}},$$

где n_σ и n_τ находят соответственно по формулам (20.27) и (20.28).

Выбор запаса прочности при расчетах на действие повторно-переменных напряжений зависит от точности определения усилий и напряжений, от однородности материала, качества обработки детали и других факторов. При повышенной точности определения напряжений (в частности, с использованием тензометрирования), однородном материале и качественной обработке принимают запас прочности $n = 1, 3, 1, 4$.

Для обычной точности определения усилий и умеренной однородности материала $n = 1, 44 - 1, 7$. При пониженной точности определения усилий и напряжений, а также пониженной однородности материала $n = 1, 7 - 3, 0$.

Остановимся на порядке проектровочного расчета на выносильность, например, штока поршневого двигателя, когда даны нагрузки, действующие на проектируемую деталь (p_{max} и p_{min}); задан материал, т. е. известны σ_b, τ, σ_{-1}, ψ_σ; известна технология обработки детали; известен тип концентратора (предположим, задан диаметр поперечного отверстия в детали d) и требуется определить размеры детали. При решении поставленной задачи прежде всего устанавливают опасное сечение детали, которым, очевидно, будет сечение в месте концентратора. Так как соотношения диаметра отверстия концентратора и диаметра самой детали неизвестны, следует задаться теоретическим коэффициентом концентрации ψ.

593
α_0 и для данного материала по известному (σ_n) из графика (рис. 367) при данном α_0 определить коэффициент чувствительности материала к концентрации напряжений q_0, а затем по формуле

$$(k_0^\alpha)_d = 1 + q_0 (\alpha_0 - 1)$$

найти значение эффективного коэффициента концентрации. Из графика (рис. 373) находят значение коэффициента β, характеризующего качество обработки поверхности. Задавшись коэффициентом ε, учитывая размеры, определяют эффективный коэффициент концентрации детали

$$(k_0^\alpha)_D = \frac{(k_0^\alpha)_d}{\varepsilon \beta}.$$

Затем, задавшись коэффициентом запаса прочности n_0, по формуле

$$n_0 = \frac{\sigma_{-1}}{(k_0^\alpha)_D \sigma_0 - \psi_0 \sigma_c} = \frac{\sigma_{-1} F}{(k_0^\alpha)_D \frac{\rho_{\max} - \rho_{\min}}{2} + \psi_0 \frac{\rho_{\max} + \rho_{\min}}{2}}$$

находят площадь поперечного сечения детали

$$F = \frac{n_0}{\sigma_{-1}} \left[(k_0^\alpha)_D \frac{\rho_{\max} - \rho_{\min}}{2} + \psi_0 \frac{\rho_{\max} + \rho_{\min}}{2} \right]$$

и ее диаметр

$$d = \sqrt{\frac{4F}{\pi}}.$$

По окончании расчета необходимо проверить правильность выбранного коэффициента ε по графику (рис. 369) при известном теперь диаметре детали d. В случае резкого расхождения полученного значения ε с принятым ранее расчет необходимо уточнить.

В случае проверочного расчета известны форма и размеры детали (предположим, рельеф имеет форму ступенчатого стержня, подверженного осевой повторно-переменной нагрузке с заданной асимметричной циклой); заданы максимальный диаметр d и радиус закругления r в месте пересечения разных диаметров вала; известен материал детали (σ_b, σ_s, σ_{-1}) и качество ее механической обработки. Требуется определить допускаемое усиление, которое может выдержать деталь. Решать поставленную задачу следует в таком порядке.

1. Установить теоретический коэффициент концентрации пользуясь, например, графиком, приведенным на рис. 372.
2. По графику (рис. 367) найти коэффициент чувствительности к концентрации напряжений q_0.
3. Определить эффективный коэффициент концентрации

$$(k_0^\alpha)_d = 1 + q_0 (\alpha_0 - 1).$$

4. По графику (рис. 369) найти коэффициент влияния абсолютных размеров ε.
5. По графику (рис. 373) определить коэффициент β, учитывающий качество обработки поверхности.
6. Найти эффективный коэффициент концентрации напряжений для детали

$$(k_0^\alpha)_D = \frac{(k_0^\alpha)_d}{\varepsilon \beta}.$$
7. Задаться коэффициентом запаса прочности \(n_\sigma \).
8. Определить амплитуду напряжений, исходя из формулы

\[
\sigma_a = \frac{\sigma_{-1}}{(k_\sigma)_D \sigma_a + \psi_\sigma \sigma_c};
\]

\[
\sigma_a = \frac{\sigma_{-1}}{n_\sigma \left(\frac{(k_\sigma)_D}{\sigma_a} + \psi_\sigma \cdot \frac{\sigma_c}{\sigma_a}\right)}.
\]

Обычно для некачественных сталей \(\psi_\sigma = 0 \), тогда

\[
\sigma_a = \frac{\sigma_{-1}}{n_\sigma (k_\sigma)_D}.
\]

9. Определить допускаемое амплитудное усиле

\[
p_a = F_{min} \sigma_a = \frac{\pi d^2}{4} \frac{\sigma_{-1}}{n_\sigma (k_\sigma)_D}.
\]

10. Найти среднее усиле

\[
p_c = \frac{p_a}{1 - R}.
\]

11. Определить максимальное и минимальное усиле цикла

\[
p_{max} = p_a + p_c;
\]

\[
p_{min} = p_{max} R.
\]

Наконец, рассмотрим порядок определения запаса прочности для вращающегося круглого трубчатого вала с поперечным отверстием для смазки \(\delta \), испытывающего переменный изгиб при симметричном цикле с заданным \(M_{max} = M_a \) совместно с переменным кручением с \(M_{kr max} \) при известной асимметрии цикла \(R \). Известен наружный \(D \) и внутренний \(d \) диаметры вала, материал вала \((\sigma_b, \sigma_t, \sigma_{-1}, \sigma_{-1}) \), а также качество механической обработки поверхности вала.

Задачу следует решать в таком порядке.

1. Определить номинальные напряжения в веле от изгиба и кручения (разделы 9.1, 10.1)

\[
\sigma_{max} = \frac{M_{max}}{W};
\]

\[
\sigma_a = \sigma_{max}, \sigma_c = 0;
\]

\[
\tau_{max} = \frac{M_{kr max}}{W_p};
\]

\[
\tau_{min} = R \tau_{max};
\]

\[
\tau_a = \frac{\tau_{max} - \tau_{min}}{2};
\]

\[
\tau_c = \frac{\tau_{max} + \tau_{min}}{2}.
\]
2. Определить коэффициент концентрации при изгибе при известном δ/D (рис. 188).

3. Определить по графику (рис. 367) при найденном α_σ и известном σ_φ коэффициент чувствительности к концентрации напряжений q_σ и найти эффективный коэффициент концентрации при изгибе

$$k_\sigma = 1 + q_\sigma (\alpha_\sigma - 1).$$

4. Выбрав по графику (рис. 369) ε, а по графику (рис. 373) $-\beta$, определить эффективный коэффициент концентрации для детали

$$(k_\sigma)_D = \frac{k_\sigma}{\varepsilon \beta}.$$

5. Определить запас прочности при изгибе по формуле

$$n_\sigma = \frac{\sigma - 1}{(k_\sigma)_D \sigma_a + \psi_\sigma \sigma_c} = \frac{\sigma - 1}{(k_\sigma)_D \sigma_a}$$

(так как для рассматриваемого случая $\sigma_a = 0$).

6. Установить коэффициент концентрации при кручине α_τ, а также, приняв $q_\tau = q_\sigma$, определить эффективный коэффициент концентрации при кручине

$$k_\tau = 1 + q_\tau (\alpha_\tau - 1).$$

Приняв те же значения ε и β, что и при изгибе, найти эффективный коэффициент концентрации для детали при кручине

$$(k_\tau)_D = \frac{k_\tau}{\varepsilon \beta}.$$

7. Определить запас прочности при кручине

$$n_\tau = \frac{\tau - 1}{(k_\tau)_D \tau_a + \psi_\tau \tau_c}.$$

8. Вычислить общий коэффициент запаса прочности

$$n = \frac{n_\sigma n_\tau}{\sqrt{n_\sigma^2 + n_\tau^2}}.$$

В Приложении 1 приведены данные о пределе выносимости основных конструкционных материалов.

20.5. Понятие о малоцикловой усталости материалов

Во многих реальных инженерных конструкциях наблюдается разрушение после относительно небольшого числа циклов нагружения, выражаемого несколькими тысячами. При этом в материале могут происходить явления, типичные для усталости (возникновение и развитие трещины). Поэтому разрушение материала при сравнительно небольшим числе циклов нагружения (10^2 — 10^6) называют малоцикловой усталостью. Это является определенным упрощением, так как для конструкционных пластичных материалов при числе циклов до 10^3 —
— 2 \cdot 10^4 может иметь место квазинстатическое разрушение. Разрушение от малоцикловой усталости обычно происходит при значительной (около 1%) пластической циклической деформации в макрообъёмах рассматриваемого элемента конструкции.

Расчеты элементов конструкций на малоцикловую усталость сводятся на экспериментальных данных изучения закономерностей сопротивления деформированию и разрушению при циклическом упруго-пластическом деформировании, а также исследованиях кинетики неоднородного напряженно-деформированного состояния и накопления повреждений в зонах концентрации — местах вероятного разрушения.

Сопротивление материалов циклическому упруго-пластическому деформированию обычно изучают при однородном напряжённом состоянии, используя два основных вида нагружения: мягкое — при постоянной амплитуде напряжений и жесткое — при постоянной амплитуде деформации.

Рис. 378

Процесс упруго-пластического деформирования при малоцикловом нагружении исследуется обычно путем построения петель гистерезиса в координатах напряжение — деформация. Схематическое представление таких петель для указанных основных видов нагружения приведено на рис. 378 (a — мягкое нагружение, b — жесткое нагружение), где цифры указывают на номера циклов нагружения.

Мягкое нагружение. На рис. 379 для случая одноосного растяжения — сжатия диаграмма циклического деформирования при мягким нагружением построена в относительных координатах \(\bar{\sigma} = \sigma / \sigma_t; \ \bar{\varepsilon} = \varepsilon / \varepsilon_t \). Здесь в качестве предела текучести \(\sigma_t \) обычно принимают предел пропорциональности в исходном полукольце, обозначаемом нулевым; \(\varepsilon_t \) — относительная деформация, соответствующая пределу текучести (пропорциональности).

После исходного деформирования \(OAB \) и разгрузки \(BC \), реверсивного деформирования \(CDL \) и разгрузки \(LM \) образуется, вообще говоря, незамкнутая петля упруго-пластического деформирования первого полуцикла: ее ширина обозначена через \(\delta^{(1)} \). При дальнейшем повторении нагружения и разгрузки получим кривые циклического деформирования в различных полуциклах и соответствующие им петли шириной \(\delta^{(k)} \).
Переход к непрерывному участку диаграммы в k-м полуцикле наблюдается при напряжениях и деформациях, равных $\sigma^{(k)}$ и $\varepsilon^{(k)}$. Эти величины являются пределами текучести (пропорциональности) в данном полуцикле и соответствующими им деформациями.

В зависимости от свойств материала в процессе циклического упруго-пластического деформирования пределы текучести (пропорциональности) и форма кривых деформирования могут изменяться. Так, для больших количеств металлов и сплавов при растяжении образца напряжением, превышающим предел текучести (пропорциональности) при последующей разгрузке и реверсивном деформировании, т. е. при сжатии, предел текучести (пропорциональности) оказывается ниже исходного. Это явление, названное эффектом Баушингера, наблюдается не только при растяжении — сжатии, но и при других видах напряженного состояния.

Для объяснения эффекта Баушингера был предложен ряд моделей. Наиболее вероятной причиной изменения пределов упругости, пропорциональности и условного предела текучести при реверсивном нагружении, по-видимому, являются остаточные ориентированные микронапряжения, возникающие в предшествующей пластической деформации. Они и способствуют более раннему возникновению пластической деформации при повторной нагрузке другого знака.

Модель Мазинга — одна из первых моделей. Мазинг рассмотрел реверсивное деформирование поликристаллического образца в предположении, что зерна, обладающие анизотропией свойств, различным образом ориентированы по отношению к деформирующей нагрузке, деформируются по-разному и имеют различные пределы текучести. Эта модель позволила установить следующую зависимость предела текучести при первом реверсивном нагружении для симметричного цикла от величины исходного напряжения в нулевом полуцикле, т. е. от степени предшествующей деформации:

$$\tilde{\sigma}_T^{(1)} = \sigma^{(0)} - \tilde{S}_T^{(1)} \quad \text{при} \quad \tilde{S}_T^{(1)} = 2,$$

где $\tilde{S}_T^{(1)}$ — предел текучести (пропорциональности) при разгрузке.
Однако, как показали многочисленные эксперименты, для многих материалов предел текучести (пропорциональности) при разгрузке \(S_T^{(1)} \neq 2 \). Значения \(S_T \) для некоторых материалов приведены ниже.

<table>
<thead>
<tr>
<th>Материал</th>
<th>(S_T)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(A)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сталь</td>
<td>1,13</td>
<td>0</td>
<td>—</td>
<td>3,55</td>
<td>20—30</td>
</tr>
<tr>
<td>1X18Н9Т (аустенизация)</td>
<td>1,66</td>
<td>0,15</td>
<td>—</td>
<td>1,13</td>
<td>10</td>
</tr>
<tr>
<td>30ХС (отожг.)</td>
<td>1,61</td>
<td>0,03</td>
<td>—</td>
<td>0,90</td>
<td>—</td>
</tr>
<tr>
<td>30ХГС (закалка, отпуск 953К)</td>
<td>1,34</td>
<td>—</td>
<td>0,01</td>
<td>1,2</td>
<td>—</td>
</tr>
<tr>
<td>30ХСТ (закалка, отпуск 633К)</td>
<td>1,60</td>
<td>—</td>
<td>0,10</td>
<td>0,86</td>
<td>—</td>
</tr>
<tr>
<td>теплоустойчивая</td>
<td>1,45</td>
<td>—</td>
<td>0,02</td>
<td>1,93</td>
<td>—</td>
</tr>
<tr>
<td>Сплав</td>
<td>1,84</td>
<td>0,4</td>
<td>—</td>
<td>1,15</td>
<td>—</td>
</tr>
<tr>
<td>В96 (естественное старение)</td>
<td>1,67</td>
<td>0,28</td>
<td>—</td>
<td>1,35</td>
<td>—</td>
</tr>
<tr>
<td>АК8 (искусственное старение)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

При последующем циклическом деформировании сопротивление материалов упруго-пластическому деформированию изменяется, что ведет к изменению предела текучести (пропорциональности) \(S_T^{(k)} \) (рис. 379).

С увеличением числа циклов эта характеристика может возрастать или убывать в зависимости от свойств материалов (рис. 380; линия 1 соответствует сплаву Д16, 2 — стали 30ХГСА). Изменяется она и в зависимости от степени исходного деформирования \(e_0 \). Однако для практических расчетов обычно принимают, что предел текучести (пропорциональности) не зависит от числа циклов и степени исходного деформирования.

Основным параметром в исследованиях малоцикловой усталости при малых напряжениях является ширина петли гистерезиса — пластическая (остаточная) деформация \(\delta^{(2n-1)} \) для нечетных и \(\delta^{(2n)} \) для четных половиц циклов (рис. 379). Разность ширины петели в двух соседних половицах характеризует накопленную за цикл одностороннюю пластическую деформацию.

Кинетика изменения ширины петели с числом циклов различна для разных материалов. Для циклически упрочняющихся материалов (например, стали 1X18Н9Т, алюминиевых сплавов В96, Д16Т, АД33, АК8) ширина петели с числом циклов уменьшается, а накопленная в процессе циклического деформирования пластическая деформация стремится к некоторой предельной величине. Для таких материалов, как показывают эксперименты, изменение ширины петели с числом половиц циклов хорошо описывается зависимостью

\[
\delta^{(k)} = \frac{\delta^{(1)}}{k^{(2)}},
\]

где параметр \(\alpha > 0 \) зависит от материала и исходной деформации и возрастает с увеличением последней. В первом приближении, однако, его считают постоянным.

599
Ширина петли в первом полукружье зависит от начальной деформации $\varepsilon^{(0)}$ и предела текучести $\sigma^{(1)}_t$ и при симметричном цикле нагружения может быть представлена выражением

$$
\overline{\varepsilon}^{(1)} = A \left(\varepsilon^{(0)} - \frac{\sigma^{(1)}_t}{2} \right). \quad (20.31)
$$

Здесь A — константа материала, характеризующая сопротивление деформированию в первом полукружье.

В случае циклически разупрочняющихся материалов (например, теплостойких сталей, чугунов) ширина петли в числе полукружий увеличивается, а также увеличивается суммарная деформация. Зависимость ширины петли от числа полукружий достаточно хорошо описывается выражением

$$
\overline{\varepsilon}^{(k)} = \overline{\varepsilon}^{(1)} e^{\beta(k-1)}, \quad (20.32)
$$

где β — константа материала, зависящая от степени исходного деформирования.

Для некоторых материалов константы α, β, A приведены выше.

В случае циклически стабильных материалов (например, среднеуглеродистых и аустенитных сталей) ширина петли упрого-пластического гистерезиса практически не зависит от числа циклов деформирования. При различной ширине петель в четных и нечетных полукружиях происходит одностороннее накопление деформации. Для материалов, стабилизирующихся при определенном числе полукружий $k = k^*$, ширина петли определяется по формуле (20.30) при $k = k^*$.

Деление материалов на циклически упрочняющиеся, стабильные и разупрочняющиеся несколько условно, так как поведение определенного материала при циклическом деформировании зависит от температуры, его исходного состояния (наклеп, термообработка) и других факторов. Например, наклеп — предварительное пластическое деформирование при комнатной температуре — ведет к циклическому разупрочнению. То же происходит и при закалке. Так что в нестабильном состоянии материал циклически разупрочняется. В то же время в стабильном состоянии (отжиг) наблюдается циклическое упрочнение.

Пластические свойства материала после определенного числа циклов нагружения характеризуют суммарная пластическая деформация, накопленная за k полукружий. Она связана с шириной петли в четных и нечетных полукружиях (рис. 379) выражением

$$
\overline{\varepsilon}^{(k)} = \varepsilon^{(0)} - \sigma^{(0)} + \sum_{k=1}^{n} (-1)^k \overline{\varepsilon}^{(k)}. \quad (20.33)
$$

Жесткое нагружение. При таких испытаниях за счет перераспределения упругой и пластической составляющих деформации максимальные напряжения от цикла к циклу могут измениться. В качестве примера на рис. 381 приведены результаты испытания сплава В96

Кинетика изменения максимальных напряжений зависит от свойств материала и находится в соответствии с поведением различных групп материалов при многократном нагружении. Так, в случае циклически упрочняющихся материалов при жестком нагружении амплитуда напряжений вначале возрастает, а в случае циклически разупрочняющихся — постепенно снижается. Однако эти процессы сравнительно быстро затухают и можно говорить о существовании предельного асимптотического размаха напряжений, или размаха «насыщения», зависящего от размаха циклической деформации. Обычно он берется при числе циклов, равном половине разрушающего, т. е. при средней долговечности.
Разрушение при циклическом упруго-пластическом деформировании. Сопротивление разрушению при циклическом деформировании существенно зависит от характера нагружения (мягкое или жесткое) и циклических деформационных свойств материала.

При мягком нагружении циклически разупрочняющихся или стабильных металлов накапливаются пластические деформации, которые могут привести к двум типам разрушения — квазистатическому и усталостному. Квазистатическое связано с возрастанием остаточных деформаций до уровня, соответствующего разрушению при однократном статическом нагружении. Разрушение усталостного характера связано с накоплением повреждений, образованием прогрессирующих трещин при существенно меньшей пластической деформации. Возможны и промежуточные формы разрушения, когда образуются трещины усталости на фоне заметных пластических деформаций.

Циклически упрочняющиеся материалы разрушаются только от усталости. Для них кривая усталости в интервале числа циклов 10^4—10^8 достаточно хорошо описывается эмпирическим уравнением

$$\sigma_a N^{\mu} = \text{const},$$

где σ_a — амплитуда напряжения; μ — показатель степени; N — число циклов до разрушения.

Для квазистатического разрушения в качестве критерия перехода в предельное состояние принимают величину накопленной пластической деформации ε_p (20.33) при циклическом нагружении, соответственно.
стующую разрушению при однократном статическом нагружении, т. е.

$$\varepsilon_{пл}^{(k)} = \varepsilon_в.$$ (20.35)

Зная циклические параметры материала, из формулы (20.35) можно с учетом выражений для накопленной деформации (20.31) и ширины петли гистерезиса (20.30) определить для заданной амплитуды нагрузжений число циклов до разрушения.

При жестком нагружении нет накопления деформаций, что исключает возможность квазистатического разрушения. В этом случае все материалы разрушаются по усталостному типу с образованием трещин.

Эксперименты с различными материалами показали, что зависимости между размахом пластической деформации за цикл $\varepsilon_{пл} = 2\varepsilon_{a пл}$ и числом циклов до разрушения в двойных логарифмических координатах близки к линейным. Это явилось основанием для следующего эмпирического соотношения между циклической долговечностью N и размахом пластической деформации за цикл (формула Мэгсона—Коффин): $\varepsilon_{пл}N^m = M,$ (20.36)

где m и M — константы материала.

Показатель степени m для большинства материалов можно принять приблизительно равным 0,5. Постоянную M легко определить в предположении, что формула (20.36) справедлива и при однократном нагружении до разрушения, т. е. при $N = 1/4$ и $\varepsilon_{пл} = \varepsilon_в$, где $\varepsilon_в$ — истинная деформация при статическом разрыве. Тогда $M = \frac{1}{4} \varepsilon_в$ и

$$\varepsilon_{пл}N^{0,5} = \frac{1}{2} \varepsilon_в.$$ (20.37)

С учетом истинной деформации формула (20.36) принимает вид

$$\varepsilon_{a пл} = \frac{1}{2} \varepsilon_{пл} = \frac{1}{4} \ln\frac{1}{1 - \psi} N^{-0,5}. $$ (20.38)

Уравнения (20.36) — (20.38) можно считать основными зависимостями для оценки долговечности при малом числе циклов нагружения, когда преобладающее значение имеет сопротивление материала пластической деформации.

С увеличением числа циклов до разрушения, т. е. с уменьшением размаха пластической деформации, упрогая часть деформации становится соизмеримой с пластической. В связи с этим предложены критерии малоциклового разрушения в упрогих и суммарных деформациях.

Опыты с многими материалами показывают, что в области долговечности $10 - 10^6$ циклов имеет место следующая зависимость между размахом упрогой деформации за цикл, вычисленной в результате делиения асимптотического размаха напряжения (соответствующего циклической долговечности N) на модуль упрогости E, и числом циклов до разрушения:

$$\varepsilon_у = \frac{L}{E} N^{-\kappa}, $$ (20.39)

где L и κ — постоянные материала.

602
Из уравнений (20.36) и (20.39) можно получить зависимость между размахом полной деформации и циклической долговечностью

$$\varepsilon = \varepsilon_{\text{пл}} + \varepsilon_{y} = MN^m + \frac{L}{E} N^\kappa. \quad (20.40)$$

В области малых долговечностей основное значение имеет пластическая деформация, так как упругая составляющая деформации незначительна и суммарная деформация асимптотически приближается к прямой пластической составляющей (рис. 382). При больших долговечностях становится незначительной роль убывающей пластической деформации, в то время как упругая деформация вследствие малого наклона линии \(\varepsilon_y\) сохраняет высокое значение; линия суммарной деформации асимптотически приближается к прямой упругой деформации. Переходная точка между двумя кривыми для большинства материалов находится в области 10^4 циклов.

При использовании критерия (20.40), как показали эксперименты, константы следует принять такими:

$$m = 0,6; \quad \kappa = 0,12; \quad M = e_b^{0,6}; \quad L = 3,5\sigma_v,$$

где \(\sigma_v\) — предел прочности.

Следовательно,

$$\varepsilon = 2e_a = \left(\ln \frac{1}{1 - \Psi}\right)^{0,6} N^{-0,6} + 3,5 \frac{\sigma_w}{E} N^{-0,12}. \quad (20.41)$$

Пределную упругую деформацию можно выразить также через параметры кривой усталости: предел выносливости \(\sigma_{-1}\) при выбранном базовом числе циклов \(N_0^0\) и показателе степени кривой усталости \(\mu\). Подставив эти значения в выражение (20.34), найдем значение константы в правой части уравнения

$$\sigma_a N_0^{\mu} = \sigma_{-1} N_0^\mu.$$

Следовательно, условная упругая деформация

$$\varepsilon_{ay} = \frac{\sigma_a}{E} = \frac{\sigma_{-1}}{E} N_0^{\mu} N_{-\mu}. \quad (20.42)$$

Уравнение кривой усталости при жестком нагружении принимает вид

$$\varepsilon_a = \varepsilon_{\text{пл}} + \varepsilon_{ay} = \frac{1}{2} \ln \frac{1}{1 - \Psi} N^{-0,5} - \frac{\sigma_{-1}}{E} N_0^{\mu} N_{-\mu}. \quad (20.43)$$

Эмпирические формулы (20.42) и (20.43) позволяют с достаточной точностью оценить долговечность материалов в довольно широком диапазоне перемен упруго-пластических деформаций.

Термическая усталость. Разрушение элементов конструкций может быть вызвано действием температурных напряжений от повторяющихся нагревов и охлаждений, обусловленных тепловым процессом машины и внешним воздействием. Такое разрушение деталей при сравнительно небольшом числе циклов (10^9—10^9) называют термиче-
<table>
<thead>
<tr>
<th>Наименование цикла</th>
<th>(p_{\text{max}})</th>
<th>(p_{\text{min}})</th>
<th>(p_{\text{a}} = \frac{p_{\text{max}} + p_{\text{min}}}{2})</th>
<th>(p_{\text{c}} = \frac{p_{\text{max}} - p_{\text{min}}}{2})</th>
<th>(R = \frac{p_{\text{min}}}{p_{\text{max}}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Постоянный положительный</td>
<td>(p_{\text{max}} = p_{\text{min}} \geq 0)</td>
<td>(p_{\text{c}} = 0)</td>
<td>(p_{\text{a}} = 0)</td>
<td>(R = \pm 1)</td>
<td></td>
</tr>
<tr>
<td>Симметричный</td>
<td>(p_{\text{max}} > 0)</td>
<td>(p_{\text{c}} > 0)</td>
<td></td>
<td></td>
<td>0 (< R \leq \pm 1)</td>
</tr>
<tr>
<td>Пульсирующий положительный</td>
<td>(p_{\text{max}} > 0)</td>
<td>(p_{\text{c}} > 0)</td>
<td>(p_{\text{a}} = \frac{1}{2} p_{\text{max}})</td>
<td></td>
<td>0 (< R < \pm 1)</td>
</tr>
<tr>
<td>Несимметричный</td>
<td>(p_{\text{max}} > 0)</td>
<td>(p_{\text{c}} > 0)</td>
<td>(p_{\text{a}} = \frac{1}{2} p_{\text{max}})</td>
<td></td>
<td>0 (< R < \pm 1)</td>
</tr>
<tr>
<td>Несимметричный</td>
<td>(p_{\text{max}} > 0)</td>
<td>(p_{\text{c}} < 0)</td>
<td>(p_{\text{a}} = p_{\text{max}})</td>
<td></td>
<td>0 (< R < \pm 1)</td>
</tr>
<tr>
<td>Несимметричный</td>
<td>(p_{\text{max}} < 0)</td>
<td>(p_{\text{c}} < 0)</td>
<td>(p_{\text{a}} = p_{\text{max}})</td>
<td></td>
<td>0 (< R < \pm 1)</td>
</tr>
</tbody>
</table>
Продолжение табл. 58

<table>
<thead>
<tr>
<th>Наименование цикла</th>
<th>$p_{\text{max}}; p_{\text{min}}$</th>
<th>$p_c = \frac{p_{\text{max}} + p_{\text{min}}}{2}$</th>
<th>$p_a = \frac{p_{\text{max}} - p_{\text{min}}}{2}$</th>
<th>$R = \frac{p_{\text{min}}}{p_{\text{max}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пульсующий отрицательный</td>
<td>$p_{\text{max}} = 0$</td>
<td>$p_{\text{max}} = 0$</td>
<td>$p_{\text{min}} < 0$</td>
<td>$p_{\text{min}} < 0$</td>
</tr>
<tr>
<td>Несимметричный отрицательный</td>
<td>$p_{\text{max}} < 0$</td>
<td>$p_{\text{max}} < 0$</td>
<td>$p_{\text{min}} < 0$</td>
<td>$p_{\text{min}} < 0$</td>
</tr>
<tr>
<td>Постоянный отрицательный</td>
<td>$p_{\text{max}} = p_{\text{min}} < 0$</td>
<td>$p_{\text{max}} = p_{\text{min}} = p_{\text{c}} < 0$</td>
<td>$p_{\text{min}} = p_{\text{c}} < 0$</td>
<td>$p_{\text{a}} = 0$</td>
</tr>
</tbody>
</table>

...свой усталостью или термозаусталостью, которая является частным случаем нензотермической малоцикловой усталости. Сопротивление такому виду разрушения называют термической прочностью.

Наиболее полно термическая прочность материала и деталей оце- нивается по результатам специальных циклических испытаний по ре- жимам, приближенно соответствующим типичным эксплуатационным циклам. При испытаниях материала нагружение образца осуществляется за счет стеснения теплового расширения при его циклическом нагреве (охлаждении). Наиболее распространенной схемой испытания является защемление циклически нагреваемого образца с варьирова- нием жесткости его закрепления (метод Коффина).

При испытаниях на термическую усталость строят кривые уста- лости (рис. 382) в координатах размах полной e или пластической $e_{\text{п}}$ деформации — число циклов N до разрушения (образования макро- трещины), а также изменение напряжений с числом циклов (полуцик- лов) нагружения при данных максимальной температуре цикла, раз- махе температуры цикла, асимметрии цикла и длительности выдержки в цикле при экстремальной температуре.
21.1. Расчет на удар при осевом действии нагрузки

Влияние ударного действия нагрузки на величину деформации или напряжения принято оценивать коэффициентом динамичности

\[k_d = \frac{\delta_d}{\delta_{ct}} \tag{21.1} \]

где \(\delta_{ct} \) — деформация упругого элемента (рис. 383, a) при статическом приложении нагрузки \(Q \) (при постепенном увеличении нагрузки от нуля до ее конечного значения); \(\delta_d \) — деформация (рис. 383, b) при ударном приложении нагрузки (предположим, при падении груза \(Q \) с высоты \(H \)).

Динамическая деформация может быть выражена через статическую формулой

\[\delta_d = k_d \delta_{ct} \]

По аналогии установим связь между динамическим и статическим напряжениями:

\[\sigma_d = k_d \sigma_{ct} = k_d \frac{Q}{F} \tag{21.2} \]

Чтобы использовать формулу (21.2) необходимо знать коэффициент динамичности \(k_d \).

При определении коэффициента динамичности исходят из допущения, что связь между усилением и деформацией сохраняется одинаковой как при статической \(P_{ct} \), так и при динамической \(P_d \) нагрузках, т.е.

\[\delta_{ct} = \frac{P_{ct}}{c} ; \]
\[\delta_d = \frac{P_d}{c} , \]

где \(c = EF/I \) — жесткость стержня.

Вывод формулы для определения коэффициента динамичности базируется на законе сохранения энергии. Изменение потенциальной энергии груза \(T \) при падении с высоты \(H \) и прохождении пути \(H + \delta_d \) будет

\[T = Q (H + \delta_d) . \tag{21.3} \]
Потенциальная энергия деформации стержня, накопленная при ударе, может быть выражена формулой

\[U_d = \frac{1}{2} P_d \delta_d = \frac{c \delta_d^2}{2}. \] (21.4)

На основании закона сохранения энергии запишем

\[T = U_d \]

или

\[\frac{c \delta_d^2}{2} = Q (H + \delta_d). \] (21.5)

Учитывая, что \(\delta_{ct} = Q/c \), уравнение (21.5) можно представить так:

\[\delta_d^2 - 2 \delta_{ct} \delta_d - 2 \delta_{ct} H = 0. \]

Отсюда определим неизвестную динамическую деформацию

\[\delta_d = \delta_{ct} \pm \sqrt{\delta_{ct}^2 + 2 \delta_{ct} H}. \]

Сохраняя в соответствии с физическим смыслом задачи знак плюс, последнюю формулу можем представить в виде

\[\delta_d = \delta_{ct} \left(1 + \sqrt{1 + \frac{2H}{\delta_{ct}}} \right). \] (21.6)

Таким образом, в соответствии с (21.2) находим выражение коэффициента динамичности

\[k_d = 1 + \sqrt{1 + \frac{2H}{\delta_{ct}}}. \] (21.7)

Если учесть, что \(H = \frac{v^2}{2g} \) (\(v \) — скорость падающего груза в начале удара), то получим

\[k_d = 1 + \sqrt{1 + \frac{v^2}{g \delta_{ct}}} . \] (21.8)

Так как \(2H/\delta_{ct} = T_0/U_{ct} \) (где \(T_0 = QH = Qv^2/2g \) — кинетическая энергия падающего груза к моменту соударения; \(U_{ct} = \frac{1}{2} Q \delta_{ct} \) — потенциальная энергия деформации стержня при статическом приложении нагрузки \(Q \)), коэффициент динамичности можно также выразить формулой

\[k_d = 1 + \sqrt{1 + \frac{T_0}{U_{ct}}} . \] (21.9)

При \(H = 0 \) имеем \(k_d = 2 \). Поскольку, как правило, \(H \gg \delta_{ct} \), то в выражении для \(k_d \) можно пренебречь единицей по сравнению со вторым слагаемым. Тогда получим

\[k_d \approx 1 + \sqrt{\frac{2H}{\delta_{ct}}} = 1 + \sqrt{\frac{v^2}{\delta_{ct}}} = 1 + \sqrt{\frac{T_0}{U_{ct}}} . \] (21.10)
Динамическое напряжение при ударе согласно (21.2)

\[
\sigma_d = k_d \sigma_{ct} = \sigma_{ct} \left(1 + \sqrt{1 + \frac{2H}{\delta_{ct}}} \right) \approx \frac{Q}{F} + \sqrt{\frac{2QHE}{lF}}. \tag{21.11}
\]

Динамическая нагрузка при ударе

\[
P_d = \sigma_d F = k_d \sigma_{ct} F = Q \left(1 + \sqrt{1 + \frac{2H}{\delta_{ct}}} \right). \tag{21.12}
\]

Из анализа формулы (21.11) видно, что при равномерном распределении напряжений по длине стержня, т. е. когда стержень имеет постоянное сечение, величина динамических напряжений зависит не только от площади поперечного сечения стержня \(F \), как это имеет место при действии статической нагрузки в статически определенных системах, но и от его длины \(l \) и модуля упругости материала \(E \). При этом, чем больше объем материала, подвергаемого удару упругого стержня, тем меньше вносимые в нем динамические напряжения.

С другой стороны, снижение напряжений при ударе в стержне с вытяжкой может быть достигнуто путем уменьшения объема упругого элемента за счет уменьшения площади утолщенной части и увеличения тем самым деформативности стержня. Этой же цели можно достичь, взяв материал с более низким модулем упругости, выровнив площади поперечного сечения по длине стержня, увеличив длину стержня, а также путем включения буферных пружин.

Учет массы стержня, испытывающего удар, может быть осуществлен в предположении, что после смятия и снижения скорости груза на первом этапе от \(v \) до \(v_1 \), равной скорости движения верхнего сечения стержня в начале второго этапа удара, скорость нижележащих сечений уменьшается по линейному закону, падая до нуля в нижнем сечении (рис. 384), т. е. скорость в любом сечении стержня на расстоянии \(x \) от нижнего конца будет

\[u(x) = v_1 \frac{x}{l}. \]

Соответствующая кинетическая энергия элементарного участка стержня длиной \(dx \) в рассматриваемом сечении

\[dT_c = \frac{\gamma F dx}{2g} \left(v_1 \frac{x}{l} \right)^2, \]

а полная кинетическая энергия ударяемого стержня может быть выражена формулой

\[T_c = \frac{\gamma F v_1^2}{2g} \int_0^l x^2 dx = \frac{\gamma Fl v_1^2}{3} \frac{2g}{g}, \]

или

\[T_c = \frac{Q_c v_1^2}{3} \frac{2g}{g}, \]

где \(Q_c = \gamma Fl \) — собственный вес ударяемого стержня.

608
Выразим потерю энергии на смятие материала в месте соударения груза и стержня в течение первого этапа удара (когда скорость изменяется от \(v = \sqrt{2gH} \) до \(v_1 \)) формулой

\[
\Delta T = \frac{Qv^2}{2g} - \left(\frac{Qv_1^2}{2g} + \frac{Q_c v_1^2}{3 \cdot 2g} \right) = \frac{Q}{2g} \left[v^2 - v_1 \left(1 + \frac{Q_c}{3Q} \right) \right]. \tag{21.13}
\]

Эту же потерю энергии можно выразить так:

\[
\Delta T = \frac{Q}{2g} (v - v_1)^2 + \frac{1}{3} \frac{Q_c}{2g} (0 - v_1)^2 =
\]

\[
= \frac{Q}{2g} \left[v^2 - 2v v_1 + v_1^2 \left(1 + \frac{Q_c}{3Q} \right) \right]. \tag{21.14}
\]

Приравнив правые части формул (21.13) и (21.14) и решив полученное уравнение относительно \(v_1 \), найдем

\[
v_1 = \frac{v}{1 + \frac{1}{3} \frac{Q_c}{Q}}. \tag{21.15}
\]

Таким образом, кинетическая энергия, которая при ударе переходит в энергию деформации ударного стержня, будет

\[
T = \frac{Qv_1^2}{2g} + \frac{1}{3} \frac{Q_c v_1^2}{2g} = \frac{Qv^2}{2g \left(1 + \frac{1}{3} \frac{Q_c}{Q} \right)}. \tag{21.16}
\]

Подставим в (21.9) вместо \(T_0 \) полученное значение \(T \), выразим коэффициент динамики по формулой

\[
k_d = 1 + \sqrt{1 + \frac{T}{U_{ct}}},
\]

или

\[
k_d = 1 + \sqrt{1 + \frac{Qv^2}{2g \left(1 + \frac{1}{3} \frac{Q_c}{Q} \right) U_{ct}}} \tag{21.17}
\]

Учитывая, что \(v^2/2g = H; \ H Q = T_0 \), и обозначая \(Q_c/Q = \beta \), формулу (21.17) переписываем в виде

\[
k_d = 1 + \sqrt{1 + \frac{T_0}{U_{ct} \left(1 + \frac{1}{3} \beta \right)}} \tag{21.18}
\]

Максимальное напряжение при ударе определяется формулой

\[
\sigma_d = k_d \sigma_{ct} = \sigma_{ct} \left[1 + \sqrt{1 + \frac{T_0}{U_{ct} \left(1 + \frac{1}{3} \beta \right)}} \right],
\]
\[\sigma_d = \sigma_{ct} \left[1 + \sqrt{1 + \frac{2EFH}{Ql \left(1 + \frac{1}{3} \frac{FL}{Q} \right)}} \right]. \]

Значения коэффициента, учитывающего массу ударяемого элемента, для некоторых частных случаев приведены в табл. 59.

21.2. Напряжение при скручивающем ударе

В случае ударного кручения, осуществляемого, например, по схеме, приведенной на рис. 385, максимальные динамические напряжения в вале \(\tau_d \) определяются по формуле

\[\tau_{d,\text{max}} = k_d \tau_{ct,\text{max}}. \]

(21.19)

Рис. 385
Рис. 386

\[k_d = 1 + \sqrt{1 + \frac{2H}{\delta_{ct}}}; \]

(21.20)

\[\delta_{ct} = \varphi R = \frac{M_{kr}l}{GJ_p} R = \frac{QRM}{GJ_p}; \]

\[\tau_{ct,\text{max}} = \frac{M_{kr}}{W_p} = \frac{QR}{W_p}. \]

Здесь \(H \) — высота падения груза; \(Q \) — вес падающего груза; \(R \) — радиус кривошипа; \(l \) — длина вала; \(J_p, W_p \) — полярный момент инерции и момент сопротивления сечения вала.

Динамические напряжения, возникающие в вале при резком торможении быстро вращающегося маховика (рис. 386), имеющего запас кинетической энергии \(T_0 \), можно найти также исходя из закона сохранения энергии

\[T_0 = U_d, \]

(21.21)

где \(U_d \) — потенциальная энергия деформации вала при ударном кручении.

Учитывая, что

\[U_d = \frac{1}{2} M_{kr} \cdot \varphi d = \frac{M_{kr}^2 d^2}{2GJ_p}, \]

(21.22)
и то, что
\[\tau_{\text{длмакс}} = \frac{M_{\text{кр.д}}}{W_p} \]
или
\[M_{\text{кр.д}} = \tau_{\text{длмакс}} W_p = \frac{\pi d^3}{16} \tau_{\text{длмакс}}^4. \]
можно записать
\[U_d = \frac{\tau_{\text{длмакс}}^2 \pi^2 d^6 I}{16 G J_p^2} = \frac{\tau_{\text{длмакс}}^2 I_F}{4 G}. \] (21.23)

Подставив (21.23) в (21.21) и решив полученное уравнение относительно искомого максимального динамического напряжения, получим
\[\tau_{\text{длмакс}} = 2 \sqrt[4]{\frac{T_0 G}{I_F}}, \] (21.24)
где кинетическая энергия маховика весом \(Q \), вращающегося с угловой скоростью \(\omega \), определяется формулой
\[T_0 = J \left(\frac{d\varphi}{dt} \right)^2 = \frac{J}{2} \omega^2; \ J = \frac{QD^4}{8g} \]
\[(D — \text{диаметр маховика}). \]

21.3. Расчет на удар при изгибе

Максимальные динамические напряжения при ударном изгибе могут быть определены по формуле
\[\sigma_{\text{длмакс}} = k_d \sigma_{\text{стмакс}} \]
где
\[k_d = 1 + \sqrt{1 + \frac{2H}{f_{\text{ст}}}}, \]
\((f_{\text{ст}} — \text{статический прогиб в месте удара, зависящий от схемы нагружения и условий ограждения}). \)

В случае удара посередине балки с изгибной жесткостью сечения \(EJ \) (рис. 387) получим
\[f_{\text{ст}} = \frac{Ql^3}{48EJ}, \ \sigma_{\text{стмакс}} = \frac{M}{W} = \frac{Ql}{4W}, \]
а максимальные динамические напряжения в этом случае будут
\[\sigma_{\text{длмакс}} = k_d \sigma_{\text{стмакс}} = \frac{Ql}{4W} \left[1 + \sqrt{1 + \frac{96HEJ}{Ql^3}} \right]. \]
Обозначив \(\dot{Q}H = T_0 \), получим

\[
\sigma_{d_{\text{max}}} = \frac{Ql}{4W} \left(1 + \sqrt{1 + \frac{96T_0EJ}{Q^2/3}} \right). \tag{21.25}
\]

Условие прочности в этом случае запищется так:

\[
\sigma_{d_{\text{max}}} = \frac{Ql}{4W} \left(1 + \sqrt{1 + \frac{96T_0EJ}{Q^2/3}} \right) < [\sigma_d], \tag{21.26}
\]

где

\[
[\sigma_d] = \frac{s_d}{n_d}
\]

(\(n_d \) — запас прочности с учетом динамической нагрузки; \(s_d \) — предел текучести материала балки)

Учесть массу ударной балки можно, применив методику, рассмотренную при продольном ударе. Будем полагать, что в конце первого этапа удара скорость балки в месте падения груза равна \(v_1 \). Кинетическая энергия груза, очевидно, будет равна \(Qv_1^2/2g \). Предположим также, что при ударе и при статическом приложении нагрузки (и нашем случае посреднике пролета балки) изогнутая ось балки может быть описана одним и тем же уравнением

\[
w = \frac{f}{3} (3l^2z - 4z^3),
\]

где \(f = \frac{Ql^3}{48EJ} \) — стрела прогиба балки

Обозначив величину максимального прогиба посредине балки через \(w_{\text{max}} \), величину прогиба в сечении на расстоянии \(z \) от левого конца балки определим по формуле

\[
w = \frac{w_{\text{max}}}{l^3} (3l^2z - 4z^3),
\]

а скорость движения этого сечения — из выражения

\[
v = \frac{dw}{dt} = \frac{dw_{\text{max}}}{dt} \frac{1}{l^3} (3l^2z - 4z^3).
\]

Кинетическая энергия элемента балки \(dz \), находящегося на расстоянии \(z \) от левого конца балки, будет

\[
\frac{dT_6}{2g} = \frac{\gamma lFdz}{2g} = \frac{\gamma lF}{2g} \left[\frac{dw_{\text{max}}}{dt} \frac{1}{l^3} (3l^2z - 4z^3) \right]^2 dz,
\]

а кинетическая энергия всей балки определится формулой

\[
T_6 = 2 \int_0^{l/2} \frac{\gamma lF}{2g} \left(\frac{dw_{\text{max}}}{dt} \right)^2 \frac{1}{l^3} (3l^2z - 4z^3)^2 dz = \frac{17\gamma Fl}{35g} \left(\frac{dw_{\text{max}}}{dt} \right)^2.
\]

Поскольку в конце первого этапа удара скорость посредине балки будет равна \(v_1 \), т. е.

\[
\frac{dw_{\text{max}}}{dt} = v_1,
\]

то кинетическая энергия балки в начале второго этапа удара будет

\[
T_6 = \frac{17\gamma Fl}{35g} v_1^2. \tag{21.27}
\]

612
Выразив потерю энергии на смятне в месте удара за первый этап в виде

\[
\Delta T = \frac{Qv^2}{2g} - \left(\frac{Qv_1^2}{2g} + \frac{17}{35} \frac{\gamma Fl}{2g} v_1^2 \right) = \\
\frac{Q}{2g} \left[v^2 - v_1^2 \left(1 + \frac{17}{35} \frac{\gamma Fl}{Q} \right) \right],
\]

(21.28)

или

\[
\Delta T = \frac{Q}{2g} (v - v_1)^2 + \frac{17}{35} \frac{\gamma Fl}{2g} (0 - v_1)^2 = \\
\frac{Q}{2g} \left[v - 2v_1 + v_1^2 \left(1 + \frac{17}{35} \frac{\gamma Fl}{Q} \right) \right],
\]

(21.29)

а затем, приравнивая правые части уравнений (21.28) и (21.29) и решив полученное уравнение относительно \(v_1\), найдем

\[
v_1 = \frac{v}{1 + \frac{17}{35} \frac{\gamma Fl}{Q}}.
\]

(21.30)

Кинетическая энергия системы (балка — груз), которая должна трансформироваться в энергию деформации балки при ударе, определяется формулой

\[
T = \frac{Qv_1^2}{2g} + \frac{17}{35} \frac{\gamma Fl}{2g} v_1^2 = \frac{Qv^2}{2g} \frac{1}{1 + \frac{17}{35} \frac{\gamma Fl}{Q}}.
\]

(21.31)

Обозначив

\[
T_0 = QH = \frac{Qv^2}{2g},
\]

формулу (21.31) может переписать в виде

\[
T = \frac{T_0}{1 + \frac{17}{35} \frac{\gamma Fl}{Q}}.
\]

(21.32)

Максимальное динамическое напряжение согласно формуле (21.25) после замены в ней \(T_0\) на \(T\) определяется так:

\[
\sigma_{\text{дмакс}} = \frac{Ql}{4W} \left(1 + \sqrt{1 + \frac{96T_0EJ}{Q^2l^3}} \right),
\]

или с учетом (21.32)

\[
\sigma_{\text{дмакс}} = k_{\text{д}} \sigma_{\text{стмакс}} = \frac{Ql}{4W} \left[1 + \sqrt{1 + \frac{96T_0EJ}{Q^2l^3 \left(1 + \frac{17}{35} \frac{\gamma Fl}{Q} \right)}} \right],
\]

где

\[
k_{\text{д}} = 1 + \sqrt{1 + \frac{96T_0EJ}{Q^2l^3 \left(1 + \frac{17}{35} \frac{\gamma Fl}{Q} \right)}}.
\]

(21.33)

(21.34)
Таблица 59. Значения коэффициента α, учитывающего массу ударяемого элемента в формуле коэффициента динамичности

$$k_{d} = 1 + \sqrt{1 + \frac{2H}{\delta_{ct}(1 + \alpha \beta)}} = 1 + \sqrt{1 + \frac{v^2}{g\delta_{ct}(1 + \alpha \beta)}};$$

H — высота падения ударяющего тела; v — скорость ударяющего тела; δ_{ct} — деформация удара упругого элемента при статическом приложении силы, равной весу ударяющего тела; $\beta = \frac{Q_{\text{эл}}}{Q}$, где $Q_{\text{эл}}$ — вес ударяющего элемента, Q — вес ударяющего тела; g — ускорение свободного падения

<table>
<thead>
<tr>
<th>Схема упругого элемента и характер его нагружения</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>$\frac{F_1}{F_1 + F_2 + \sqrt{F_1 F_2}}$</td>
</tr>
<tr>
<td></td>
<td>$\frac{67}{336}$</td>
</tr>
<tr>
<td></td>
<td>$\frac{2 + 4\eta - \eta^2 - 6\eta^3 + 3\eta^4}{105\eta^2 (1 - \eta)^2}$</td>
</tr>
<tr>
<td>Схема упругого элемента и характер его нагружения</td>
<td>α</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>$\frac{8\eta^2 (140 + 231\eta + \eta^3)}{420 (1 + \eta)^3 \eta^2}$</td>
</tr>
<tr>
<td></td>
<td>$\frac{105 - 105\eta + 35\eta^2 - 2\eta^3}{140\eta^2}$</td>
</tr>
<tr>
<td></td>
<td>$\frac{24 - 24\eta - 4\eta^2 + 8\eta^3 - \eta^4}{35\eta^2 (5\eta - 4 - \eta^2)^2}$</td>
</tr>
<tr>
<td></td>
<td>$\frac{3 + \eta - \eta^2}{140\eta^2 (1 - \eta)^2}$</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{15}$</td>
</tr>
<tr>
<td></td>
<td>$\frac{11}{15}$</td>
</tr>
</tbody>
</table>
ОСНОВЫ МЕХАНИКИ РАЗРУШЕНИЯ

22.1. Общие понятия

Механика разрушения, или механика распространения трещин, как составная часть науки о механике деформируемого твердого тела изучает законы разделения твердых тел на части под действием напряжений.

Возможно частичное и полное разрушение тела. Кроме того, различают хрупкое и вязкое (пластическое) разрушение. Однако эти виды разрушения могут проявляться одновременно или последовательно, начинаясь, например, с пластического и переходя затем в хрупкое.

Хрупкое разрушение происходит в результате быстрого распространения трещины после незначительной пластической деформации или без нее. В последнем случае разрушение называют идеально хрупким. При хрупком разрушении скорость распространения трещины велика и составляет 0,2—0,5 скорости звука, а излом имеет кристаллический вид. Различают также квазихрупкое разрушение, при котором наблюдается некоторая пластическая зона перед краем трещины. Скорость распространения трещины практически того же порядка, что и при хрупком разрушении, и излом также является кристаллическим.

Вязкое разрушение происходит после существенной пластической деформации, протекающей по всему (или значительному) объему тела и является результатом исчерпания способности материала сопротивляться пластической деформации. Скорость распространения трещины мала, не превышает 0,05 скорости звука, излом имеет волокнистый вид.

Особо выделяют постепенное развитие трещины при повторно-переменном циклическом нагружении. Такому усталостному разрушению предшествует накопление в материале необратимого повреждения.

Особую практическую значимость имеет проблема хрупкого разрушения конструкций, обусловленного быстрым распространением трещин при средних напряжениях, не превышающих предел текучести материала и поэтому кажущихся безопасными. Это обстоятельство свидетельствует о недостаточности классических методов расчета конструкций на прочность по упругому и пластическому ее состояниям. Возникает необходимость в дополнении классических методов расчета на прочность новыми, учитывающими законы зарождения и развития трещин, а также во введении новых характеристик материала, по которым могла бы оцениваться его трещиностойкость.

Опыт эксплуатации реальных деталей показывает, что разрушение, состоящее из зарождения и развития трещины, возникает задолго до исчерпания несущей способности и достижения максимальной величины нагрузки, выделяемой деталью. Зачастую длительность процесса разрушения и результате роста трещины от начала ее возникновения до полного разрушения занимает до 90 и более процентов времени «жизни» детали. При этом прочность материала детали до конца не используется. Вот почему представляет большой интерес не столько факт возникновения трещины, сколько темп ее роста.
В связи с этими основными вопросами, изучаемыми в рамках механики разрушения, являются прочность тел с трещинами, распространение трещин, или кинетика развития трещин, геометрия трещин, или статика трещин, т. е. установление уравнений траекторий криволинейных (поверхностных) трещин и поверхностей излома.

22.2. Хрупкое разрушение

Хрупкое разрушение связано с возникновением в материале трещин, инициированных дефектами в структуре материала, состоянием поверхности, обусловленным технологией обработки или коррозией, действием повторно-переменных нагрузок (усталостные трещины) и т. п.

Возникшие трещины развиваются во времени сначала медленно, а потом быстро. Рост хрупких трещин во времени может иметь место и при постоянной нагрузке.

Первые основополагающие исследования развития хрупких трещин связывают с именем Гриффита, впервые рассмотревшего условия развития единичной сквозной трещины в пластине бесконечной длины и единичной толщины, находящейся в условиях линейного напряженного состояния (рис. 388). При этом ставится задача установить, при каком значении внешнего напряжения \(\sigma \), приложенного к концам пластины на бесконечности, трещина с начальной длиной \(2l \) станет неустойчивой, т. е. начнет быстро распространяться при неизменном \(\sigma \).

Вычислим освобождаемую потенциальную энергию деформации пластины \(W \) при образовании в ней трещины длиной \(2l \) с использованием решения плоской задачи теории упругости о растяжении полосы с эллиптическим отверстием.

Для плоского напряженного состояния

\[
W = \frac{\pi \sigma^2 l^2}{E}.
\]

Для плоской деформации

\[
W = \frac{\pi (1 - \mu^2) \sigma^2 l^2}{E},
\]

где \(E \) — модуль упругости материала; \(\mu \) — коэффициент Пуассона.

Введя поверхностную энергию \(\Gamma \) для образовавшихся двух свободных поверхностей трещины аналогично энергии поверхностного натяжения для жидкости

\[
\Gamma = 4 \gamma \pi l,
\]

где \(\gamma \) — удельная поверхностная энергия материала, можно определить энергию, необходимую для распространения трещины.

\[
\Delta W = \Gamma - W.
\]

Очевидно, если с увеличением длины трещины \(l \) не возрастает значение энергии \(\Delta W \) или ее значение уменьшается (рис. 389), то трещина распространяется самопроизвольно.

Приравнив производную от \(\Delta W \) по \(l \) нулю, можно определить критическое напряжение (формула Гриффита):

для плоского напряженного состояния

\[
\sigma_k = \sqrt{\frac{2E\gamma}{\pi l_k}};
\]

617
для плоской деформации

$$\sigma_k = \sqrt{\frac{2E\gamma_H}{\pi (1 - \mu^2) l_k}}, \quad \text{(22.6)}$$

при котором происходит самопроизвольный, без совершения дополнительной работы внешними силами, рост имеющейся в теле трещины критической длиной l_k.

Значение γ_H получают экстраполяцией на температуру плавления рассматриваемого материала по данным определения физическими методами удельного поверхностного натяжения для расплава исследуемого материала при разных температурах.

Графическая иллюстрация зависимости критического напряжения от длины трещины представлена на рис. 390, на котором штриховой линией показан докритический рост трещины.

Теория Гриффита позволяет выразить хрупкую прочность через физические и механические свойства материала и показывает, что разрушающая нагрузка имеет место не при возникновении начальной трещины, а после достижения трещиной некоторых критических размеров. Следует, однако, заметить, что безопасные, неразвивающиеся трещины могут перейти в опасные за счет охрупчивания материала, вызванного понижением температуры, динамическим действием нагрузки, старению материала и т. п.

Вытекающее из выражений (22.5), (22.6) условие

$$\sigma_k^2 l_k = \text{const} \quad \text{(22.7)}$$
подтверждение проведенными Гриффитсом опытами на пластинах из силикатного стекла.

В металлических материалах, в которых вблизи конца или вершины трещины образуется зона пластических деформаций, при распространении трещины происходит пластическое деформирование материала с последующей его разгрузкой, т. е. совершается необратимая работа \(\Delta W = 4\gamma \), которую по предложению Ирвина и Орвона необходимо добавить к энергии поверхностного натяжения \(\Gamma \). При принятии \(\gamma \) за половину необратимо поглощенной энергии пластического деформирования материала при продвижении трещины на единицу длины приведенные формулы (22.5), (22.6) сохраняются при замене \(\gamma \) на \(\gamma = \gamma_n + \gamma_p \). Обычно \(\gamma_n \approx \gamma_p \).

22.3. Силовые критерии разрушения

Основы преобразования энергетического критерия Гриффита в силовой критерий были заложены Ирвином, который предложил за критерий перехода к нестабильному разрушению принимать момент,

![Рис. 391](image)

![Рис. 392](image)

когда в материале интенсивность напряжений у вершины трещины, определяемая методами теории упругости, достигает критического значения.

Составляющие поля напряжений \(\tau_{ij} (i, j = x, y) \) у вершины трещины (рис. 391) можно представить формулой

\[
\sigma_{ij} = \frac{K}{\sqrt{2\pi r}} f_{ij} (\theta),
\]

(22.8)
где K — коэффициент интенсивности напряжений у вершины трещины (его размерность — сила/длина$^{3/2}$); r и θ — полярные координаты с полюсом в вершине трещины и в плоскости, перпендикулярной к кромке трещины; \hat{f}_{ij} — некоторая функция угла θ.

Обозначение коэффициента интенсивности напряжений производится в зависимости от типа деформации трещин.

Различают три простейших типа деформации трещин при действия различных внешних нагрузок (рис. 392). При деформации растяжения по схеме I возникает трещина нормального отрыва, когда поверхности трещины смещаются (расходятся) в перпендикулярном направлении. При деформации сдвига по схеме II возникает трещина поперечного сдвига, при котором поверхности трещины смещаются по перек ее передней кромки. При деформировании по схеме III образуются трещины продольного сдвига, при котором поверхности трещины смещаются вдоль ее передней кромки.

В соответствии с приведенными схемами производится индексация коэффициентов интенсивности напряжений: K_1, K_{II}, K_{III}. Наибольший практический интерес представляет первая схема нагружения. В частности, при плоском напряженном состоянии для нагрузки по схеме I формулы (22.8) в развернутом виде могут быть представлены следующим образом:

$$
\sigma_x = \frac{K_1}{V \pi r} \cos \frac{\theta}{2} \left(1 - \frac{1}{2} \sin \frac{3\theta}{2} \right); \quad (22.9)
$$

$$
\sigma_y = \frac{K_1}{V \pi r} \cos \frac{\theta}{2} \left(1 + \frac{1}{2} \sin \frac{3\theta}{2} \right); \quad (22.10)
$$

$$
\tau_{xy} = \frac{K_1}{V \pi r} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{3\theta}{2}. \quad (22.11)
$$

Эпюра напряжений около вершины трещины отрыва ($0 < \theta < \pi$) показана на рис. 393.

Таким образом, интенсивность поля напряжений в окрестности вершины трещины в линейной механике разрушения контролируется единственным параметром K, являющимся функцией только характера внешнего нагружения, геометрии пластин и размеров трещины.

Для сквозной центрально расположенной трещины в пластине неограинченных размеров коэффициент интенсивности напряжений в зависимости от схемы деформирования трещины (рис. 392) определяется следующими формулами:

$$
K_1 = \sigma V \pi l;
$$

$$
K_{II} = \tau V \pi l; \quad (22.12)
$$

$$
K_{III} = \tau V \pi l,
$$

где σ, τ — однородные растягивающие и касательные напряжения на бесконечном контуре пластины.
Для трещин другого расположения или пластин ограниченных размеров коэффициенты интенсивности напряжений записываются в виде

\[K_I = f_1 \sigma \sqrt{\pi t}; \]
\[K_{II} = f_{II} \sigma \sqrt{\pi t}; \]
\[K_{III} = f_{III} \sigma \sqrt{\pi t}, \] \hspace{1cm} (22.13)

где \(f_1, f_{II}, f_{III} \) — некоторые поправочные коэффициенты, выражения которых для ряда схем расположения трещин и нагрузок (рис. 394) приведены ниже.

Схема нагружения и расположения трещин

Поправочный коэффициент

Неограниченная пластина при растяжении с наклонной трещиной в середине (а)

\[f_1 = \sin^2 \beta \]

То же с односторонней трещиной (β)

\[f_1 = 1,12 \]

Пластина шириной 2B с поперечной трещиной посередине (σ) при растяжении и сдвиге (по схеме II)

\[f_1 = f_{II} = \sqrt{\frac{2B}{\pi t}} \tan \frac{\pi l}{2B} \]

То же с двумя боковыми трещинами (α)

\[f_1 = f_{II} = \sqrt{\frac{2B}{\pi t}} \sin \frac{\pi l}{B} \times \sqrt{\frac{2B}{\pi t}} \tan \frac{\pi l}{2B} \]

Пластина шириной B и толщиной H с трещиной посередине при изгибе в своей плоскости (δ)

\[f_1 = \frac{8}{3 V \beta} \frac{H l}{B^2} \sqrt{1 - \nu^2} \]

(σ = 6M/IIB²)

Такая же пластина при чистом изгибе распределенным моментом (ε)

\[f_1 = 1 \quad (\sigma = 6M_{ip}/H^2) \]

Цилиндрическая труба диаметром 2R и толщиной H под внутренним давлением p при продольной сквозной трещине (ж)

\[f_1 = \sqrt{\frac{1}{1 + 1,61 \frac{B^2}{RH}}} \]

(σ = pR/H)

Согласно предложению Ирвина, рост трещин начинается при достижении коэффициентом интенсивности напряжений некоторого критического значения \(K_c \), которое должно быть характерным для каждого материала, т. е. трещина не развивается, когда

\[K < K_c, \]

и может развиваться, когда

\[K = K_c. \] \hspace{1cm} (22.14)

Критическое значение коэффициента интенсивности напряжений, характеризующее сопротивление материала распространению трещины, называют вязкостью разрушения.

Можно показать, что силовой критерий разрушения эквивалентен энергетическому критерию Гриффита.
Введя интенсивность освобождающейся упругой энергии деформации W (22.1), (22.2) в виде

$$G = \frac{dW}{dl}$$

(22.15)

и сравнив значение коэффициента интенсивности напряжений K_I (22.12) с полученным выражением для G, найдем следующее зависимость между G и K: для плоского напряженного состояния

$$G = \frac{K_I^2}{E} ;$$

(22.16)

Рис. 394

для плоской деформации

$$G = \frac{1}{E} \frac{\mu^2}{K_I^2} .$$

(22.17)

Таким образом, получены две эквивалентные формулировки критерия разрушения:

1) энергетическая, согласно которой предполагается, что трещина может распространяться тогда, когда интенсивность освобождающейся энергии G достигает критического значения G_c, определяемого на условии равенства нулю производной от энергии ΔW (22.4), необходимой для распространения трещины, по l ($d\Delta W/dl = 4\gamma - G_c = 0$):

$$G_0 = 4\gamma = \text{const} ;$$

(22.18)
2) силовая, согласно которой трещина может развиваться при достижении коэффициентом интенсивности напряжений \(K \) своей критической величины

\[
K_c = \text{const}. \quad (22.19)
\]

На основании формулы (22.16) и (22.17) для плоского напряженного состояния и плоской деформации соответственно получим

\[
G_c = \frac{K_c^2}{E}; \quad G_c = \frac{K_{1c}^2}{E} \left(1 - \mu^2\right). \quad (22.20)
\]

Заметим, что формулы (22.20) справедливы для идеально упругого разрушения, т. е. когда у конца трещины в линеаризованной постановке задачи теории упругости \(\sigma_y \to \infty \). Кроме того, при плоском напряженном состоянии может иметь место разрушение срезом. Поэтому в первой формуле (22.20) индекс 1 не пишется.

В отличие от рассмотренного идеального случая для большинства реальных материалов в малой области конца трещины имеют место пластические деформации. Однако в схеме квазигрупного разрушения вследствие малой области пластической деформации по сравнению с длиной трещины полагают, что размеры указанной области и интенсивность происходящей в ней пластической деформации определяются коэффициентом интенсивности напряжений \(K \) и пределом текучести \(\sigma_0,2 \) и, таким образом, остаются в силе оба критерия разрушения \(K_c \) и \(G_c \), с учетом зависимости последнего от характера сопротивления материала пластической деформации.

Соотношения (22.14) и (22.20) в линейной механике разрушения являются основными и с их помощью можно осуществлять расчет предельного состояния элементов конструкций с трещинами, а также производить оценку механических свойств материала и его способности тормозить развитие трещины.

22.4. Учет пластической зоны

Радиус пластической зоны наиболее просто оценить приближенно, приравнив выражение для \(\sigma_y \) (22.10) при \(\theta = 0 \) пределу текучести материала \(\sigma_T \), откуда для плоского напряженного состояния найдем

\[
r = \frac{1}{2\pi} \left(\frac{K_1}{\sigma_T}\right)^2. \quad (22.21)
\]

Подставив значение \(K_1 \) для пластини конечных размеров, определим длину трещины с учетом пластической зоны:

\[
l = l + r = l \left[1 + \frac{1}{2} \left(\frac{K_1 \sigma}{\sigma_T}\right)^2\right]. \quad (22.22)
\]

Зная эффективную длину трещины \(l \) и подставив ее в формулу (22.12), найдем уточненное значение коэффициента интенсивности напряжений

\[
K_1 = \sigma \sqrt{\pi (l + r)}. \quad (22.23)
\]

Следует заметить, что поскольку значение \(r \) зависит от величины \(K_1 \), определение значения \(K_1 \) по (22.23) нужно неоднократно повторять, уточняя значение \(r \) по (22.21).
Величина рассматриваемой поправки становится более значительной по мере приближения значения K_1 к критической величине K_c.
С учетом (22.23) можно определить для плоского напряженного состояния перемещение у конца трещины ψ при $r = r_T$ и $\theta = \pi$:

$$
\psi = \frac{K_1 (1 + \mu)}{E} \sqrt{\frac{r}{2\pi}} \left(\frac{3 - \mu}{1 + \mu} + 1 - 2 \sin^2 \frac{\theta}{2} \right) \sin \frac{\theta}{2}.
$$

(22.24)

Рис. 395

Удвоенная величина ψ равна раскрытию трещины δ при плоском напряженном состоянии (рис. 395):

$$
\delta = 2\psi_{r=r_T} = 2 (1 - \mu) \frac{\sigma}{\sigma_T} l \sqrt{1 + \frac{1}{2} \left(\frac{\sigma}{\sigma_T} \right)^2}.
$$

(22.25)

Расчетные значения δ, получаемые по формуле (22.25) при $\sigma \leq 0.8\sigma_T$, подтверждены экспериментально.

Рис. 396

Рис. 397

В случае плоского деформированного состояния протяженность пластической зоны снижается в несколько раз по сравнению с плоским напряженным состоянием.
Размеры пластической зоны у вершины трещины для одного и того же материала зависит от степени стеснения деформации вдоль переднего края трещины. Степень стеснения деформации зависит от толщины...
образца. C ее увеличением напряженное состояние изменяется от плоского, когда \(\sigma_2 = 0 \), к объемному при плоской деформации, когда \(\sigma_2 = \mu (\sigma_x + \sigma_y) \). При этом на боковой поверхности плоского образца при отсутствии на всех ее участках под давлением всегда имеется место плоское напряженное состояние, а потому размеры пластической области у свободной поверхности образца всегда больше, чем в средней части образца. Вид пластической зоны впереди края трещины в достаточном толщине плоском образце приблизительно имеет форму катаушки (рис. 396).

Объемное напряженное состояние в средней части образца обусловливает большую хрупкость этой области по сравнению с зонами трещины, примыкающими к боковым поверхностям, и тем самым снижает сопротивление материала разрушению, а потому фронт движения трещин в средней части выделяется вперед, имея языкообразный вид. Из-за относительной разницы пластической зоны для образцов различной толщины с изменением последней изменяется также величина энергии, затрачиваемой на разрушение, а следовательно, имеет место зависимость от толщины образца характеристики трещиностойкости — вязкости разрушения \(K_c \) и интенсивности освобождающейся энергии \(G_c \). Зависимость \(K_c \) от толщины образца \(t \) схематически показана на рис. 397. Как видно, с увеличением толщины образца значение \(K_c \) (а следовательно, \(G_c \)) уменьшается и асимптотически стремится к предельным значениям \(K_{1c} \) и \(G_{1c} \) при объемном напряженном состоянии в условиях плоской деформации.

22.5. Методика экспериментального определения вязкости разрушения конструкционных материалов

Предельное равновесие трещиноподобных дефектов в конструкциях при заданных условиях эксплуатации определяется сопротивлением разрушению (трещиностойкостью) материала, из которого она изготовлена. В качестве меры трещиностойкости применяют к наиболее опасным и распространенным трещинам нормального отрыва чаще всего используют вязкость разрушения — критическое значение величины коэффициента интенсивности напряжений \(K_{1c} \), соответствующее моменту старта трещины при наличии в ее вершине плоской деформации.

Вязкость разрушения при плоской деформации \(K_{1c} \) можно считать константой материала, не зависящей от формы и размеров образцов.

Для определения характеристики \(K_{1c} \) данного конкретного материала, соответствующей плоской деформации, обычно используют специальные компактные образцы (рис. 398) с трещиной, удовлетворяющие следующему размерному требованию:

\[
lB (w - l) \geq 2,5 \left(\frac{K_{1c}}{\sigma_{0,2}} \right)^2,
\]

где \(l \) — длина надреза с трещиной; \(B \) — толщина образца; \((w - l) \) — ширина рабочего участка образца; \(\sigma_{0,2} \) — предел текучести материала образца.

Режим выращивания исходной усталостной трещины и ее длина зависят от формы и размеров образцов. Должны соответствовать определенным условиям, обеспечивающим получение достоверных значений характеристики \(K_{1c} \).

В процессе внештрезового растяжения образца возрастают усечения, регистрируя диаграмму нагрузки \(P \) — смещение берегов трещины \(u \). Величину критического коэффициента интенсивности напряже-

625
ния K_{Ic} испытываемого материала рассчитывают по нагрузке P_{Q}, соответствующей на диаграмме $P - v$ старту трещины, с использованием некоторой, зависящей от конфигурации образца, функции его размеров и длины трещины $Y (l/w)$.

Коэффициент интенсивности напряжений K_{Q}, соответствующий нагрузке P_{Q}, определяется по формуле

$$K_{Q} = \frac{P_{Q}}{B \sqrt{\pi \frac{w}{l}}} Y \left(\frac{l}{w}\right),$$

где

$$Y \left(\frac{l}{w}\right) = 29,6 \left(\frac{l}{w}\right)^{1/2} - 185,5 \left(\frac{l}{w}\right)^{3/2} + 665,7 \left(\frac{l}{w}\right)^{5/2} - 1017 \left(\frac{l}{w}\right)^{7/2} + 638,9 \left(\frac{l}{w}\right)^{9/2}.$$

Рис. 398

Если полученная таким образом величина K_{Q} удовлетворяет размерному требованию (22.26) и максимальный коэффициент интенсивности напряжения цикла при выращивании усталостной трещины $K_{I \text{max}} \leq \leq 0,6K_{Q}$, то K_{Q} считается искомой характеристикой материала K_{Ic}. В противном случае необходимо повторить испытания на образцах увеличенных размеров.

Поскольку значение нагрузки на диаграмме $P - v$ не зависит от места измерения смещений, то последние целесообразно измерять вблизи точек приложения нагрузки или вблизи средней точки линии фронта трещины. Этим смещениям на рис. 398 соответствуют обозначения v_{p} и δ. По синхронно регистрируемым диаграммам $P - v_{p}$ можно дополнительно к силовой характеристике K_{Ic} определять и деформационную δ_{Ic} характеристику трещинностойкости материала. Такой подход позволяет комплексно, с единых методических позиций, оценивать трещинностойкость материала как в хрупком, так и в пластическом состояниях. Отметим, что описанная выше методика определения характеристики K_{Ic} теоретически строго обоснована и технически приемлема только при испытаниях хрупких материалов.
23.1. Основные понятия и формулы для определения контактных напряжений и деформаций

Напряжения и деформации, возникающие при взаимном нажатии двух соприкасающихся тел, называются контактными. Материал в месте контакта, не имея возможности свободно деформироваться, находится в объемном напряженном состоянии (рис. 399). Контактные напряжения имеют чисто местный характер и весьма быстро уменьшаются по мере удаления от места соприкосновения. Контактным напряжениям следует уделять существенное внимание при расчете на прочность таких деталей, как шариковые и роликовые подшипники, зубчатые колеса, колеса подвижного состава, рельсы и т. п.

Впервые правильное решение основных задач о контактных напряжениях и деформациях было проведено методами теории упругости в 1881—1882 гг. Г. Герцем.

Ниже приведены некоторые выражения для определения контактных напряжений и деформаций, полученные при следующих предположениях:

1) напряжения в зоне контакта не превышают предела упругости;
2) площадки контакта малы по сравнению с поверхностями соприкасающихся тел;
3) силы давления, распределенные по поверхности контакта, нормальны к этой поверхности.

Сжатие шаров. Радиус круговой площадки \(a \) (рис. 400), образующейся в месте контакта при взаимном нажатии силой \(P \) двух шаров радиусом \(R_1 \) и \(R_2 \) и модулями упругости материала соответственно \(E_1 \) и \(E_2 \), определяется по формуле

\[
a = 0,88 \sqrt[3]{p \left(\frac{1}{E_1} + \frac{1}{E_2} \right) \left(\frac{1}{R_1} + \frac{1}{R_2} \right)}.
\]

(23.1)
Нормальные (сжимающие) напряжения на площадке контакта распределены по полусфере. Наибольшее напряжение, имеющее место в центре площадки контакта, может быть определено так:

$$\sigma_3 = -|\sigma_{\max}| = -1,5 \frac{p}{\pi a^2} = -0,388 \sqrt[3]{4P \frac{E_1^2 E_2^2}{(E_1 + E_2)^3} \frac{(R_1 + R_2)^2}{R_1^2 R_2^2}}.$$

(23.2)

Два других главных напряжения в центре площадки равны:

$$\sigma_1 = \sigma_2 = -0,8 |\sigma_{\max}|.$$

Вследствие объемного напряженного состояния материала в центре площадки контакта, при котором все три сжимающие напряжения практически одинаковы, материал здесь может выдерживать без появления остаточных деформаций весьма большие давления, составляющие, например, согласно четвертой теории прочности величину $\sigma_{\max} = 5\sigma_t$. Для стали, у которой $\sigma_{\text{пд}} = 1000$ МПа, σ_{\max} достигает 5000 МПа.

Наиболее опасная точка в зоне контакта расположена в толще материала на оси z, на глубине, равной примерно половине радиуса площадки касания. Главные напряжения в этой точке

$$\sigma_1 = \sigma_2 = -0,18\sigma_{\max}; \quad \sigma_3 = -0,8\sigma_{\max},$$

(23.3)

где σ_{\max} определяется по формуле (23.2).

Наибольшее касательное напряжение в опасной точке

$$\tau_{\max} = \frac{\sigma_1 - \sigma_3}{2} = 0,31\sigma_{\max}.$$

(23.4)

Максимальные напряжения, возникающие в площадке при давлении шара на вогнутую сферическую поверхность с радиусом R_2 (рис. 401), получим по формуле (23.2), заменив в ней знак при R_2 на противоположный

$$\sigma_{\max} = 0,388 \sqrt[3]{4P \frac{E_1^2 E_2^2}{(E_1 + E_2)^3} \frac{(R_2 - R_1)^2}{R_1^2 R_2^2}}.$$

(23.5)

При давлении шара радиусом $R_1 = R$ на плоскость (рис. 402), напряжения определим по формуле (23.5), приняв в ней $R_2 = \infty$:

$$\sigma_{\max} = 0,388 \sqrt[3]{4P \frac{E_1^2 E_2^2}{(E_1 + E_2)^3} \frac{1}{R_2^2}}.$$

(23.6)

Сжатие цилиндров. При взаимном сжатии равномерно распределенной нагрузкой q двух цилиндров, соприкасающихся параллельными образующими (рис. 403), ширина прямоугольной площадки определяется по формуле

$$b = 2,15 \sqrt[3]{q \frac{1}{E_1 + E_2} \frac{1}{R_1 + R_2}}.$$

(23.7)

693
Наибольшее напряжение, действующее в точках оси площадки,

$$\sigma_{\text{max}} = 1,27 \frac{q}{b} = 0,418 \sqrt{2q \frac{E_1 E_2}{E_1 + E_2} \frac{R_1 + R_2}{R_1 R_2}}.$$ (23.8)

Опасная точка в зоне контакта находится на оси \(z \) на глубине, равной 0,4 \(b \). Главные напряжения в этой точке имеют следующие значения:

$$\begin{align*}
\sigma_1 &= -0,180\sigma_{\text{max}}, \\
\sigma_2 &= -0,288\sigma_{\text{max}}, \\
\sigma_3 &= -0,780\sigma_{\text{max}}.
\end{align*}$$ (23.9)

Максимальное касательное напряжение в опасной точке

$$\tau_{\text{max}} = 0,3\sigma_{\text{max}}.$$ (23.10)

Рис. 401 Рис. 402 Рис. 403

Изменив в формуле (23.8) знак при \(R_2 \) на противоположный, получим напряжение в случае давления цилиндра на вогнутую цилиндрическую поверхность:

$$\sigma_{\text{max}} = 0,418 \sqrt{2q \frac{E_1 E_2}{E_1 + E_2} \frac{R_2 - R_1}{R_2 R_1}}.$$ (23.11)

При взаимном давлении цилиндра радиусом \(R_1 = R \) и плоскости, приняв в (23.8) \(R_2 = \infty \), найдем

$$\sigma_{\text{max}} = 0,418 \sqrt{\frac{2q}{R} \frac{E_1 E_2}{E_1 + E_2}}.$$ (23.12)

Приведенные выше формулы получены при коэффициенте Пуассона \(\mu = 0,3 \). Однако в практических расчетах они пригодны и при других значениях \(\mu \).

В общем случае контакта двух тел из одинакового материала, сжимаемых силой \(P \) в направлении оси \(z \) (рис. 404) и касающихся по плоскости \(AB \), при радиусах кривизны первого тела \(\rho_1 \) и \(\rho'_1 \), второго тела \(\rho_2 \) и \(\rho'_2 \) (полагаем, что \(\rho_1 < \rho'_1 ; \rho_2 < \rho'_2 \)) полуси образующейся эллиптической площадки контакта определяются формулами

$$a = \alpha \sqrt{\frac{3P (1 - \mu^2)}{E \left(\frac{1}{\rho_1} + \frac{1}{\rho'_1} + \frac{1}{\rho_2} + \frac{1}{\rho'_2} \right)}}.$$ (23.13)
\[b = \beta \sqrt{\frac{3P (1 - \mu^2)}{E \left(\frac{1}{\rho_1} + \frac{1}{\rho_1'} + \frac{1}{\rho_2} + \frac{1}{\rho_2'} \right)}} \]

(23.14)

gде \(\mu \) — коэффициент Пуассона.

Ниже приведены значения коэффициентов \(\alpha \) и \(\beta \) как функции вспомогательного угла \(\psi \), вычисляемого по формуле

\[\cos \psi = \pm \sqrt{\left(\frac{1}{\rho_1} - \frac{1}{\rho_1'} \right)^2 + \left(\frac{1}{\rho_2} - \frac{1}{\rho_2'} \right)^2 + 2 \left(\frac{1}{\rho_1} - \frac{1}{\rho_1'} \right) \left(\frac{1}{\rho_2} - \frac{1}{\rho_2'} \right) \cos 2\varphi} \]

(23.15)

Здесь \(\varphi \) — угол между главными плоскостями кривиз

tел, в которых лежат радиусы \(\rho_1 \) и \(\rho_2 \). Знаки в формуле (23.15) выбираются так, чтобы значение \(\cos \psi \) было по-

ложительным.

![Diagram](image)

Рис. 404

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\varphi)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3,776</td>
<td>0,403</td>
<td>60</td>
<td>1,486</td>
<td>0,717</td>
</tr>
<tr>
<td>30</td>
<td>2,731</td>
<td>0,493</td>
<td>65</td>
<td>1,378</td>
<td>0,759</td>
</tr>
<tr>
<td>35</td>
<td>2,397</td>
<td>0,530</td>
<td>70</td>
<td>1,284</td>
<td>0,802</td>
</tr>
<tr>
<td>40</td>
<td>2,136</td>
<td>0,567</td>
<td>75</td>
<td>1,202</td>
<td>0,846</td>
</tr>
<tr>
<td>45</td>
<td>1,926</td>
<td>0,604</td>
<td>80</td>
<td>1,128</td>
<td>0,893</td>
</tr>
<tr>
<td>50</td>
<td>1,754</td>
<td>0,641</td>
<td>85</td>
<td>1,061</td>
<td>0,944</td>
</tr>
<tr>
<td>55</td>
<td>1,611</td>
<td>0,678</td>
<td>90</td>
<td>1,000</td>
<td>1 000</td>
</tr>
</tbody>
</table>

Наибольшее напряжение в центре площадки контакта

\[\sigma_{\text{max}} = 1,5 \frac{P}{\pi ab} . \]

(23.16)

Наиболее опасная точка расположена на оси z на некоторой глубине, зависящей от отношения \(b'/a \).

Максимальное касательное напряжение не зависит от указанного отношения и равно

\[\tau_{\text{max}} \approx 0,32 \sigma_{\text{max}} . \]

(23.17)

Как следует из приведенных формул, контактные напряжения зависят от упругих свойств материала и не являются линейной функцией нагрузки, так что течь их роста отстает от темпа увеличения сжимающей нагрузки. Это объясняется тем, что с увеличением нагрузки увеличиваются размеры площадки контакта. В табл. 60 приведены расчетные формулы для определения параметров контакта двух тел (коэффициентов \(A \) и \(B \) уравнения эллипса касания, размера площадки контакта, наибольшего контактного напряжения \(\sigma_{\text{max}} \) и взаимного сближения \(\Delta \)). Для упрощения вычисления по приведенным формулам в табл. 61 даны значения входящих в них коэффициентов \(n_a, n_b, n_p, n_\Delta \) в зависимости от отношения \(A \) к \(B \).
23.2. Проверка прочности при контактных напряжениях

Проверку прочности при контактных напряжениях следует производить по третьей или четвертой теории прочности:

\[
\sigma_{\text{экв III}} = \sigma_1 - \sigma_3 \leq [\sigma];
\]

\[
\sigma_{\text{экв IV}} = \sqrt{\frac{1}{2} ((\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2)} \leq [\sigma].
\]

Подставив в эти формулы \(\sigma_1, \sigma_2, \sigma_3\), выраженные через \(\sigma_{\text{max}}\) в центре площадки контакта, запишем условия прочности в виде

\[
\sigma_{\text{экв}} = m\sigma_{\text{max}} \leq [\sigma],
\]

откуда

\[
\sigma_{\text{max}} \leq \frac{1}{m} [\sigma] = [\sigma]_{\text{конт}},
\]

где \([\sigma]_{\text{конт}} = [\sigma]/m\) — допускаемое напряжение для наибольшего напряжения в месте контакта. Значения коэффициента \(m\) в зависимости от отношения полусей эллиптической площадки \(b/a\) приведены ниже.

<table>
<thead>
<tr>
<th>(b/a) \</th>
<th>(m = \frac{\sigma_{\text{экв III}}}{\sigma_{\text{max}}})</th>
<th>(m = \frac{\sigma_{\text{экв IV}}}{\sigma_{\text{max}}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (круг)</td>
<td>0,620</td>
<td>0,620</td>
</tr>
<tr>
<td>0,75</td>
<td>0,625</td>
<td>0,617</td>
</tr>
<tr>
<td>0,50</td>
<td>0,649</td>
<td>0,611</td>
</tr>
<tr>
<td>0,25</td>
<td>0,646</td>
<td>0,587</td>
</tr>
<tr>
<td>0 (полоса)</td>
<td>0,600</td>
<td>0,557</td>
</tr>
</tbody>
</table>

Можно рекомендовать следующий порядок расчета на прочность элементов конструкции в местах контакта:

1. Определить главные радиусы кривизны контактирующих тел \(\rho_1, \rho_1', \rho_2, \rho_2'\), а также угол \(\psi\) между их главными плоскостями кривизны.

2. Вычислить по формулам (23.13) и (23.14) с учетом (23.15) размеры полусей эллиптической площадки контакта.

3. По формуле (23.16) определить \(\sigma_{\text{max}}\), а в случае круглой и прямоугольной площадок контакта — по формуле (23.2) или (23.8) соответственно, не определяя размеров площадки.

4. Расчет на прочность можно производить по формуле (23.18), находя значения \(m\) по приведенной выше таблице. При этом рекомендуется исходить из четвертой теории прочности.

5. Для роликовых и шариковых подшипников \([\sigma]_{\text{конт}}\) равно 3500—5000 МПа; для рельсовой стали 800—1000 МПа.

В табл. 62 приведены наибольшие допускаемые давления на площадке контакта при первоначальном контакте по линии \((m = 0,557)\) и статическом нагружении. В случае первоначального контакта в точке значения \([\sigma]_{\text{конт}}\) следует увеличить в 1,3—1,5 раза.
<table>
<thead>
<tr>
<th>Схема касания</th>
<th>Коэффициенты уравнения эллипса касания</th>
<th>Размеры площадки контакта</th>
</tr>
</thead>
</table>
| Два сферических тела | $a = b = 0.9086 \times \sqrt[3]{p \frac{R_1 R_2}{R_1 + R_2} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2}\right)}$ | Если $E_1 = E_2 = E$
| | | $a = b = 1.109 \sqrt[3]{\frac{p R_1 R_2}{E (R_1 + R_2)}}$ |
| Шар и сферическое углубление | $a = b = 0.9086 \times \sqrt[3]{p \frac{R_1 R_2}{R_2 - R_1} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2}\right)}$ | Если $E_1 = E_2 = E$
| | | $a = b = 1.109 \sqrt[3]{\frac{p R_1 R_2}{E (R_2 - R_1)}}$ |
| Сферическое тело и плоскость | $a = b = 0.9088 \times \sqrt[3]{p R \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2}\right)}$ | Если $E_1 = E_2 = E$
<p>| | | $a = b = 1.109 \sqrt[3]{\frac{p}{E} R}$ |</p>
<table>
<thead>
<tr>
<th>Наибольшее напряжение σ_{max}</th>
<th>Сближение соприкасающихся тел Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0,5784 \sqrt[3]{P \frac{R_1 + R_2}{R_1 R_2} \left(1 - \mu_1^2 + \frac{1 - \mu_2^2}{E_1 + E_2}\right)^2}$</td>
<td>$0,8255 \times 3 \sqrt{\frac{p^2 R_1 + R_2 \left(1 - \mu_1^2 + \frac{1 - \mu_2^2}{E_1 + E_2}\right)^3}{E_1 + E_2}}$</td>
</tr>
<tr>
<td>$\mu_1 = \mu_2 = 0,3$, то</td>
<td>$1,231 \sqrt{\frac{P^2 R_1 + R_2}{R_1 R_2}}$</td>
</tr>
<tr>
<td>$0,388 \sqrt{PE^2 \left(\frac{R_1 + R_2}{R_1 R_2}\right)^3}$</td>
<td>$0,8255 \times 3 \sqrt{\frac{P^2 R_1 + R_2 \left(1 - \mu_1^2 + \frac{1 - \mu_2^2}{E_1 + E_2}\right)^3}{E_1 + E_2}}$</td>
</tr>
<tr>
<td>$\max \tau = \frac{1}{3} \sigma_{\text{max}}$</td>
<td>$1,231 \sqrt{\frac{P^2 R_1 + R_2}{R_1 R_2}}$</td>
</tr>
<tr>
<td>$\max \sigma_1 = 0,133 \sigma_{\text{max}}$</td>
<td>$0,8255 \sqrt{\frac{p^2 R_1 + R_2 \left(1 - \mu_1^2 + \frac{1 - \mu_2^2}{E_1 + E_2}\right)^3}{E_1 + E_2}}$</td>
</tr>
<tr>
<td>$0,5784 \sqrt[3]{P \frac{R_2 - R_1}{R_1 R_2} \left(1 - \mu_1^2 + \frac{1 - \mu_2^2}{E_1 + E_2}\right)^2}$</td>
<td>$1,231 \sqrt{\frac{P^2 R_2 - R_1 \left(1 - \mu_1^2 + \frac{1 - \mu_2^2}{E_1 + E_2}\right)^3}{E_1 + E_2}}$</td>
</tr>
<tr>
<td>$\mu_1 = \mu_2 = 0,3$, то</td>
<td>$0,8255 \sqrt{\frac{p^2 R_2 - R_1 \left(1 - \mu_1^2 + \frac{1 - \mu_2^2}{E_1 + E_2}\right)^3}{E_1 + E_2}}$</td>
</tr>
<tr>
<td>$0,388 \sqrt{PE^2 \left(\frac{R_2 - R_1}{R_1 R_2}\right)^3}$</td>
<td>$1,231 \sqrt{\frac{P^2 R_2 - R_1}{R_1 R_2}}$</td>
</tr>
<tr>
<td>$\max \tau = \frac{1}{3} \sigma_{\text{max}}$</td>
<td>$0,8255 \sqrt{\frac{p^2 R_2 - R_1 \left(1 - \mu_1^2 + \frac{1 - \mu_2^2}{E_1 + E_2}\right)^3}{E_1 + E_2}}$</td>
</tr>
<tr>
<td>$\max \sigma_1 = 0,133 \sigma_{\text{max}}$</td>
<td>$1,231 \sqrt{\frac{P^2 R_2 - R_1}{R_1 R_2}}$</td>
</tr>
<tr>
<td>Схема касания</td>
<td>Коэффициенты уравнения эллипса касания</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------------</td>
</tr>
</tbody>
</table>
| **Сферическое тело и цилиндр**

\[R_2 > R_1 \] | \[
\frac{1}{2R_1} + \frac{1}{R_2}
\] | \[
\begin{align*}
\frac{3}{2} \sqrt{\frac{R_1 R_2}{P} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)}
\end{align*}
\]
| \[
\begin{align*}
&b = 1,145 n_b \times \\
&\text{Если } E_1 = E_2 = E
\end{align*}
\] |
| **Сферическое тело и цилиндрический желоб**

\[R_2 > R_1 \] | \[
\frac{1}{2R_1} - \frac{1}{R_2}
\] | \[
\begin{align*}
\frac{3}{2} \sqrt{\frac{R_1 R_2}{P} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)}
\end{align*}
\]
| \[
\begin{align*}
&b = 1,145 n_b \times \\
&\text{Если } E_1 = E_2 = E
\end{align*}
\] |
| **Сферическое тело и круговой желоб (шариковый подшипник)**

\[R_2 \gg R_1 \] | \[
\frac{1}{2} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) + \frac{1}{R_3}
\] | \[
\begin{align*}
\frac{3}{2} \sqrt{\frac{R_1 R_2}{P} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)}
\end{align*}
\]
| \[
\begin{align*}
&b = 1,145 n_b \times \\
&\text{Если } E_1 = E_2 = E
\end{align*}
\] |
Найбольшее напряжение σ_{max}

\[
0,365n_P \sqrt[3]{P \frac{(2R_2 + R_1)^2}{R_1 R_2 \left(1 - \mu_1^2 - 1 - \mu_2^2 \right)^2 \left(\frac{1}{E_1} + \frac{1}{E_2} \right)}}
\]

и $\mu_1 = \mu_2 = 0,3$, то

\[
0,245n_P \sqrt[3]{P \left(\frac{2R_2 + R_1}{R_1 R_2} \right)^2}
\]

Сближение соприкасающихся тел Δ

\[
0,655n_\Delta \times
\sqrt[3]{\frac{p^2}{2R_2 + R_1} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)^2}
\]

\[
0,977n_\Delta \sqrt[3]{\left(\frac{P}{E} \right)^2 \frac{2R_2 + R_1}{R_1 R_2}}
\]

и $\mu_1 = \mu_2 = 0,3$, то

\[
0,245n_P \sqrt[3]{P \left(\frac{2R_2 - R_1}{R_1 R_2} \right)^2}
\]

\[
0,655n_\Delta \times
\sqrt[3]{\frac{p^2}{2R_2 - R_1} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)^2}
\]

\[
0,977n_\Delta \sqrt[3]{\left(\frac{P}{E} \right)^2 \frac{2R_2 - R_1}{R_1 R_2}}
\]

\[
0,365n_P \sqrt[3]{P \frac{(2R_1 - 1)^2}{R_1 R_2 \left(1 - \mu_1^2 - 1 - \mu_2^2 \right)^2 \left(\frac{1}{E_1} + \frac{1}{E_2} \right)}}
\]

\[
0,655n_\Delta \sqrt[3]{\frac{p^2}{R_1 - R_2 + R_3} \left(\frac{2}{R_1 - R_2 + R_3} \right) \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)^2}
\]

\[
0,977n_\Delta \sqrt[3]{\left(\frac{P}{E} \right)^2 \frac{2R_1 - 1}{R_1 R_2}}
\]
<table>
<thead>
<tr>
<th>Схема касания</th>
<th>Коэффициенты уравнения эллипса касания</th>
<th>Размеры площадки контакта</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Роликовый подшипник</td>
<td>(a = 1,397 n_a \times \sqrt[3]{\frac{p}{E} \cdot \frac{1}{\bar{R}_1 - \bar{R}_2 + \bar{R}_3}})</td>
<td>(b = 1,397 n_b \times \sqrt[3]{\frac{p}{E} \cdot \frac{1}{\bar{R}_1 - \bar{R}_2 + \bar{R}_3}})</td>
</tr>
</tbody>
</table>

Если \(E_1 = E_2 = E \)

\[
a = 1,145 n_a \times \sqrt[3]{p \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right) \frac{1}{\bar{R}_1 + \bar{R}_2 + \bar{R}_3 - \bar{R}_4}}
\]

\[
b = 1,145 n_b \times \sqrt[3]{p \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right) \frac{1}{\bar{R}_1 + \bar{R}_2 + \bar{R}_3 - \bar{R}_4}}
\]

Если \(E_1 = E_2 = E \)

\[
a = 1,397 n_a \times \sqrt[3]{\frac{p}{E} \cdot \frac{1}{\bar{R}_1 - \bar{R}_2 + \bar{R}_3}}
\]

\[
b = 1,397 n_b \times \sqrt[3]{\frac{p}{E} \cdot \frac{1}{\bar{R}_1 - \bar{R}_2 + \bar{R}_3}}
\]
<table>
<thead>
<tr>
<th>Наибольшее напряжение σ_{max}</th>
<th>Сближение соприкасающихся тел Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_1 = \mu_2 = 0.3$, то</td>
<td>$\mu_1 = \mu_2 = 0.3$, то</td>
</tr>
<tr>
<td>$0.245 \pi P \sqrt{3 PEz \left(\frac{2}{R_1} - \frac{1}{R_2} + \frac{1}{R_3} \right)}$</td>
<td>$0.977 \pi \Delta \sqrt{\frac{P^2}{E} \left(\frac{2}{R_1} - \frac{1}{R_2} + \frac{1}{R_3} \right)}$</td>
</tr>
<tr>
<td>$\times \sqrt{\frac{0.365 \pi P}{1 \frac{R_1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} - \frac{1}{R_4}}}$</td>
<td>$\times \sqrt{\frac{0.655 \pi \Delta}{1 \frac{R_1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} - \frac{1}{R_4} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)^2}}$</td>
</tr>
</tbody>
</table>

637
<table>
<thead>
<tr>
<th>Схема касания</th>
<th>Коефициенты уравнения эллипса касания</th>
<th>Размеры площадки контакта</th>
</tr>
</thead>
<tbody>
<tr>
<td>Цилиндры со взаимно перпендикулярными осями</td>
<td>$A = \frac{1}{2R_2}$ $B = \frac{1}{2R_1}$</td>
<td>$a = 1,145n_a \times$ $3 \sqrt{\frac{R_1 R_2}{R_2 + R_1} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)}$ $b = 1,145n_b \times$ $3 \sqrt{\frac{R_1 R_2}{R_2 + R_1} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)}$ При $R_1 = a = b = 0,9086 \times$ $3 \sqrt{PR \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)}$ Если $E_1 = E_2 = E$ $a = 1,397n_a \sqrt{\frac{P}{E} \cdot \frac{R_1 R_2}{R_2 + R_1}}$ $b = 1,397n_b \sqrt{\frac{P}{E} \cdot \frac{R_1 R_2}{R_2 + R_1}}$ При $R_1 = a = b = 1,109 \sqrt{\frac{PR}{E}}$</td>
</tr>
<tr>
<td>Цилиндры с параллельными осями</td>
<td>$A = \frac{1}{2R_1}$ $B = \frac{1}{2R_2}$</td>
<td>Полуширина полоски контакта $b = 1,128 \times$ $3 \sqrt{\frac{P}{I} \frac{R_1 R_2}{R_1 + R_2} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)}$ При $R_1 = b = 0,798 \sqrt{\frac{PR_1 R_2}{I E_1} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)}$ Если $E_1 = E_2 = E$ $b = 1,522 \sqrt{\frac{P}{I E} \frac{R_1 R_2}{R_1 + R_2}}$</td>
</tr>
<tr>
<td>Наибольшее напряжение σ_{max}</td>
<td>Сближение соприкасающихся тел Δ</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>$0,365n_P \sqrt[3]{\frac{P}{R^2}} \left(\frac{R_2 + R_1}{R_1R_2} \right)^{\frac{3}{2}} \left(1 - \mu_1^2 \right) \left(1 - \mu_2^2 \right) \left(\frac{1}{E_1} + \frac{1}{E_2} \right)^{\frac{3}{2}}$</td>
<td>$0,655n_\Delta \times \sqrt[3]{\frac{P^2}{R^2}} \left(\frac{R_2 + R_1}{R_1R_2} \right)^{\frac{3}{2}} \left(1 - \mu_1^2 \right) \left(1 - \mu_2^2 \right) \left(\frac{1}{E_1} + \frac{1}{E_2} \right)^{\frac{3}{2}}$</td>
<td></td>
</tr>
<tr>
<td>$R_2 = R$</td>
<td>$0,5784 \sqrt[3]{\frac{P}{R^2}} \left(1 - \mu_1^2 \right) \left(1 - \mu_2^2 \right) \left(\frac{1}{E_1} + \frac{1}{E_2} \right)^{\frac{3}{2}}$</td>
<td></td>
</tr>
<tr>
<td>$\mu_1 = \mu_2 = 0,3$, то</td>
<td>$0,8255 \sqrt[3]{\frac{P^2}{R^2}} \left(\frac{1}{E_1} + \frac{1}{E_2} \right)^{\frac{3}{2}}$</td>
<td></td>
</tr>
<tr>
<td>$0,245n_P \sqrt[3]{\frac{P}{R^2}} E^2 \left(\frac{R_2 + R_1}{R_1R_2} \right)^{\frac{3}{2}}$</td>
<td>$0,977n_\Delta \sqrt[3]{\left(\frac{P}{E} \right)^2} R_2 + R_1 \frac{1}{R_1R_2}$</td>
<td></td>
</tr>
<tr>
<td>$R_2 = R$</td>
<td>$0,388 \sqrt[3]{\frac{P}{E}} \left(\frac{E}{R} \right)^{\frac{3}{2}}$</td>
<td></td>
</tr>
<tr>
<td>$0,5642 \sqrt[3]{\frac{P}{l}} \left(\frac{R_1 + R_2}{R_1R_2} \right) \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right) \left(\frac{1}{E_1} + \frac{1}{E_2} \right)^{\frac{3}{2}}$</td>
<td>$1,231 \sqrt[3]{\left(\frac{P}{E} \right)^2} \frac{1}{R}$</td>
<td></td>
</tr>
<tr>
<td>$R_2 = R$</td>
<td>$0,798 \sqrt[3]{\frac{P}{lR}} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right) \left(\frac{1}{E_1} + \frac{1}{E_2} \right)^{\frac{3}{2}}$</td>
<td></td>
</tr>
<tr>
<td>и $\mu_1 = \mu_2 = 0,3$, то</td>
<td>$2P \left[\frac{1}{E_1} \left(\ln \frac{2R_1}{b} + 0,407 \right) + \frac{1}{E_2} \left(\ln \frac{2R_2}{b} + 0,407 \right) \right]$</td>
<td></td>
</tr>
<tr>
<td>$0,418 \sqrt[3]{\frac{PE}{lR} \left(\frac{R_1 + R_2}{R_1R_2} \right)}$</td>
<td>$2P \left[\left(\ln \frac{2R}{b} + 0,407 \right) \times \left(\frac{1}{E_1} + \frac{1}{E_2} \right) \right]$</td>
<td></td>
</tr>
<tr>
<td>$0,5796 \frac{P}{lE} \left(\ln \frac{4R_1R_2}{b^2} + 0,814 \right)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

639
<table>
<thead>
<tr>
<th>Схема касания</th>
<th>Коэффициенты уравнения эллипса касания</th>
<th>Размеры площадки контакта</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Цилиндр и цилиндрическая впадина с параллельными осями</td>
<td></td>
<td>$rac{b}{1.076} \sqrt{\frac{P R}{l E}}$</td>
</tr>
<tr>
<td>Цилиндр и плоскость</td>
<td>$- \frac{1}{2} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$</td>
<td>Полуширина полоски контакта</td>
</tr>
<tr>
<td></td>
<td>$- \frac{1}{2R}$</td>
<td>$b = 1.128 \times$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\sqrt{\frac{P R}{l E} \frac{R_1 R_2}{R_2 - R_1} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)}$</td>
</tr>
<tr>
<td>Два тела, ограниченные криволинейными поверхностями и соприкасающиеся до деформации в одной точке</td>
<td></td>
<td>Если $E_1 = E_2 = E$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b = 1.131 \sqrt{\frac{P R}{l E} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Если $E_1 = E_2 = E$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b = 1.526 \sqrt{\frac{P R}{l E}}$</td>
</tr>
<tr>
<td>Большая полуось эллипса</td>
<td>$a = n_a \sqrt{\frac{3}{2} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right) P}$</td>
<td></td>
</tr>
<tr>
<td>Малая полуось эллипса</td>
<td>$b = n_b \sqrt{\frac{3}{2} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right) P}$</td>
<td></td>
</tr>
</tbody>
</table>

При $R_1 = ...$

P — нагрузка; E — модуль упругости; μ — коэффициент Пуассона; 1 и 2 — индексы, соответствующие первому и второму телам; $\sum k$ — сумма главных кривизн поверхностей соприкасающихся тел в месте первоначального контакта.
<table>
<thead>
<tr>
<th>Наименьшее напряжение σ_{max}</th>
<th>Сближение соприкасающихся тел Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_s = R$</td>
<td>$0,591 \sqrt{\frac{P}{lR}}$</td>
</tr>
<tr>
<td>$0,5642 \sqrt{\frac{P}{l}} \frac{R_s - R_1}{R_1 R_s} \frac{R_1 - R_2}{1 - \mu_1^2 + \frac{1 - \mu_2^2}{E_1 + E_2}}$</td>
<td>$0,5796 \frac{R}{lE} \left(\ln \frac{4R^3}{b^3} + 0,814 \right)$</td>
</tr>
<tr>
<td>и $\mu_1 = \mu_2 = 0,3$, то</td>
<td></td>
</tr>
<tr>
<td>$0,418 \sqrt{\frac{P}{lR}} \frac{R_s - R_1}{R_1 R_s}$</td>
<td>$1,82 \frac{P}{lE} (1 - \ln b)$</td>
</tr>
</tbody>
</table>

и $\mu_1 = \mu_2 = 0,3$, то

$0,418 \sqrt{\frac{P}{lR}}$

Уменьшение размера диаметра цилиндра между двумя сжимающими его гранями (с учетом контактных и общих деформаций цилиндра)

$\Delta D = 1,159 \frac{P}{lE} \left(0,41 + \ln \frac{4R}{b} \right)$

$\times \frac{n_P}{\pi} \times \frac{1}{\pi} \times \sqrt{\frac{3}{2} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)} P,$

где $n_P = \frac{1}{n_a n_b}$

$n_{\Delta} \frac{1}{2} \sqrt{\frac{9}{4} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right)^2 P \Sigma k}$
<table>
<thead>
<tr>
<th>A/B</th>
<th>n_a</th>
<th>n_b</th>
<th>n_p</th>
<th>n_Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0000</td>
<td>1,0000</td>
<td>1,0000</td>
<td>1,0000</td>
<td>1,0000</td>
</tr>
<tr>
<td>0,9623</td>
<td>0,9873</td>
<td>0,9742</td>
<td>0,9999</td>
<td>0,9997</td>
</tr>
<tr>
<td>0,9240</td>
<td>0,9606</td>
<td>0,9992</td>
<td>0,9997</td>
<td>0,9999</td>
</tr>
<tr>
<td>0,8852</td>
<td>0,9465</td>
<td>0,9985</td>
<td>0,9982</td>
<td>0,9974</td>
</tr>
<tr>
<td>0,8459</td>
<td>0,9318</td>
<td>0,9994</td>
<td>0,9990</td>
<td>0,9974</td>
</tr>
<tr>
<td>0,8059</td>
<td>0,9165</td>
<td>0,9992</td>
<td>0,9990</td>
<td>0,9996</td>
</tr>
<tr>
<td>0,7652</td>
<td>0,9005</td>
<td>0,9991</td>
<td>0,9989</td>
<td>0,9942</td>
</tr>
<tr>
<td>0,7238</td>
<td>0,8857</td>
<td>0,9992</td>
<td>0,9990</td>
<td>0,9919</td>
</tr>
<tr>
<td>0,6816</td>
<td>0,8660</td>
<td>0,9993</td>
<td>0,9989</td>
<td>0,9889</td>
</tr>
<tr>
<td>0,6384</td>
<td>0,8472</td>
<td>0,9994</td>
<td>0,9993</td>
<td>0,9852</td>
</tr>
<tr>
<td>0,5942</td>
<td>0,8271</td>
<td>0,9995</td>
<td>0,9993</td>
<td>0,9804</td>
</tr>
<tr>
<td>0,5489</td>
<td>0,8056</td>
<td>0,9996</td>
<td>0,9994</td>
<td>0,9744</td>
</tr>
<tr>
<td>0,5022</td>
<td>0,7822</td>
<td>0,9997</td>
<td>0,9994</td>
<td>0,9667</td>
</tr>
<tr>
<td>0,4540</td>
<td>0,7565</td>
<td>0,9998</td>
<td>0,9995</td>
<td>0,9566</td>
</tr>
<tr>
<td>0,4040</td>
<td>0,7278</td>
<td>0,9999</td>
<td>0,9996</td>
<td>0,9432</td>
</tr>
<tr>
<td>0,3518</td>
<td>0,7216</td>
<td>0,9999</td>
<td>0,9997</td>
<td>0,9400</td>
</tr>
<tr>
<td>0,3010</td>
<td>0,7152</td>
<td>0,9999</td>
<td>0,9998</td>
<td>0,9366</td>
</tr>
<tr>
<td>0,2501</td>
<td>0,7086</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,9329</td>
</tr>
<tr>
<td>0,2004</td>
<td>0,7019</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,9290</td>
</tr>
<tr>
<td>0,1522</td>
<td>0,6949</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,9268</td>
</tr>
<tr>
<td>0,1046</td>
<td>0,6876</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,9203</td>
</tr>
<tr>
<td>0,0587</td>
<td>0,6801</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,9155</td>
</tr>
<tr>
<td>0,0273</td>
<td>0,6723</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,9102</td>
</tr>
<tr>
<td>0,0117</td>
<td>0,6642</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,9054</td>
</tr>
<tr>
<td>0,0517</td>
<td>0,6547</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,8983</td>
</tr>
<tr>
<td>0,0257</td>
<td>0,6468</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,8916</td>
</tr>
<tr>
<td>0,0132</td>
<td>0,6374</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,8841</td>
</tr>
<tr>
<td>0,0064</td>
<td>0,6276</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,8759</td>
</tr>
<tr>
<td>0,0032</td>
<td>0,6171</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,8668</td>
</tr>
<tr>
<td>0,0016</td>
<td>0,6059</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,8566</td>
</tr>
<tr>
<td>0,0008</td>
<td>0,5938</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,8451</td>
</tr>
<tr>
<td>0,0004</td>
<td>0,5808</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,8320</td>
</tr>
<tr>
<td>0,0002</td>
<td>0,5665</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,8168</td>
</tr>
<tr>
<td>0,0001</td>
<td>0,5505</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,7990</td>
</tr>
<tr>
<td>0,00005</td>
<td>0,5325</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,7887</td>
</tr>
<tr>
<td>0,000025</td>
<td>0,5224</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,7775</td>
</tr>
<tr>
<td>0,0000125</td>
<td>0,5114</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,7650</td>
</tr>
<tr>
<td>0,00000625</td>
<td>0,5093</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,7509</td>
</tr>
<tr>
<td>0,000003125</td>
<td>0,4993</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,7349</td>
</tr>
<tr>
<td>0,0000015625</td>
<td>0,4858</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,7163</td>
</tr>
<tr>
<td>0,00000078125</td>
<td>0,4704</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,6943</td>
</tr>
<tr>
<td>0,000000390625</td>
<td>0,4524</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,6675</td>
</tr>
<tr>
<td>0,0000001953125</td>
<td>0,4484</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,6613</td>
</tr>
<tr>
<td>0,00000009765625</td>
<td>0,4442</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,6549</td>
</tr>
<tr>
<td>0,000000048828125</td>
<td>0,4398</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,6481</td>
</tr>
<tr>
<td>0,0000000244140625</td>
<td>0,4352</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,6409</td>
</tr>
<tr>
<td>0,00000001220703125</td>
<td>0,4304</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,6333</td>
</tr>
<tr>
<td>0,000000006103515625</td>
<td>0,4253</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,6251</td>
</tr>
<tr>
<td>0,0000000030517578125</td>
<td>0,4209</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,6164</td>
</tr>
<tr>
<td>0,00000000152587890625</td>
<td>0,4159</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,6071</td>
</tr>
<tr>
<td>0,000000000762939453125</td>
<td>0,4104</td>
<td>0,9999</td>
<td>0,9999</td>
<td>0,5970</td>
</tr>
</tbody>
</table>
Продолжение табл. 61

<table>
<thead>
<tr>
<th>A/B</th>
<th>n_a</th>
<th>n_b</th>
<th>n_p</th>
<th>n_Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,02737</td>
<td>4,014</td>
<td>0,4014</td>
<td>0,6206</td>
<td>0,5860</td>
</tr>
<tr>
<td>0,02508</td>
<td>4,156</td>
<td>0,3942</td>
<td>0,6104</td>
<td>0,5741</td>
</tr>
<tr>
<td>0,02273</td>
<td>4,320</td>
<td>0,3864</td>
<td>0,5990</td>
<td>0,5608</td>
</tr>
<tr>
<td>0,02033</td>
<td>4,515</td>
<td>0,3777</td>
<td>0,5864</td>
<td>0,5460</td>
</tr>
<tr>
<td>0,01787</td>
<td>4,750</td>
<td>0,3680</td>
<td>0,5721</td>
<td>0,5292</td>
</tr>
<tr>
<td>0,01533</td>
<td>5,046</td>
<td>0,3568</td>
<td>0,5555</td>
<td>0,5096</td>
</tr>
<tr>
<td>0,01269</td>
<td>5,432</td>
<td>0,3436</td>
<td>0,5358</td>
<td>0,4864</td>
</tr>
<tr>
<td>0,009934</td>
<td>5,976</td>
<td>0,3273</td>
<td>0,5112</td>
<td>0,4574</td>
</tr>
<tr>
<td>0,007018</td>
<td>6,837</td>
<td>0,3058</td>
<td>0,4783</td>
<td>0,4186</td>
</tr>
<tr>
<td>0,003850</td>
<td>8,609</td>
<td>0,2722</td>
<td>0,4267</td>
<td>0,3579</td>
</tr>
</tbody>
</table>

Таблица 62. Допускаемые давления на площадке контакта при первоначальном контакте по линии и статическом нагружении

<table>
<thead>
<tr>
<th>Марка материала</th>
<th>Временное сопротивление, МПа</th>
<th>Твердость по Бринеллю МПа</th>
<th>Допускаемое максимальное давление на площадке контакта [σ]_конт. МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сталь</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>480—600</td>
<td>1800</td>
<td>850—1050</td>
</tr>
<tr>
<td>40</td>
<td>570—700</td>
<td>2000</td>
<td>1000—1350</td>
</tr>
<tr>
<td>50</td>
<td>630—800</td>
<td>2300</td>
<td>1050—1400</td>
</tr>
<tr>
<td>50Г</td>
<td>650—850</td>
<td>2400</td>
<td>1100—1450</td>
</tr>
<tr>
<td>15Х</td>
<td>620—750</td>
<td>2400</td>
<td>1050—1600</td>
</tr>
<tr>
<td>20Х</td>
<td>700—850</td>
<td>2400</td>
<td>1200—1450</td>
</tr>
<tr>
<td>15ХФ</td>
<td>1600—1800</td>
<td>2400</td>
<td>1350—1600</td>
</tr>
<tr>
<td>ШХ15</td>
<td>—</td>
<td>—</td>
<td>3800</td>
</tr>
<tr>
<td>Чугун</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>СЧ21-40</td>
<td>960</td>
<td>1800—2070</td>
<td>800—900</td>
</tr>
<tr>
<td>СЧ24-44</td>
<td>1000</td>
<td>1870—2170</td>
<td>900—1000</td>
</tr>
<tr>
<td>СЧ28-48</td>
<td>1100</td>
<td>1700—2410</td>
<td>1000—1100</td>
</tr>
<tr>
<td>СЧ32-52</td>
<td>1200</td>
<td>1700—2410</td>
<td>1100—1200</td>
</tr>
<tr>
<td>СЧ35-56</td>
<td>1300</td>
<td>1970—2550</td>
<td>1200—1300</td>
</tr>
<tr>
<td>СЧ38-60</td>
<td>1400</td>
<td>1970—2550</td>
<td>1300—1400</td>
</tr>
</tbody>
</table>
Приложение 1 Физико-механические свойства материалов (для

- σ_b — предел прочности при растяжении (для дерева — вдоль волокон);
- σ_c — предел прочности при сжатии (для дерева — вдоль волокон);
- $\sigma_{\text{изг}}$ — предел прочности при изгибе;
- τ_n — предел прочности при кручении;
- $\tau_{\text{ср}}$ — предел прочности при срезе (для дерева — вдоль волокон);
- $\sigma_{\text{пр}}$ — предел пропорциональности при растяжении;
- σ_t — предел текучести при растяжении;

<table>
<thead>
<tr>
<th>Материал</th>
<th>σ_b</th>
<th>σ_c</th>
<th>$\sigma_{\text{изм}}$</th>
<th>$\sigma_{\text{пр}}$</th>
<th>σ_t</th>
<th>τ_n</th>
<th>$\tau_{\text{ср}}$</th>
<th>$\sigma_{\text{пр}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГОСТ 380—71</td>
<td>$\sigma_b = 320 - 400$</td>
<td>$\sigma_b = 320 - 400$</td>
<td>$\sigma_b = 380 - 470$</td>
</tr>
<tr>
<td>Ст1</td>
<td>$\sigma_b = 320 - 400$</td>
</tr>
<tr>
<td>Ст2</td>
<td>$\sigma_b = 320 - 400$</td>
</tr>
<tr>
<td>Ст3</td>
<td>$\sigma_b = 380 - 470$</td>
</tr>
<tr>
<td>Ст4</td>
<td>$\sigma_b = 420 - 520$</td>
</tr>
<tr>
<td>Ст5</td>
<td>$\sigma_b = 380 - 470$</td>
</tr>
<tr>
<td>Ст6</td>
<td>$\sigma_b = 600 - 720$</td>
</tr>
</tbody>
</table>

Углеродистые обыкновенного

Спецнификация 5520—79

<table>
<thead>
<tr>
<th>Материал</th>
<th>σ_b</th>
<th>σ_c</th>
<th>$\sigma_{\text{изм}}$</th>
<th>$\sigma_{\text{пр}}$</th>
<th>σ_t</th>
<th>τ_n</th>
<th>$\tau_{\text{ср}}$</th>
<th>$\sigma_{\text{пр}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>15K</td>
<td>$\sigma_b = 380$</td>
</tr>
<tr>
<td>20K</td>
<td>$\sigma_b = 410$</td>
</tr>
<tr>
<td>ГОСТ 6713—75</td>
<td>$\sigma_b = 380$</td>
</tr>
<tr>
<td>Ст3 мост.</td>
<td>$\sigma_b = 380$</td>
</tr>
<tr>
<td>M16C</td>
<td>$\sigma_b = 380$</td>
</tr>
</tbody>
</table>
ориентировочных расчетов)

\(\sigma_{0,1} \) — условный предел текучести при растяжении (деформация 0,1 %);
\(\sigma_{т, с} \) — предел текучести при сжатии;
\(\sigma_{т, н} \) — предел текучести при изгибе;
\(\sigma_{1p} \) — предел выносливости при растяжении;
\(\sigma_{1} \) — предел выносливости при изгибе;
\(\tau_{1} \) — предел выносливости при кручении.

<table>
<thead>
<tr>
<th>Условное увлажнение (относительное сужение), %</th>
<th>Твердость по Бринеллю, МПа</th>
<th>Ударная вязкость, (\times 10^2) Дж/мм²</th>
<th>Модуль упругости (E(G)), (\times 10^{-1}) МПа</th>
<th>Коэффициент Пуassона</th>
<th>Удельный вес, (\times 10^{-4}) Н/м³</th>
<th>Коэффициент линейного расширения, (\times 10^{-6}) 1/град</th>
</tr>
</thead>
<tbody>
<tr>
<td>сталь</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>качества**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1100</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>26</td>
<td>1160</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>21—23</td>
<td>1310</td>
<td>7—10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>19—21</td>
<td>1430</td>
<td>6—8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15—17</td>
<td>1700</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>назначения</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>—</td>
<td>7—8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22</td>
<td>—</td>
<td>6—7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22 (50)</td>
<td>—</td>
<td>7—10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22 (50)</td>
<td>—</td>
<td>7—10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Материал</td>
<td>Предел прочности, МПа</td>
<td>Предел текучести, пропорциональности, МПа</td>
<td>Предел выносливости, МПа</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>--</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ГОСТ 1414—75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>$\sigma_B = 420 - 570$</td>
<td>$\sigma_T = -$</td>
<td>$\sigma_{-1p} = -$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A40Г</td>
<td>$\sigma_B = 600 - 750$</td>
<td>$\sigma_T = -$</td>
<td>$\sigma_{-1p} = -$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ГОСТ 1050—74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$\sigma_B = 340 - 420$</td>
<td>$\sigma_T = 210$</td>
<td>$\sigma_{-1p} = 120 - 150$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\sigma_{-1} = 160 - 220$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\tau_{-1} = 80 - 120$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>$\sigma_B = 420 - 500$</td>
<td>$\sigma_T = 250$</td>
<td>$\sigma_{-1p} = 120 - 160$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\sigma_{-1} = 170 - 220$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\tau_{-1} = 100 - 130$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>$\sigma_B = 500 - 600$</td>
<td>$\sigma_T = 300$</td>
<td>$\sigma_{-1p} = 170 - 210$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\sigma_{-1} = 200 - 270$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\tau_{-1} = 110 - 140$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>$\sigma_B = 580 - 700$</td>
<td>$\sigma_T = 340$</td>
<td>$\sigma_{-1p} = 180 - 240$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\sigma_{-1} = 230 - 320$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\tau_{-1} = 140 - 190$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>$\sigma_B = 610 - 750$</td>
<td>$\sigma_T = 360$</td>
<td>$\sigma_{-1p} = 190 - 250$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\sigma_{-1} = 250 - 340$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\tau_{-1} = 150 - 200$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>$\sigma_B = 640 - 800$</td>
<td>$\sigma_T = 380$</td>
<td>$\sigma_{-1p} = 200 - 260$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\sigma_{-1} = 270 - 350$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\tau_{-1} = 160 - 210$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>$\sigma_B = 690 - 900$</td>
<td>$\sigma_T = 410$</td>
<td>$\sigma_{-1p} = 220 - 280$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\sigma_{-1} = 310 - 380$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\tau_{-1} = 180 - 220$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30Г</td>
<td>$\sigma_B = 550 - 700$</td>
<td>$\sigma_T = 320$</td>
<td>$\sigma_{-1p} = 220 - 320$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60Г</td>
<td>$\sigma_B = 710$</td>
<td>$\sigma_T = 420$</td>
<td>$\sigma_{-1p} = 250 - 320$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Легионан</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ГОСТ 4543—71</td>
<td></td>
</tr>
<tr>
<td>20Х</td>
<td>$\sigma_B = 720 - 850$</td>
</tr>
<tr>
<td></td>
<td>$\tau_{-1} = 170 - 230$</td>
</tr>
<tr>
<td>40Х</td>
<td>$\sigma_B = 730 - 1050$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_{-1} = 320 - 480$</td>
</tr>
<tr>
<td></td>
<td>$\tau_{-1} = 210 - 260$</td>
</tr>
<tr>
<td>45Х</td>
<td>$\sigma_B = 850 - 1050$</td>
</tr>
</tbody>
</table>

646
<table>
<thead>
<tr>
<th>Относительное удлинение (относительное сужение), %</th>
<th>Твердость по Бринеллю, МПа</th>
<th>Ударная вязкость, ×10 Дж/мм²</th>
<th>Модуль упругости E (G), ×10⁻³ МПа</th>
<th>Коэффициент Пуассона</th>
<th>Удельный вес, ×10⁻⁴ Н/м³</th>
<th>Коэффициент линейного расширения, ×10⁻⁶ 1/град</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 (36)</td>
<td>1600</td>
<td>—</td>
<td>2,02</td>
<td>—</td>
<td>—</td>
<td>11,9—14,2</td>
</tr>
<tr>
<td>14 (20)</td>
<td>2070</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>31 (55)</td>
<td>—</td>
<td>—</td>
<td>1,90</td>
<td>—</td>
<td>7,83</td>
<td>11,6—14,6</td>
</tr>
<tr>
<td>25 (55)</td>
<td>—</td>
<td>—</td>
<td>2,02</td>
<td>—</td>
<td>7,82</td>
<td>11,1—14,4</td>
</tr>
<tr>
<td>21 (50)</td>
<td>—</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>7,82</td>
<td>12,6—15,6</td>
</tr>
<tr>
<td>19 (45)</td>
<td>—</td>
<td>6</td>
<td>2,135</td>
<td>—</td>
<td>7,81</td>
<td>12,4—14,6</td>
</tr>
<tr>
<td>16 (40)</td>
<td>—</td>
<td>5</td>
<td>2,04</td>
<td>—</td>
<td>7,81</td>
<td>11,6—14,7</td>
</tr>
<tr>
<td>14 (40)</td>
<td>—</td>
<td>4</td>
<td>2,20</td>
<td>—</td>
<td>7,81</td>
<td>12,0—14,1</td>
</tr>
<tr>
<td>12 (35)</td>
<td>—</td>
<td>—</td>
<td>2,08</td>
<td>—</td>
<td>7,80</td>
<td>11,1—14,6</td>
</tr>
<tr>
<td>20 (45)</td>
<td>—</td>
<td>8</td>
<td>2,17</td>
<td>—</td>
<td>7,81</td>
<td></td>
</tr>
<tr>
<td>11 (35)</td>
<td>—</td>
<td>—</td>
<td>2,109</td>
<td>—</td>
<td>7,81</td>
<td>11,6—14,6</td>
</tr>
</tbody>
</table>

Ные стали

<p>| — | — | — | 2,07 | — | 7,74 | 11,3 |
| — | — | — | 2,185 (0,808) | — | 7,85 | 13,4—14,8 |
| 9 (45) | 1870—2190 | 5 | 2,109 (0,8015) | — | 7,82 | 12,8 |</p>
<table>
<thead>
<tr>
<th>Материал</th>
<th>Предел прочности, МПа</th>
<th>Предел текучести, пропорциональности, МПа</th>
<th>Предел выносливости, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>30ХМ</td>
<td>$\sigma_b = 740 - 1000$</td>
<td>$\sigma_t = 540 - 850$</td>
<td>$\sigma_{-1p} = 370$</td>
</tr>
<tr>
<td></td>
<td>$\tau_1 = 230$</td>
<td>$\sigma_{-1} = 310 - 410$</td>
<td></td>
</tr>
<tr>
<td>40ХН</td>
<td>$\sigma_b = 1000 - 1450$</td>
<td>$\sigma_t = 800 - 1300$</td>
<td>$\sigma_{-1p} = 310 - 420$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_{-1} = 460 - 600$</td>
<td>$\tau_1 = 220 - 300$</td>
<td></td>
</tr>
<tr>
<td>12ХН3А</td>
<td>$\sigma_b = 950 - 1400$</td>
<td>$\sigma_t = 700 - 1100$</td>
<td>$\sigma_{-1} = 420 - 640$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_{-1} = 430 - 650$</td>
<td>$\tau_1 = 240 - 310$</td>
<td></td>
</tr>
<tr>
<td>20ХН3А</td>
<td>$\sigma_b = 950 - 1450$</td>
<td>$\sigma_t = 850 - 1100$</td>
<td>$\sigma_{-1} = 500 - 700$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_{-1} = 480 - 700$</td>
<td>$\tau_1 = 280 - 400$</td>
<td></td>
</tr>
<tr>
<td>40ХНМА</td>
<td>$\sigma_b = 1100 - 1700$</td>
<td>$\sigma_t = 850 - 1600$</td>
<td>$\sigma_{-1} = 500 - 700$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_{-1} = 270 - 380$</td>
<td>$\tau_1 = 160$</td>
<td></td>
</tr>
<tr>
<td>15ХСНД</td>
<td>$\sigma_b = 640 - 660$</td>
<td>$\sigma_t = 390 - 420$</td>
<td>$\sigma_{-1} = 310$</td>
</tr>
<tr>
<td>30ХГСА</td>
<td>$\sigma_b = 1100 - 1700$</td>
<td>$\sigma_t = 850 - 1500$</td>
<td>$\sigma_{-1} = 310$</td>
</tr>
<tr>
<td></td>
<td>$\tau_1 = 280 - 400$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Нержавеющие жаро

ГОСТ 5632—72
1Х13 (ЭЖ1)

2Х13 (ЭЖ2)
(закалка с 1273—
1293 К на воз-
dухе, отпуск при
993—1023 К)

1Х17Н2 (ЭИ268)
(закалка с 1303 К,
отпуск при
85 К)

1Х18Н9Т
(ЭЯ11)

Х12Н22ТЭМПР
(ЭИ696М, ЭПЗМ)
(прокатка, стар-
рение 1003 К,
16 ч, 903 К,
16 ч)
<table>
<thead>
<tr>
<th>Относительное удлинение (относительное сужение), %</th>
<th>Твердость по Бринелю, МПа</th>
<th>Ударная вязкость, $\times 10^3$ Дж/мм2</th>
<th>Модуль упругости E (G), $\times 10^{-8}$ МПа</th>
<th>Коэффициент Пуассона</th>
<th>Удельный вес, $\times 10^{-4}$ Н/м3</th>
<th>Коэффициент инейного расширения, $\times 10^{-6}$ град</th>
</tr>
</thead>
<tbody>
<tr>
<td>прочные стали</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 (60)</td>
<td></td>
<td>11</td>
<td>2,2</td>
<td></td>
<td>7,75</td>
<td>10,1 — 12,2</td>
</tr>
<tr>
<td>21 (65)</td>
<td></td>
<td>6—17</td>
<td>2,2</td>
<td></td>
<td>7,75</td>
<td>10,1</td>
</tr>
<tr>
<td>17 (59)</td>
<td></td>
<td>2,0</td>
<td></td>
<td></td>
<td>7,75</td>
<td>10,3</td>
</tr>
<tr>
<td>70 (80)</td>
<td></td>
<td>28</td>
<td>2,0</td>
<td></td>
<td>7,9</td>
<td>16,6—18,6</td>
</tr>
<tr>
<td>20 (46)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Материал</td>
<td>Предел прочности, МПа</td>
<td>Предел текучести, пропорциональности, МПа</td>
<td>Предел выносливости, МПа</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ГОСТ 5632—72 Х20Н77Т21ОР (ЭИ437Б) (аустенитизация при 1253 К с охлаждением на воздухе, старение при 1023 К, 16 ч)</td>
<td>$\sigma_B = 920 - 1090$</td>
<td>$\sigma_T = 660$</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ЖС6К (закалка с 1483—1493 К с охлаждением на воздухе, отжиг при 1223 К, 2 ч)</td>
<td>$\sigma_B = 1000 - 1070$</td>
<td>$\sigma_T = 880 - 940$</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вольфрам (нелегированный)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сплавы вольфрама</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W — 15 Mo****</td>
<td>$\sigma_B = 175$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W — 2 Nb*****</td>
<td>$\sigma_B = 234$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W — 3.6Ta*****</td>
<td>$\sigma_B = 350$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Молибден</td>
<td>$\sigma_B = 780$</td>
<td>$\sigma_T = 760$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сплавы молибдена</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM-1</td>
<td>293 К</td>
<td>$\sigma_B = 800$</td>
<td>$\sigma_T = 680$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2073 К</td>
<td>$\sigma_B = 100$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM-2</td>
<td>293 К</td>
<td>$\sigma_B = 750$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2073 К</td>
<td>$\sigma_B = 90$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM-3</td>
<td>293 К</td>
<td>$\sigma_B = 430 - 600$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2073 К</td>
<td>$\sigma_B = 120 - 135$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ниобий</td>
<td>$\sigma_B = 770$</td>
<td>$\sigma_T = 600$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сплавы ниобия</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH-2</td>
<td>293 К</td>
<td>$\sigma_B = 750$</td>
<td>$\sigma_T = 700$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1773 К</td>
<td>$\sigma_B = 80 - 100$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH-3</td>
<td>293 К</td>
<td>$\sigma_B = 750 - 800$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1773 К</td>
<td>$\sigma_B = 125$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Относительное удаление (относительное сужение), % | Твердость по Бринелю, МПа | Ударная вязкость, $\times 10^3$ Дж/мм2 | Модуль упругости E (Г), $\times 10^{-4}$ МПа | Коэффициент Пуассона | Удельный вес, $\times 10^{-4}$ Н/м3 | Коэффициент линейного расширения $\times 10^8 \frac{1}{\text{град}}$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11—24</td>
<td>(10—21)</td>
<td>—</td>
<td>3,5</td>
<td>2,0</td>
<td>—</td>
<td>8,2</td>
</tr>
<tr>
<td>1,5—7</td>
<td>(8—16)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>49 (76)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>4,2 (1,5)</td>
<td>0,3</td>
<td>19,3</td>
</tr>
<tr>
<td>27 (78)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9 (25)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15 (8)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>—</td>
<td>3,3 (1,22)</td>
<td>0,31</td>
<td>10,2</td>
<td>5,6</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>—</td>
<td>3,3</td>
<td>—</td>
<td>10,3</td>
<td>—</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>—</td>
<td>1,85</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10 (30)</td>
<td></td>
<td>—</td>
<td>0,2</td>
<td>3,33</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>—</td>
<td>1,85</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,8</td>
<td>(0,7—40)</td>
<td></td>
<td>—</td>
<td>3,25</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>40—50 (6,5)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20—25</td>
<td></td>
<td>37</td>
<td>1,06 (0,88)</td>
<td>0,39</td>
<td>8,57</td>
<td>7,1</td>
</tr>
<tr>
<td>(25—35)</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18—28</td>
<td></td>
<td>27</td>
<td>1,06</td>
<td>—</td>
<td>8,66</td>
<td>6,25</td>
</tr>
<tr>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16—20</td>
<td></td>
<td>30</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(40—70)</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>40—43</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Материал</td>
<td>(\sigma_b = 810)</td>
<td>(\sigma_t = 730)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>БН-4</td>
<td>(\sigma_b = 170)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ГОСТ 1412—85</th>
</tr>
</thead>
<tbody>
<tr>
<td>СЧ12-28</td>
</tr>
<tr>
<td>(\sigma_b = 120)</td>
</tr>
<tr>
<td>(\sigma_c = 500)</td>
</tr>
<tr>
<td>(\sigma_n = 280)</td>
</tr>
<tr>
<td>СЧ15-32</td>
</tr>
<tr>
<td>(\sigma_b = 150)</td>
</tr>
<tr>
<td>(\sigma_c = 650)</td>
</tr>
<tr>
<td>(\sigma_n = 320)</td>
</tr>
<tr>
<td>(\tau_b = 240)</td>
</tr>
<tr>
<td>СЧ18-36</td>
</tr>
<tr>
<td>(\sigma_b = 180)</td>
</tr>
<tr>
<td>(\sigma_c = 700)</td>
</tr>
<tr>
<td>(\sigma_n = 360)</td>
</tr>
<tr>
<td>СЧ21-40</td>
</tr>
<tr>
<td>(\sigma_b = 210)</td>
</tr>
<tr>
<td>(\sigma_c = 950)</td>
</tr>
<tr>
<td>(\sigma_n = 400)</td>
</tr>
<tr>
<td>(\tau_b = 280)</td>
</tr>
<tr>
<td>СЧ24-44</td>
</tr>
<tr>
<td>(\sigma_b = 240)</td>
</tr>
<tr>
<td>(\sigma_c = 1000)</td>
</tr>
<tr>
<td>(\sigma_n = 440)</td>
</tr>
<tr>
<td>(\tau_b = 300)</td>
</tr>
<tr>
<td>СЧ28-48</td>
</tr>
<tr>
<td>(\sigma_b = 280)</td>
</tr>
<tr>
<td>(\sigma_c = 1100)</td>
</tr>
<tr>
<td>(\sigma_n = 480)</td>
</tr>
<tr>
<td>(\tau_b = 350)</td>
</tr>
<tr>
<td>СЧ32-52</td>
</tr>
<tr>
<td>(\sigma_b = 320)</td>
</tr>
<tr>
<td>(\sigma_c = 1200)</td>
</tr>
<tr>
<td>(\sigma_n = 520)</td>
</tr>
<tr>
<td>(\tau_b = 390)</td>
</tr>
<tr>
<td>СЧ35-56</td>
</tr>
<tr>
<td>(\sigma_b = 350)</td>
</tr>
<tr>
<td>(\sigma_c = 1200)</td>
</tr>
<tr>
<td>(\sigma_n = 560)</td>
</tr>
<tr>
<td>(\tau_b = 400)</td>
</tr>
<tr>
<td>Относительное удлинение (относительное сужение), %</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>16 (33)</td>
</tr>
<tr>
<td>24 (30)</td>
</tr>
<tr>
<td>Чугун</td>
</tr>
<tr>
<td>—</td>
</tr>
<tr>
<td>1,0—1,2</td>
</tr>
<tr>
<td>1,0—1,2</td>
</tr>
<tr>
<td>1,1—1,3</td>
</tr>
</tbody>
</table>

653
<table>
<thead>
<tr>
<th>Материал</th>
<th>Предел прочности, МПа</th>
<th>Предел текучести, пропорциональности, МПа</th>
<th>Предел выносливости, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>СЧ38-60</td>
<td>$\sigma_b = 380$</td>
<td>$\sigma_t = 0,85\sigma_b$</td>
<td>$\sigma_{-1} = 150$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 1400$</td>
<td></td>
<td>$\tau_{-1} = 115$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_h = 600$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\tau_h = 460$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Белый чугун</td>
<td>$\sigma_b = 100 - 200$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 700 - 1400$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_h = 300 - 500$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ГОСТ 2176-77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X28</td>
<td>$\sigma_b = 350$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 550$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X34</td>
<td>$\sigma_b = 400$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 500$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ГОСТ 1215-79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ферритный</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КЧ30-6</td>
<td>$\sigma_b \geq 300$</td>
<td>$\sigma_t = 190$</td>
<td>$\sigma_{-1p} = 70$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_h = 490$</td>
<td>$\sigma_t, c = 210$</td>
<td>$\sigma_{-1} = 120$</td>
</tr>
<tr>
<td></td>
<td>$\tau_b = 340$</td>
<td>$\sigma_t, h = 310$</td>
<td>$\tau_{-1} = 110$</td>
</tr>
<tr>
<td>КЧ33-8</td>
<td>$\sigma_b \geq 330$</td>
<td>$\sigma_t = 210$</td>
<td>$\sigma_{-1p} = 80$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_h = 530$</td>
<td>$\sigma_t, c = 230$</td>
<td>$\sigma_{-1} = 130$</td>
</tr>
<tr>
<td></td>
<td>$\tau_b = 345$</td>
<td>$\sigma_t, h = 330$</td>
<td>$\tau_{-1} = 120$</td>
</tr>
<tr>
<td>КЧ35-10</td>
<td>$\sigma_b \geq 350$</td>
<td>$\sigma_t = 220$</td>
<td>$\sigma_{-1p} = 80$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_h = 570$</td>
<td>$\sigma_t, c = 240$</td>
<td>$\sigma_{-1} = 140$</td>
</tr>
<tr>
<td></td>
<td>$\tau_b = 350$</td>
<td>$\sigma_t, h = 340$</td>
<td>$\tau_{-1} = 130$</td>
</tr>
<tr>
<td>КЧ37-12</td>
<td>$\sigma_b \geq 370$</td>
<td>$\sigma_t = 230$</td>
<td>$\sigma_{-1p} = 80$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_h = 580$</td>
<td>$\sigma_t, c = 250$</td>
<td>$\sigma_{-1} = 140$</td>
</tr>
<tr>
<td></td>
<td>$\tau_b = 370$</td>
<td>$\sigma_t, h = 350$</td>
<td>$\tau_{-1} = 130$</td>
</tr>
<tr>
<td>Перлитный</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КЧ45-6</td>
<td>$\sigma_b \geq 450$</td>
<td></td>
<td>$\sigma_{-1p} = 110$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_h = 500$</td>
<td></td>
<td>$\sigma_{-1} = 180$</td>
</tr>
<tr>
<td>КЧ50-4</td>
<td>$\sigma_b \geq 500$</td>
<td>$\sigma_t = 270$</td>
<td>$\sigma_{-1p} = 110$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 720$</td>
<td>$\sigma_t, c = 300$</td>
<td>$\sigma_{-1} = 180$</td>
</tr>
<tr>
<td></td>
<td>$\tau_b = 520$</td>
<td>$\sigma_t, h = 420$</td>
<td>$\tau_{-1} = 160$</td>
</tr>
<tr>
<td>Относительное удлинение (относительное сужение), %</td>
<td>Твердость по Бринеллю, МПа</td>
<td>Ударная вязкость, кДж/мм²</td>
<td>Модуль упругости E (ГПа)</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>1,2–1,4</td>
<td>2070–2690</td>
<td>1,0</td>
<td>1,6 (0,7)</td>
</tr>
<tr>
<td>—</td>
<td>3000–7000</td>
<td>0,1–0,5</td>
<td>1,6–1,8</td>
</tr>
</tbody>
</table>

Новый чугун

| — | 2200–2700 | — | — | — | — | — |
| — | 2500–3200 | — | — | — | — | — |

Чугун

<p>| ≥ 6 (7) | ≤ 1630 | 1,2 | 1,55 (0,63) | 0,23 | 7,2 | 10,5 |
| ≥ 8 (9) | ≤ 1490 | 1,3 | 1,6 (0,64) | 0,25 | 7,21 | 10,3 |
| ≥ 10 (11) | ≤ 1490 | 1,4 | 1,66 (0,65) | 0,27 | 7,22 | 10,2 |
| ≥ 12 (13) | ≤ 1490 | 1,6 | 1,98 (0,73) | 0,36 | 7,24 | 10 |
| ≥ 6 | ≤ 2410 | — | — | — | — | — |
| ≥ 4 (3,5) | ≤ 2410 | 0,8 | 1,74 (0,68) | 0,28 | 7,3 | 10 |</p>
<table>
<thead>
<tr>
<th>Материал</th>
<th>(\sigma_b \geq 560)</th>
<th>(\sigma_b \geq 600)</th>
<th>(\sigma_b \geq 630)</th>
</tr>
</thead>
<tbody>
<tr>
<td>КЧ56-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КЧ60-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КЧ63-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ГОСТ 7293—85</th>
</tr>
</thead>
<tbody>
<tr>
<td>ВЧ45-0</td>
</tr>
<tr>
<td>(\sigma_b = 450 - 500)</td>
</tr>
<tr>
<td>(\sigma_c = 1500 - 1600)</td>
</tr>
<tr>
<td>(\sigma_h = 650 - 750)</td>
</tr>
<tr>
<td>(\tau_b = 450 - 500)</td>
</tr>
<tr>
<td>ГОСТ 4784—74</td>
</tr>
<tr>
<td>АМцМ</td>
</tr>
<tr>
<td>(\sigma_b = 130)</td>
</tr>
<tr>
<td>(\tau_{ср} = 80)</td>
</tr>
<tr>
<td>АМг2М</td>
</tr>
<tr>
<td>(\sigma_b = 190)</td>
</tr>
<tr>
<td>(\tau_{ср} = 80)</td>
</tr>
<tr>
<td>Относительное улучшение (относительное сужение), %</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>≥ 4</td>
</tr>
<tr>
<td>≥ 3</td>
</tr>
<tr>
<td>≥ 2</td>
</tr>
</tbody>
</table>

Видным графитом

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0,4—1,4</td>
<td>2070—2690</td>
<td>0,5—1,5</td>
<td>1,3—1,6 (0,7)</td>
<td>-</td>
<td>7—7,5</td>
<td>10,6—11,4</td>
</tr>
<tr>
<td>1,5—3,0</td>
<td>2070—2550</td>
<td>1,5—3</td>
<td>1,3 (0,775)</td>
<td>-</td>
<td>7—7,5</td>
<td>10,6—11,4</td>
</tr>
<tr>
<td>2—3</td>
<td>2550—2850</td>
<td>1,5—3</td>
<td>1,8 (0,8)</td>
<td>-</td>
<td>7—7,5</td>
<td>10,6—11,4</td>
</tr>
<tr>
<td>5—10</td>
<td>1730—2070</td>
<td>2,5—8</td>
<td>1,3 (0,7)</td>
<td>-</td>
<td>7—7,5</td>
<td>10,6—11,4</td>
</tr>
<tr>
<td>10—20</td>
<td>1560—1790</td>
<td>5—7</td>
<td>1,6 (0,75)</td>
<td>-</td>
<td>7—7,5</td>
<td>10,6—11,4</td>
</tr>
</tbody>
</table>

Металлы

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>23 (70)</td>
<td>300</td>
<td>-</td>
<td>0,71 (0,27)</td>
<td>0,3</td>
<td>2,73</td>
<td>24</td>
</tr>
<tr>
<td>23 (64)</td>
<td>450</td>
<td>-</td>
<td>0,71 (0,27)</td>
<td>0,3</td>
<td>2,67</td>
<td>23,8</td>
</tr>
<tr>
<td>Материал</td>
<td>Предел прочности, МПа</td>
<td>Предел текучести пропорциональности, МПа</td>
<td>Предел выносливости, МПа</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMg2П</td>
<td>$\sigma_b = 250$</td>
<td>$\sigma_T = 210$</td>
<td>$\sigma_{-1} = 125^* $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMg6</td>
<td>$\sigma_b = 320$</td>
<td>$\sigma_T = 170$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMg6M</td>
<td>$\sigma_b = 300$</td>
<td>$\sigma_T = 150$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1 (О)</td>
<td>$\sigma_b = 210$</td>
<td>$\sigma_T = 110$</td>
<td>$\sigma_{-1} = 75^* $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1П (З и ЕС)</td>
<td>$\sigma_b = 410$</td>
<td>$\sigma_T = 250$</td>
<td>$\sigma_{-1} = 125^* $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6 (О)</td>
<td>$\sigma_b = 220$</td>
<td>$\sigma_T = 110$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D16 (З и ЕС)</td>
<td>$\sigma_b = 460$</td>
<td>$\sigma_T = 300$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D16, D16П плакированные листы (З и ИС)</td>
<td>$\sigma_b = 440$</td>
<td>$\sigma_T = 290$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>полупроводник (З и ЕС)</td>
<td>$\sigma_b = 520$</td>
<td>$\sigma_T = 380$</td>
<td>$\sigma_{-1} = 140^* $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>фабрика (О)</td>
<td>$\sigma_b = 220$</td>
<td>$\sigma_T = 100$</td>
<td>$\sigma_{-1} = 90^* $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>листы (З и ИС)</td>
<td>$\sigma_b = 460$</td>
<td>$\sigma_T = 410$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>профили (З и ИС)</td>
<td>$\sigma_b = 420 - 500$</td>
<td>$\sigma_T = 400 - 440$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AK4-1</td>
<td>$\sigma_b = 430$</td>
<td>$\sigma_T = 280$</td>
<td>$\sigma_{-1} = 130^{**} $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ВД17</td>
<td>$\sigma_b = 490$</td>
<td>$\sigma_T = 330$</td>
<td>$\sigma_{-1} = 165^* $</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ГОСТ 2685—75

<table>
<thead>
<tr>
<th>Материал</th>
<th>Предел прочности, МПа</th>
<th>Предел текучести пропорциональности, МПа</th>
<th>Предел выносливости, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>АЛ1 литой в землю</td>
<td>$\sigma_b = 200$</td>
<td>$\sigma_T = 170$</td>
<td>$\sigma_{-1} = 56^* $</td>
</tr>
<tr>
<td>термообработка T5</td>
<td>$\sigma_b = 260$</td>
<td>$\sigma_T = 220$</td>
<td>$\sigma_{-1} = 56^* $</td>
</tr>
<tr>
<td>термообработка T7</td>
<td>$\sigma_b = 220$</td>
<td>$\sigma_T = 180$</td>
<td></td>
</tr>
<tr>
<td>литой в кокиль (термообработка T5)</td>
<td>$\sigma_b = 300$</td>
<td>$\sigma_T = 260$</td>
<td>$\sigma_{-1} = 65^* $</td>
</tr>
</tbody>
</table>
Продолжение приложения 1

<table>
<thead>
<tr>
<th>Относительное удлинение (относительное сужение), %</th>
<th>Твердость по Бринеллю, МПа</th>
<th>Ударная вязкость, $\times 10^3$ Дж/мм²</th>
<th>Модуль упругости E (G), $\times 10^{-4}$ МПа</th>
<th>Коэффициент Пуассона</th>
<th>Удельный вес, $\times 10^{-4}$ Н/м³</th>
<th>Коэффициент линейного расширения, $\times 10^{-6} , \text{град}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>600</td>
<td>-</td>
<td>0,71 (0,27)</td>
<td>0,3</td>
<td>2,67</td>
<td>23,8</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>-</td>
<td>0,7</td>
<td>-</td>
<td>2,64</td>
<td>24,7</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>-</td>
<td>0,71 (0,27)</td>
<td>0,3</td>
<td>2,64</td>
<td>24,7</td>
</tr>
<tr>
<td>18 (58)</td>
<td>450</td>
<td>-</td>
<td>0,71 (0,27)</td>
<td>0,31</td>
<td>2,8</td>
<td>22,9</td>
</tr>
<tr>
<td>15 (30)</td>
<td>1150</td>
<td>3</td>
<td>0,71 (0,27)</td>
<td>0,31</td>
<td>2,8</td>
<td>22,9</td>
</tr>
<tr>
<td>15 (50)</td>
<td>500</td>
<td>-</td>
<td>0,71</td>
<td>0,31</td>
<td>2,8</td>
<td>22</td>
</tr>
<tr>
<td>-</td>
<td>1050</td>
<td>-</td>
<td>0,71</td>
<td>0,31</td>
<td>2,8</td>
<td>22</td>
</tr>
<tr>
<td>18 (30)</td>
<td>1050</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 (15)</td>
<td>1310</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 (30)</td>
<td>420</td>
<td>-</td>
<td>0,71 (0,27)</td>
<td>0,31</td>
<td>2,78</td>
<td>22,7</td>
</tr>
<tr>
<td>13 (15)</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 (26)</td>
<td>1200</td>
<td>-</td>
<td>0,72 (0,27)</td>
<td>0,33</td>
<td>2,8</td>
<td>19,6—24,8</td>
</tr>
<tr>
<td>20</td>
<td>1150</td>
<td>-</td>
<td>0,71 (0,27)</td>
<td>0,31</td>
<td>2,75</td>
<td>23,6—26,9</td>
</tr>
</tbody>
</table>

Вы литейные

<p>| 1,0 | 800 | - | | | | |
| 0,5 | 1000 | 0,3 | 0,72 (0,27) | 0,33 | 2,75 | 22,3—24,4 |
| 1,2 | 900 | - | | | | |
| 0,5 | 1200 | - | | | | |</p>
<table>
<thead>
<tr>
<th>Материал</th>
<th>Предел прочности, МПа</th>
<th>Предел текучести, пропорциональности, МПа</th>
<th>Предел выносливости, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>АЛ2</td>
<td>$\sigma_b = 180$</td>
<td>$\sigma_t = 80$</td>
<td>$\sigma_-1 = 55^{**}$</td>
</tr>
<tr>
<td>литой в землю</td>
<td>$\tau_{cp} = 130$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>литой в металлическую форму</td>
<td>$\sigma_b = 220$</td>
<td>$\sigma_t = 90$</td>
<td>$\sigma_-1 = 70^{**}$</td>
</tr>
<tr>
<td>литой под давлением</td>
<td>$\sigma_b = 220$</td>
<td>$\sigma_t = 120$</td>
<td></td>
</tr>
<tr>
<td>АЛЗ</td>
<td>$\sigma_b = 170$</td>
<td>$\sigma_t = 120$</td>
<td></td>
</tr>
<tr>
<td>литой в землю</td>
<td>$\sigma_b = 200$</td>
<td>$\sigma_t = 170$</td>
<td></td>
</tr>
<tr>
<td>термообработка T5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>литой в металлическую форму</td>
<td>$\sigma_b = 320$</td>
<td>$\sigma_t = 120$</td>
<td></td>
</tr>
<tr>
<td>термообработка T5</td>
<td>$\sigma_b = 270$</td>
<td>$\sigma_t = 220$</td>
<td></td>
</tr>
<tr>
<td>АЛ8 (термообработка T4)</td>
<td>$\sigma_b = 300$</td>
<td>$\sigma_t = 170$</td>
<td>$\sigma_-1 = 50^*$</td>
</tr>
<tr>
<td>литой в землю</td>
<td>$\tau_{cp} = 230$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>литой в металлическую форму</td>
<td>$\sigma_b = 330$</td>
<td>$\sigma_t = 180$</td>
<td></td>
</tr>
<tr>
<td>АЛ9</td>
<td>$\sigma_b = 200$</td>
<td>$\sigma_t = 110$</td>
<td>$\sigma_-1 = 45^*$</td>
</tr>
<tr>
<td>литой в землю</td>
<td>$\tau_{cp} = 150$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(термообработка T4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>литой в землю</td>
<td>$\sigma_b = 240$</td>
<td>$\sigma_t = 210$</td>
<td></td>
</tr>
<tr>
<td>(термообработка T6)</td>
<td>$\tau_{cp} = 120$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>литой в металлическую форму</td>
<td>$\sigma_b = 230$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(термообработка T6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>АЛ11 (термообработка T2)</td>
<td>$\sigma_b = 220$</td>
<td>$\sigma_t = 150$</td>
<td>$\sigma_-1 = 65$</td>
</tr>
<tr>
<td>АЛ13</td>
<td>$\sigma_b = 170$</td>
<td>$\sigma_t = 90$</td>
<td>$\sigma_-1 = 40^*$</td>
</tr>
<tr>
<td>литой в землю</td>
<td>$\tau_{cp} = 140$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>литой в металлическую форму</td>
<td>$\sigma_b = 200$</td>
<td>$\sigma_t = 100$</td>
<td></td>
</tr>
<tr>
<td>Относительное удлинение (относительное сужение), %</td>
<td>Твердость по Бринеллю, МПа</td>
<td>Ударная вязкость, $\times 10^6$ Дж/мм2</td>
<td>Модуль упругости E (σ) $\times 10^{-6}$ МПа</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>550</td>
<td>0.8</td>
<td>—</td>
</tr>
<tr>
<td>1,8</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>700</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>750</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>700</td>
<td>0.22</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>550</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>750</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>700</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>800</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>650</td>
<td>0.5</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>700</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

661
<table>
<thead>
<tr>
<th>Материал</th>
<th>Предел прочности, МПа</th>
<th>Предел текучести, пропорциональности, МПа</th>
<th>Предел выносливости, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>АЛ15В</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>литой в землю</td>
<td>$\sigma_b = 150$</td>
<td></td>
<td>$\sigma_{-1} = 70^*$</td>
</tr>
<tr>
<td>термообработка T5</td>
<td>$\sigma_b = 200$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>литой в металлическую форму</td>
<td>$\sigma_b = 180$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>термообработка T5</td>
<td>$\sigma_b = 220$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>АЛ19 (литой в землю)</td>
<td>$\sigma_b = 320$</td>
<td>$\sigma_t = 160$</td>
<td>$\sigma_{-1} = 70^{**}$</td>
</tr>
<tr>
<td>термообработка T4</td>
<td>$\sigma_b = 370$</td>
<td>$\sigma_t = 220$</td>
<td></td>
</tr>
<tr>
<td>термообработка T5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Титан</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT1</td>
<td>$\sigma_b = 610$</td>
<td>$\sigma_t = 470$</td>
<td>$\sigma_{-1} = 260$</td>
</tr>
<tr>
<td>OT4</td>
<td>$\sigma_b = 700 - 850$</td>
<td>$\sigma_t = 550 - 650$</td>
<td></td>
</tr>
<tr>
<td>BT8</td>
<td>$\sigma_b = 1050 - 1800$</td>
<td>$\sigma_t = 950 - 1100$</td>
<td>$\sigma_{-1} = 500$</td>
</tr>
<tr>
<td>$\tau_{cr} = 650 - 700$</td>
<td>$\sigma_{pu} = 750 - 850$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT3-1</td>
<td>$\sigma_b = 950 - 1200$</td>
<td>$\sigma_t = 850 - 1100$</td>
<td>$\sigma_{-1} = 480$</td>
</tr>
<tr>
<td>$\tau_{cr} \geq 650$</td>
<td>$\sigma_{pu} = 700 - 850$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT14</td>
<td>$\sigma_b = 950 - 1200$</td>
<td>$\sigma_t = 850 - 1100$</td>
<td></td>
</tr>
<tr>
<td>Медные</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ла</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ГОСТ 15527—70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Л68</td>
<td>$\sigma_b = 320$</td>
<td>$\sigma_{0.1} = 91$</td>
<td>$\sigma_{-1} = 120$</td>
</tr>
<tr>
<td>мягкая</td>
<td>$\tau_{cr} = 200$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>твердая</td>
<td>$\sigma_b = 660$</td>
<td>$\sigma_{0.1} = 520$</td>
<td>$\sigma_{-1} = 150$</td>
</tr>
<tr>
<td>ЛА77-2</td>
<td>$\sigma_b = 400$</td>
<td>$\sigma_t = 140$</td>
<td></td>
</tr>
<tr>
<td>мягкая</td>
<td>$\sigma_b = 650$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>твердая</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Относительное удлинение (относительное упружение), %</td>
<td>Твёрдость по Бринеллю, МПа</td>
<td>Ударная вязкость, $\times 10^2$ Дж/мм²</td>
<td>Модуль упругости E, $\times 10^{-5}$ МПа</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>0,5</td>
<td>700</td>
<td>—</td>
<td>0,7—0,72 (0,27)</td>
</tr>
<tr>
<td>0,5</td>
<td>850</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>900</td>
<td>—</td>
<td>0,7—0,72 (0,27)</td>
</tr>
<tr>
<td>5</td>
<td>1000</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

его сплавы

	20—30	1500—1800	≥ 7	1,121 (0,411)	0,32	4,5	8
	(≥ 45)		(3,5—6,5)	1,1 (0,4)—1,2	—	4,55	8—9,8
	10—40	2290—3020	3—6	1,1 (0,425)	0,3	4,48	8,3—9,1
	(25—55)	3100—3500					
	9—15	3100—3500	3—6	1,115 (0,43)	0,3	4,5	8,6
	(30—55)						
	10—16		3—6	1,15 (0,43)	0,3	4,52	8—8,7
	(≥ 40)						
	6—10	2550—2880	2,5—5	1,15	—	4,52	8—8,7
	(25—35)						

сплавы

тунь

	55 (70)	550	17	1,1	—	8,6	19
	3	1500	—	1,15	—	—	—
	55	600	20	1,05	—	8,6	18,3
	12	1700	—	—	—	—	—

663
<table>
<thead>
<tr>
<th>Материал</th>
<th>Предел прочности, МПа</th>
<th>Предел текучести, пропорциональности, МПа</th>
<th>Предел выносимости, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>ЛМц 58-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>мягкая</td>
<td>$\sigma_b = 400$</td>
<td>$\sigma_T = 156$</td>
<td></td>
</tr>
<tr>
<td>твердая</td>
<td>$\sigma_b = 700$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ЛС59-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>мягкая</td>
<td>$\sigma_b = 400$</td>
<td>$\sigma_T = 140$</td>
<td></td>
</tr>
<tr>
<td>твердая</td>
<td>$\tau_{cr} = 260$</td>
<td>$\sigma_T = 450$</td>
<td>$\sigma_{-1} = 160$</td>
</tr>
<tr>
<td>ЛК80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>мягкая</td>
<td>$\sigma_b = 300$</td>
<td>$\sigma_T = 200$</td>
<td></td>
</tr>
<tr>
<td>твердая</td>
<td>$\sigma_b = 600$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Бр. О-10</td>
<td>$\sigma_b = 250$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>БР. ОЦ8-4</td>
<td>$\sigma_b = 200$</td>
<td>$\sigma_T = 40-50$</td>
<td></td>
</tr>
<tr>
<td>ГОСТ 613—79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>БР. ОЦС 6-6-3</td>
<td>$\sigma_b = 150$</td>
<td>$\sigma_T = 110$</td>
<td></td>
</tr>
<tr>
<td>литые в землю</td>
<td>$\sigma_b = 180$</td>
<td>$\sigma_T = 80-100$</td>
<td></td>
</tr>
<tr>
<td>литые в кокиль</td>
<td>$\tau_{cr} = 220$</td>
<td>$\sigma_{pu} = 50$</td>
<td></td>
</tr>
<tr>
<td>БР. ОФ 10-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>литые в землю</td>
<td>$\sigma_b = 200-300$</td>
<td>$\sigma_T = 140$</td>
<td></td>
</tr>
<tr>
<td>литые в кокиль</td>
<td>$\tau_{cr} = 340$</td>
<td>$\sigma_{pu} = 80-90$</td>
<td></td>
</tr>
<tr>
<td>ГОСТ 493—79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>БР. А5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>литые в кокиль</td>
<td>$\sigma_b = 280$</td>
<td>$\sigma_T = 70$</td>
<td></td>
</tr>
<tr>
<td>мягкая деформируемая</td>
<td>$\sigma_b = 380$</td>
<td>$\sigma_T = 160$</td>
<td></td>
</tr>
<tr>
<td>твердая деформируемая</td>
<td>$\sigma_b = 800$</td>
<td>$\sigma_T = 500$</td>
<td>$\sigma_{-1} = 134^{**}$</td>
</tr>
<tr>
<td>БР. АМц9-2</td>
<td>$\sigma_b = 400$</td>
<td>$\sigma_T = 200$</td>
<td></td>
</tr>
<tr>
<td>литые в кокиль</td>
<td>$\sigma_{pu} = 110$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

664
<table>
<thead>
<tr>
<th>Относительное уширение (относительное сужение), %</th>
<th>Твердость по Бринеллю, МПа</th>
<th>Ударная вязкость, $x10$ Дж/мм2</th>
<th>Модуль упругости $E(G)$, $x10^{-4}$ МПа</th>
<th>Коэффициент Пуассона</th>
<th>Удельный вес, $x10^{-4}$ Н/м3</th>
<th>Коэффициент линейного расширения $x10^{-1}$ град</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>850</td>
<td>12</td>
<td>1,0</td>
<td>—</td>
<td>8,4</td>
<td>21,2</td>
</tr>
<tr>
<td>10</td>
<td>1750</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>45 (44)</td>
<td>900</td>
<td>2,6 - 5</td>
<td>1,05 (0,35)</td>
<td>—</td>
<td>8,5</td>
<td>20,6</td>
</tr>
<tr>
<td>16</td>
<td>1400</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>58</td>
<td>1000</td>
<td>12</td>
<td>0,98</td>
<td>—</td>
<td>8,5</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>1800</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Оловянные

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>800</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>750</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>600</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8,82</td>
<td>17,1 - 18,2</td>
</tr>
<tr>
<td>4 (6-10)</td>
<td>600</td>
<td>2 - 3</td>
<td>0,9</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3 (3)</td>
<td>800 - 1000</td>
<td>0,6</td>
<td>0,754</td>
<td>—</td>
<td>8,58</td>
<td>17 - 22</td>
</tr>
<tr>
<td>7 - 10 (10)</td>
<td>900 - 1200</td>
<td>0,9</td>
<td>1,03</td>
<td>—</td>
<td>8,76</td>
<td>17</td>
</tr>
</tbody>
</table>

Алюминиевые

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>55 (48)</td>
<td>650</td>
<td>16</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>65 (70)</td>
<td>600</td>
<td>11</td>
<td>1</td>
<td>—</td>
<td>8,2</td>
<td>15,6</td>
</tr>
<tr>
<td>4</td>
<td>2000</td>
<td>—</td>
<td>1,1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20 (25-27)</td>
<td>900 - 1200</td>
<td>7</td>
<td>0,92</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

663
<table>
<thead>
<tr>
<th>Материал</th>
<th>Предел прочности, МПа</th>
<th>Предел текучести, пропорциональности, МПа</th>
<th>Предел выносливости, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>мягкая деформируемая</td>
<td>$\sigma_b = 400$</td>
<td>$\sigma_t = 300$</td>
<td>—</td>
</tr>
<tr>
<td>твердая деформируемая</td>
<td>$\sigma_b = 600$</td>
<td>$\sigma_t = 500$</td>
<td>$\sigma_{-1} = 210$</td>
</tr>
<tr>
<td>Бр АЖМц10-3-1,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>литье в кокиль</td>
<td>$\sigma_b = 560$</td>
<td>$\sigma_t = 210$</td>
<td>—</td>
</tr>
<tr>
<td>$\tau_{cp} = 380$</td>
<td>$\sigma_{pl} = 170$</td>
<td>$\sigma_t = 190$</td>
<td>—</td>
</tr>
<tr>
<td>мягкая деформируемая</td>
<td>$\sigma_b = 610$</td>
<td>$\sigma_t = 210$</td>
<td>—</td>
</tr>
<tr>
<td>твердая деформируемая</td>
<td>$\sigma_b = 600 - 700$</td>
<td>$\sigma_t = 210$</td>
<td>$\sigma_{-1} = 280^{****}$</td>
</tr>
<tr>
<td>Бр. АЖС7-1,5-1,5</td>
<td>$\sigma_b = 500$</td>
<td></td>
<td>$\sigma_{-1} = 210^{****}$</td>
</tr>
<tr>
<td>Бр АЖ9-4</td>
<td>$\sigma_b = 550$</td>
<td>$\sigma_t = 200$</td>
<td>—</td>
</tr>
<tr>
<td>литье в кокиль</td>
<td>$\sigma_b = 600$</td>
<td>$\sigma_t = 220$</td>
<td>—</td>
</tr>
<tr>
<td>мягкое деформируемая</td>
<td>$\sigma_b = 550$</td>
<td>$\sigma_t = 350$</td>
<td>$\sigma_{-1} = 185^{****}$</td>
</tr>
<tr>
<td>твердая деформируемая</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ГОСТ 493—79

Бр. КМц3-1			
мягкое состояние	$\sigma_b = 350 - 400$	$\sigma_t = 100 - 200$	$\sigma_{-1} = 110 - 160$
твердое состояние	$\sigma_b = 650 - 750$	$\sigma_t = 100 - 200$	—

Магниевые сплавы

МА1			
листы	$\sigma_b = 210$	$\sigma_t = 120$	$\sigma_{-1} = 75^{**}$
прутки	$\sigma_b = 240$	$\sigma_t = 140$	$\sigma_{-1} = 75^{**}$
	$\tau_b = 190$		
	$\tau_{cp} = 130$		

МАЗ

<p>| | | | |
| | | | |
| полосы | $\sigma_b = 290$ | $\sigma_t = 170$ | — |
| прутки | $\sigma_L = 280$ | $\sigma_t = 220$ | — |</p>
<table>
<thead>
<tr>
<th>Относительное удлинение (относительное сужение), %</th>
<th>Твердость по Бринеллю, МПа</th>
<th>Ударная вязкость, $\times 10^2$ Дж/мм²</th>
<th>Модуль упругости E (G), $\times 10^{-5}$ МПа</th>
<th>Коэффициент Пуассона</th>
<th>Удельный вес, $\times 10^{-4}$ Н/м³</th>
<th>Коэффициент линейного расширения, $\times 10^{-6}$ град</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1100—1300</td>
<td>—</td>
<td>1,05</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4—5 (55)</td>
<td>1600—1800</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7,6</td>
</tr>
<tr>
<td>22 (25—27)</td>
<td>1300</td>
<td>6—8</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>32 (55)</td>
<td>1250—1400</td>
<td>—</td>
<td>1,05</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9—12</td>
<td>1600—2000</td>
<td>—</td>
<td>—</td>
<td>7,55</td>
<td>16—20</td>
<td>—</td>
</tr>
<tr>
<td>18</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10—20 (25—30)</td>
<td>1200—1400</td>
<td>6,3</td>
<td>1,12</td>
<td>0,29</td>
<td>7,5</td>
<td>16,2—17,1</td>
</tr>
<tr>
<td>40 (33)</td>
<td>1100</td>
<td>8</td>
<td>1,12</td>
<td>—</td>
<td>8,4</td>
<td>15,8—20</td>
</tr>
<tr>
<td>5</td>
<td>1600—2000</td>
<td>—</td>
<td>1,16</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Кремнистая

<table>
<thead>
<tr>
<th>25—45</th>
<th>700—900</th>
</tr>
</thead>
<tbody>
<tr>
<td>5—10</td>
<td>1700—1900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>450</th>
<th>0,5</th>
<th>0,4</th>
<th>0,34</th>
<th>1,76</th>
<th>22,3—32</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (6)</td>
<td>450</td>
<td>0,6</td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 (23)</td>
<td></td>
<td></td>
<td>0,43</td>
<td>0,34</td>
<td>1,8</td>
<td>26,1—31,2</td>
</tr>
<tr>
<td>12</td>
<td>600</td>
<td></td>
<td>0,43</td>
<td>0,34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

667
<table>
<thead>
<tr>
<th>Материал</th>
<th>Predel прочности, МПа</th>
<th>Predel текучести, пропорциональности, МПа</th>
<th>Predel выносимости, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>ВМ65-1 прутки</td>
<td>$\sigma_b = 350$</td>
<td>$\sigma_t = 300$</td>
<td>$\sigma_{-1} = 150^{**}$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_p = 145$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ВМ65-1 прутки ИС</td>
<td>$\sigma_b = 335$</td>
<td>$\sigma_t = 280$</td>
<td>$\sigma_{-1} = 150^{**}$</td>
</tr>
<tr>
<td></td>
<td>$\tau_{cp} = 160$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ВМ65-1 полосы</td>
<td>$\sigma_b = 345$</td>
<td>$\sigma_t = 290$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_p = 130$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ВМ65-1 профили</td>
<td>$\sigma_b = 345$</td>
<td>$\sigma_t = 290$</td>
<td></td>
</tr>
<tr>
<td>ВМ65-1 поковки</td>
<td>$\sigma_b = 310$</td>
<td>$\sigma_t = 250$</td>
<td></td>
</tr>
<tr>
<td>ВМ65-1 штампова</td>
<td>$\sigma_b = 320$</td>
<td>$\sigma_t = 260$</td>
<td></td>
</tr>
<tr>
<td>Магниевый сплав</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML6 литой</td>
<td>$\sigma_b = 160$</td>
<td>$\sigma_t = 110$</td>
<td>$\sigma_{-1} = 85^{**}$</td>
</tr>
<tr>
<td></td>
<td>$\tau_{cp} = 140$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML6 термообработка Т4</td>
<td>$\sigma_b = 250$</td>
<td>$\sigma_t = 100$</td>
<td>$\sigma_{-1} = 95^{**}$</td>
</tr>
<tr>
<td></td>
<td>$\tau_{cp} = 150$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML6 термообработка Т6</td>
<td>$\sigma_b = 260$</td>
<td>$\sigma_t = 140$</td>
<td>$\sigma_{-1} = 85^{**}$</td>
</tr>
<tr>
<td></td>
<td>$\tau_{cp} = 160$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Свинец ГОСТ 3778—77 | $\sigma_b = 15 — 18$ | $\sigma_t = 5 — 10$ | $\sigma_{-1} = 4,2^{***}$| *(деформированный и О)*
| Цинк ГОСТ 3640—79 | $\sigma_b = 64$ | $\sigma_t = 10$ | |
| Никель ГОСТ 849—70 | $\sigma_b = 400 — 550$ | $\sigma_t = 60 — 200$ | | *(мягкое состояние)*
| | $\sigma_b = 500 — 1000$ | $\sigma_t = 280 — 900$ | | *(твердое состояние)*
<table>
<thead>
<tr>
<th>Относительное удлинение (относительное сужение), %</th>
<th>Твердость по Бринеллю, МПа</th>
<th>Ударная вязкость, Дж/мм²</th>
<th>Модуль упругости E (ГPa)</th>
<th>Коэффициент Пуассона</th>
<th>Удельный вес, 10^{-4} Н/м³</th>
<th>Коэффициент линейного расширения, град 10^{-6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 (24)</td>
<td>600</td>
<td>—</td>
<td>—</td>
<td>0,43</td>
<td>0,34</td>
<td>1,8</td>
</tr>
<tr>
<td>10 (25)</td>
<td>—</td>
<td>0,9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>14</td>
<td>550</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Литейный

1,5 (2,5)	550	0,2	(0,16)	—	—	—	—
5 (12)	600	0,3	0,42 (0,165)	0,33	1,81	26,1—27,7	
1 (3)	800	0,15	(0,165)	0,33	—	—	—

35—50 (50—100) (литой) 38—40 (литой) (О) 0,6—2,3 0,15—0,18 — 11,34 28

20 (50)	200	—	0,53	—	7,133	39,7	
30—50 (мягкое состояние)	900—1200 (О)	1,8—2,27 (0,73)	—	—	—	—	
2—15 (твердое состояние)	1250—2200 (нагартованный)	—	—	—	—	—	—

669
<table>
<thead>
<tr>
<th>Материал</th>
<th>Предел прочности, МПа</th>
<th>Предел текучести, пропорциональность, МПа</th>
<th>Предел выносливости, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мельхнор МНЖМц30-0,8-1 (МН70—30) ГОСТ 492—73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>мягкое состояние</td>
<td>$\sigma_b = 350 - 450$</td>
<td>$\sigma_t = 140$</td>
<td></td>
</tr>
<tr>
<td>твердое состояние</td>
<td>$\sigma_b = 550 - 650$</td>
<td>$\sigma_t = 540$</td>
<td></td>
</tr>
<tr>
<td>Нейзильбер МНЦ 15—20 ГОСТ 492—73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>мягкое состояние</td>
<td>$\sigma_b = 400 - 450$</td>
<td>$\sigma_t = 140$</td>
<td>$\sigma_{-1} = 120 - 140$</td>
</tr>
<tr>
<td>твердое состояние</td>
<td>$\sigma_b = 600 - 720$</td>
<td>$\sigma_t = 590$</td>
<td>$\sigma_{-1} = 170$</td>
</tr>
<tr>
<td>Монель НМЖМц 28 2,5-1,5 ГОСТ 492—73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>мягкое состояние</td>
<td>$\sigma_b = 500 - 600$</td>
<td>$\sigma_t = 200$</td>
<td>$\sigma_{-1} = 260$</td>
</tr>
<tr>
<td>твердое состояние</td>
<td>$\sigma_b = 700 - 850$</td>
<td>$\sigma_t = 650 - 750$</td>
<td>$\sigma_{-1} = 260$</td>
</tr>
</tbody>
</table>

Пластичные

Стеклопластики ГОСТ 10292—74, ГОСТ 2919—74

на основе ткань	$\sigma_b = 260 - 400$	$\sigma_{пц} = 122 - 260$	$\frac{\sigma_{-1}}{\sigma_b} = 0,22 - 0,25$
$\sigma_c = 100 - 300$	$\sigma_n = 130 - 150$		
на основе нитей, ориентированных в двух взаимно перпендикулярных направления	$\sigma_b = 300 - 500$	$\sigma_c = 230 - 450$	$\sigma_{-1} = 0,25 - 0,28$
$\sigma_n = 400 - 420$			

Текстилины (на основе хлопчатобумажных тканей) ГОСТ 5—78, ГОСТ 5385—74

$\sigma_b = 45 - 100$	$\sigma_t = 78$	$\frac{\sigma_{-1}}{\sigma_b} = 0,25 - 0,3$	
$\sigma_c = 120 - 250$	$\sigma_n = 75 - 160$	$\sigma_{-1p} = 20$	
$\tau_b = 90 - 100$			

Древесные пластич ГОСТ 20966—75

$\sigma_b = 140 - 300$		$\frac{\sigma_{-1}}{\sigma_b} = 0,25 - 0,3$
$\sigma_c = 120 - 185$		
$\sigma_n = 165 - 280$		
Продолжение приложения 1

<table>
<thead>
<tr>
<th>Относительное удлинение (относительное сужение), %</th>
<th>Твёрдость по Бринеллю, МПа</th>
<th>Ударная вязкость, x10 Дж/мм²</th>
<th>Модуль упругости E (G), x10⁻¹ МПа</th>
<th>Коэффициент Пуассона</th>
<th>Удельный вес, x10⁴ Н/м³</th>
<th>Коэффициент линейного расширения, x10⁶ 1 град</th>
</tr>
</thead>
<tbody>
<tr>
<td>40—50</td>
<td>700</td>
<td>—</td>
<td>{1,54}</td>
<td>—</td>
<td>8,9</td>
<td>16</td>
</tr>
<tr>
<td>3—5</td>
<td>1900</td>
<td>—</td>
<td>{1,26}</td>
<td>—</td>
<td>8,7</td>
<td>16,6</td>
</tr>
<tr>
<td>40—50</td>
<td>700</td>
<td>—</td>
<td>{1,82}</td>
<td>—</td>
<td>8,8</td>
<td>14—15</td>
</tr>
<tr>
<td>30—50</td>
<td>1100—1400</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(50)</td>
<td>1400</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3—5</td>
<td>1400—2200</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

массы

- 270—380 0,5—5,25 0,18—0,22 (0,035—0,04) 0,035—0,622 1,4—1,85 0,45—8,3
- 280—520 0,5—5,25 0,24—0,35 0,035—0,622 1,7—1,9 0,45—8,3
- 300 0,35 0,04—0,1 (0,25) — 1,3—1,45 3,3—4,1
- 180—200 0,17—0,8 0,12—0,34 — 1,2—1,4 —
<table>
<thead>
<tr>
<th>Материал</th>
<th>Предел прочности, МПа</th>
<th>Предел текучести, пропорциональности, МПа</th>
<th>Предел выносливости, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гетинакс (на основе сульфатной бумаги) ГОСТ 2718—74</td>
<td>$\sigma_b = 60 - 100$</td>
<td>$\sigma_{	ext{пр}} = 58$</td>
<td>$\frac{\sigma-1}{\sigma_b} = 0.2 - 0.3$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_i = 40 - 140$</td>
<td>$\sigma_{-1} = 35 - 49$</td>
<td>$\frac{\sigma-1}{\sigma_b} = 0.2 - 0.3$</td>
</tr>
<tr>
<td>Фибра (на основе специальных сортов бумаги) ГОСТ 14613—83</td>
<td>$\sigma_b = 50 - 70$</td>
<td>$\frac{\sigma-1}{\sigma_b} = 0.25 - 0.3$</td>
<td>$\frac{\sigma-1}{\sigma_b} = 0.3 - 0.4$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 80 - 140$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_i = 60 - 95$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Волоконты (наполнители: хлопковые отеч. асболоволокно, стекловолокно)</td>
<td>$\sigma_b = 30 - 130$</td>
<td>$\sigma_{-1} = 0.1 - 0.16$</td>
<td>$\frac{\sigma-1}{\sigma_b} = 0.15 - 0.2$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 100 - 150$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_i = 40 - 130$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Термореактивные пресспорошки (наполнители: древесная мука, кварцевая мука, слюда) ГОСТ 5689—79 ГОСТ 9359—80</td>
<td>$\sigma_b = 25 - 69$</td>
<td>$\sigma_{-1} = 0.15 - 0.2$</td>
<td>$\frac{\sigma-1}{\sigma_b} = 0.15 - 0.2$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 70 - 300$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_i = 45 - 100$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Органическое стекло (на основе полимеров и сополимеров метакрилатовой кислоты) ГОСТ 10667—74, ГОСТ 9784—75</td>
<td>$\sigma_b = 50 - 108$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 70 - 120$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_i = 80 - 176$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Термопласти линейные полимеры с различной степенью кристаллизации неармированные</td>
<td>$\sigma_b = 12 - 80$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 12 - 100$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_i = 4 - 4.2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 0.17 - 4.5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_i = 0.7 - 5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Фторлон-4 (фторопласт-4) ГОСТ 10007—80</td>
<td>$\sigma_b = 14 - 25$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 12 - 20$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_i = 11 - 14$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Капрон А, Б, В</td>
<td>$\sigma_b = 60$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 75$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma_i = 90$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Статистическое уширение (относительное сужение), %</td>
<td>Твердость по Бринеллю, МПа</td>
<td>Удара́нная вязкость, $\times10^2$ Дж/мм2</td>
<td>Модуль упругости $E (G)$, $\times10^{-4}$ МПа</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>250—300</td>
<td>(8—20)</td>
<td>0,1—0,18</td>
<td>0,008—0,025</td>
</tr>
<tr>
<td>100</td>
<td>—</td>
<td>(0,07)</td>
<td>—</td>
</tr>
<tr>
<td>180—350</td>
<td>(15—65)</td>
<td>0,05—0,118</td>
<td>—</td>
</tr>
<tr>
<td>100—600</td>
<td>0,03—0,8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,5—23,2</td>
<td>120—250</td>
<td>(4—33)</td>
<td>0,027—0,041</td>
</tr>
<tr>
<td>30—160</td>
<td>—</td>
<td>0,0015—0,007</td>
<td>—</td>
</tr>
<tr>
<td>1,5—14</td>
<td>(0,16—2,2) \times 10$^{-2}$</td>
<td>0,00037—0,002</td>
<td>(0,00015—0,00019)</td>
</tr>
<tr>
<td>300—350</td>
<td>—</td>
<td>0,0047—0,0085</td>
<td>—</td>
</tr>
<tr>
<td>150—200</td>
<td>100—120</td>
<td>1,5—1,6</td>
<td>0,0144</td>
</tr>
</tbody>
</table>

7-458
<table>
<thead>
<tr>
<th>Материал</th>
<th>σ_b</th>
<th>σ_c</th>
<th>σ_n</th>
<th>σ_b</th>
<th>σ_c</th>
<th>σ_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Полиамидная смола 68 ГОСТ 10589—73</td>
<td>50 — 60</td>
<td>70 — 85</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Винилласт ГОСТ 9639—71</td>
<td>40 — 60</td>
<td>80 — 160</td>
<td>80 — 120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Поляэтилен высокой плотности (низкого давления)</td>
<td>22 — 45</td>
<td>28 — 40</td>
<td>20 — 38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Полиэтилен блоч-</td>
<td>35</td>
<td>100</td>
<td>95 — 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ный ГОСТ 20282—74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Лед</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Каучук натуральный</td>
<td>16 — 38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Стекло ГОСТ 7132—78</td>
<td>30 — 90</td>
<td>500 — 2000</td>
<td>50 — 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Базальт</td>
<td>250 — 300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гранит</td>
<td>3</td>
<td>120 — 260</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Известняк</td>
<td>50 — 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Песчаник</td>
<td>2</td>
<td>40 — 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мрамор</td>
<td>100 — 180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кладка из гра-</td>
<td>0,2 — 0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>нита, известняка,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>кирпича</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Бетон</td>
<td>5 — 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Относительное удлинение (относительное сужение), %</td>
<td>Твердость по Бринелю, МПа</td>
<td>Ударная вязкость, $\times 10^2$ Дж/мм2</td>
<td>Модуль упругости $E (G)$, $\times 10^{-1}$ МПа</td>
<td>Коэффициент Пуассона</td>
<td>Удельный вес, $\times 10^{-1}$ Н/м3</td>
<td>Коэффициент линейного расширения, 10^{-8} град</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>100</td>
<td>100—150</td>
<td>—</td>
<td>0,012</td>
<td>—</td>
<td>1,11</td>
<td>(10—12) $\times 10$</td>
</tr>
<tr>
<td>10—100</td>
<td>130—160</td>
<td>0,5—0,8</td>
<td>0,03—0,04</td>
<td>0,354</td>
<td>1,3—1,4</td>
<td>(6—7) $\times 10$</td>
</tr>
<tr>
<td>250—900</td>
<td>45—58</td>
<td>—</td>
<td>0,005—0,008</td>
<td>—</td>
<td>—</td>
<td>0,91—0,96</td>
</tr>
<tr>
<td>0,4—0,7</td>
<td>140—150</td>
<td>0,16—0,2</td>
<td>0,012—0,032</td>
<td>—</td>
<td>1,05—1,1</td>
<td>60</td>
</tr>
</tbody>
</table>

Материалы

<p>| | | | 0,1 (0,25—0,03) | — | — | 50,7 |
| --- | --- | — | — | 0,47 | 0,91 | (1,3—2,8) $\times 10^2$ |
| 600—700 | — | — | (0,6—1) $\times 10^{-4}$ | | | |
| — | — | 0,015—0,025 | 0,48—0,85 | 0,18—0,32 | 2,2—8 | 0,5—15 |
| — | — | — | 0,49 | — | 2,7—3,3 | |
| — | — | — | 0,42 | — | 2,5—2,8 | |
| — | — | — | 0,18 | — | 1,8—2,6 | |
| — | — | — | 0,56 | — | 2,1—2,8 | |
| — | — | — | 0,09—0,1 | — | 2,5—2,8 | |
| — | — | — | 0,06 | — | — | 4,7 |
| — | — | — | 0,027—0,03 | — | — | |
| — | — | — | 0,130—0,232 | 0,16—0,18 | — | 10—14 |</p>
<table>
<thead>
<tr>
<th>Материал</th>
<th>Предел прочности, МПа</th>
<th>Предел текучести, пропорциональности, МПа</th>
<th>Предел выносливости, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сосна обыкновенная (15 % влажности)</td>
<td>$\sigma_b = 9,31 - 11,5$</td>
<td>$\sigma_{т} = 61$</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 42,7 - 46,6$</td>
<td>$\sigma_{т} = 31$</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\sigma_n = 73,6 - 87,7$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\tau_{ср} = 6,2 - 7,3$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Ель обыкновенная (15 % влажности)</td>
<td>$\sigma_b = 107 - 122$</td>
<td>$\sigma_{т} = 56$</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 38,5 - 42,3$</td>
<td>$\sigma_{т} = 27$</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\sigma_n = 77,4 - 72,2$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\tau_{ср} = 5,2 - 6,7$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Береза обыкновенная (15 % влажности)</td>
<td>$\sigma_b = 161 - 210$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 43,7 - 53,3$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\sigma_n = 96,7 - 108,4$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\tau_{ср} = 8,5 - 13,3$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Тополь (15 % влажности)</td>
<td>$\sigma_b = 86,9$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 34,7$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\sigma_n = 60,9$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\tau_{ср} = 5,4 - 7,1$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Акация (15 % влажности)</td>
<td>$\sigma_b = 169$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 66,5$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\sigma_n = 139,2$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\tau_{ср} = 12,5 - 14$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Бук кавказский (15 % влажности)</td>
<td>$\sigma_b = 129,1$</td>
<td>$\sigma_{т} = 70$</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\sigma_c = 47,4$</td>
<td>$\sigma_{т} = 29$</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\sigma_n = 95,3$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$\tau_{ср} = 9,9 - 13,1$</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Относительное удлинение по Бринеллю, МПа</td>
<td>0,18—0,23</td>
<td>0,102—0,145</td>
<td>0,49</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>18,2—25,2</td>
<td>0,18—0,19</td>
<td>0,11 (0,0055)</td>
<td>0,44</td>
</tr>
<tr>
<td>29,8—39,2</td>
<td>0,41—0,54</td>
<td>0,15—0,184 (0,0065)</td>
<td>0,41</td>
</tr>
<tr>
<td>17,3—25</td>
<td>0,19</td>
<td>0,13 (0,0055)</td>
<td>—</td>
</tr>
<tr>
<td>61,9—88,1</td>
<td>0,92</td>
<td>0,09—0,16 (0,0045</td>
<td>0,0065)</td>
</tr>
<tr>
<td>37,9—57,1</td>
<td>0,39</td>
<td>0,127 (0,0065)</td>
<td>0,58</td>
</tr>
<tr>
<td>Материал</td>
<td>Предел прочности, МПа</td>
<td>Предел текучести, пропорциональности, МПа</td>
<td>Предел выносливости, МПа</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Ясень (15 % влажности)</td>
<td>(\sigma_b = 144 - 166) (\sigma_c = 45 - 51) (\sigma_h = 98 - 115) (\tau_{ср} = 11,4 - 13,8)</td>
<td>(\sigma_{пв} = 74) (\sigma_{пв} = 27)</td>
<td>—</td>
</tr>
<tr>
<td>Дуб (15 % влажности)</td>
<td>(\sigma_b = 128,8) (\sigma_c = 52) (\sigma_h = 93,5) (\tau_{ср} = 8,5 - 12,5)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Липа (15 % влажности)</td>
<td>(\sigma_b = 115,8) (\sigma_c = 39,8) (\sigma_h = 78) (\tau_{ср} = 7,3 - 8)</td>
<td>(\sigma_{пв} = 45) (\sigma_{пв} = 20)</td>
<td>—</td>
</tr>
<tr>
<td>Ольха (15 % влажности)</td>
<td>(\sigma_b = 96,3) (\sigma_c = 38,7) (\sigma_h = 71) (\tau_{ср} = 7,8 - 8,5)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Клен (15 % влажности)</td>
<td>(\sigma_c = 52) (\sigma_h = 105,3) (\tau_{ср} = 11,3 - 12,9)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

* Предел выносливости получен на базе 5 \(\cdot 10^4 \) циклов.
** Предел выносливости получен на базе 2 \(\cdot 10^7 \) циклов.
*** Предел выносливости получен на базе 10\(^7\) циклов.
**** Предел выносливости получен на базе 10\(^8\) циклов.
***** \(\sigma_b \), относительное удлинение и относительное сужение приведены для

Состояние материала О — отожженный, З — свежезакаленный, БС — восточный
Термообработка Т2 — отжиг, Т4 — закалка, Т5 — закалка и кратковременное
Т7 — закалка и стабилизирующий отпуск.
<table>
<thead>
<tr>
<th>Относительное удлинение</th>
<th>Твердость по Бринеллю, МПа</th>
<th>Ударная вязкость, (\times 10) Дж/мм²</th>
<th>Модуль упругости (E (u)), (\times 10^{-3}) МПа</th>
<th>Коэффициент Пуассона</th>
<th>Удельный вес, (\times 10^{-6}) Н/м³</th>
<th>Коэффициент линейного расширения, (\times 10^{-6}) 1/град</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>53,4—73,2</td>
<td>0,3—0,43</td>
<td>0,124—0,15 (0,0065)</td>
<td>0,43</td>
<td>0,66—0,71</td>
<td>Вдоль волокон 2—5</td>
</tr>
<tr>
<td>—</td>
<td>46,3—65,3</td>
<td>0,46</td>
<td>0,073—0,151 (0,0065)</td>
<td>0,43</td>
<td>0,76</td>
<td>Вдоль волокон 1,9, поперек волокон 54,4</td>
</tr>
<tr>
<td>—</td>
<td>15,6—23,4</td>
<td>0,28</td>
<td>0,09 (0,0045)</td>
<td>—</td>
<td>0,51</td>
<td>Вдоль волокон 5,4, поперек волокон 44,1</td>
</tr>
<tr>
<td>—</td>
<td>24,8—36,7</td>
<td>0,25</td>
<td>0,132 (0,0055)</td>
<td>—</td>
<td>0,53</td>
<td>Вдоль волокон 2—5</td>
</tr>
<tr>
<td>—</td>
<td>50,6—69</td>
<td>0,37</td>
<td>0,118 (0,0055)</td>
<td>—</td>
<td>0,7</td>
<td>Вдоль волокон 2—5</td>
</tr>
</tbody>
</table>

Температуры 1923 К.

Мо состаренный. ИС — искусственно состаренный.
(Исполнение) искусственное старение 16 — закалка и полное искусственное старение.
Приложение 2. Коэффициенты концентрации напряжений и чувствительности к концентрации напряжений

| № п. п. | Схема нагружения элемента конструкции или детали | Теоретический коэффициент концентрации напряжений \(\alpha \) | Эффективный коэффициент концентрации напряжений \(\beta \) | Коэффициент чувствительности к концентрации напряжений
\(q = \frac{\beta - 1}{\alpha - 1} \) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Валы, оси с галтелиями
Растяжение — сжатие</td>
<td>При (d = 30—50 \text{ мм}) и (D/d = 2)</td>
<td>Предположение (d = 30—50 \text{ мм}) и (D/d = 2)</td>
<td>Для стали</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>(\sigma_B) МПа</td>
<td>(r/d)</td>
<td>(q)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0,2—0,5</td>
<td>0,32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0,2—0,5</td>
<td>0,59—0,65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>0,2—0,5</td>
<td>0,82—0,93</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Валы, оси с галтелиями</td>
<td>При (d = 30—50 \text{ мм}) и (D/d = 2)</td>
<td>При (D/d = 2)</td>
<td>Для стали</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>
Для стали
1 — $\sigma_a = 1200$ МПа
2 — $\sigma_a = 1000$ МПа
3 — $\sigma_a = 800$ МПа
4 — $\sigma_a = 400$—600 МПа

При $D/d < 2$

$$\beta = 1 + \nu (\beta - 1)$$

Значения ν находятся из графика

<table>
<thead>
<tr>
<th>D/d</th>
<th>r/d</th>
<th>σ_a, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><500</td>
</tr>
<tr>
<td>1,05</td>
<td>0,02</td>
<td>1,70</td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>1,48</td>
</tr>
<tr>
<td>D/d</td>
<td>r/d</td>
<td>σ_{eq}, МПа</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$<0,5$</td>
</tr>
<tr>
<td>0,10</td>
<td>0,05</td>
<td>1,28</td>
</tr>
<tr>
<td>0,15</td>
<td>0,05</td>
<td>1,20</td>
</tr>
<tr>
<td>0,20</td>
<td>0,05</td>
<td>1,16</td>
</tr>
<tr>
<td>1,1</td>
<td>0,02</td>
<td>2,00</td>
</tr>
<tr>
<td>1,05</td>
<td>0,05</td>
<td>1,64</td>
</tr>
<tr>
<td>0,10</td>
<td>0,05</td>
<td>1,37</td>
</tr>
<tr>
<td>0,15</td>
<td>0,05</td>
<td>1,27</td>
</tr>
<tr>
<td>0,20</td>
<td>0,05</td>
<td>1,20</td>
</tr>
<tr>
<td>1,25</td>
<td>0,02</td>
<td>2,12</td>
</tr>
<tr>
<td>0,05</td>
<td>1,81</td>
<td>1,97</td>
</tr>
<tr>
<td>0,10</td>
<td>1,47</td>
<td>1,54</td>
</tr>
<tr>
<td>0,15</td>
<td>1,35</td>
<td>1,40</td>
</tr>
<tr>
<td>0,20</td>
<td>1,30</td>
<td>1,32</td>
</tr>
<tr>
<td>1,5</td>
<td>0,02</td>
<td>2,42</td>
</tr>
<tr>
<td>0,05</td>
<td>1,91</td>
<td>2,06</td>
</tr>
<tr>
<td>0,10</td>
<td>1,53</td>
<td>1,61</td>
</tr>
<tr>
<td>0,15</td>
<td>1,38</td>
<td>1,44</td>
</tr>
<tr>
<td>0,20</td>
<td>1,33</td>
<td>1,36</td>
</tr>
</tbody>
</table>
| Валы, оси с галтелиами | При $d = 30-50$ мм и $D/d = 2$ | Для сталей при $D/d = 1,4$

1. $\sigma_y = 1200$ МПа
2. $\sigma_y = 600$ МПа
3. $\sigma_y = 400$ МПа
При $D/d < 1,4$

$\beta_y = 1 + \nu (\beta - 1)$
Значения ν находятся из графика | При $D/d = 2$ для сталей |

| 3 | $\beta = 1,15$ | $\beta = 1,25$ |
При $d = 30—50$ мм и $D/d = 2$

1 — $\sigma_n = 1200$ МПа
2 — $\sigma_n = 500$ МПа

При $D/d < 2$

$\beta_v = 1 + v(\beta - 1)$

Значения ν находятся из графика.
<table>
<thead>
<tr>
<th>D/d</th>
<th>r/d</th>
<th>(\sigma_{\text{в}, \text{МПа}})</th>
<th><500</th>
<th>500</th>
<th>>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,05</td>
<td>0,02</td>
<td>1,24</td>
<td>1,29</td>
<td>1,33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>1,15</td>
<td>1,18</td>
<td>1,20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>1,08</td>
<td>1,10</td>
<td>1,12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>1,06</td>
<td>1,08</td>
<td>1,09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>1,05</td>
<td>1,06</td>
<td>1,07</td>
<td></td>
</tr>
<tr>
<td>1,1</td>
<td>0,02</td>
<td>1,40</td>
<td>1,52</td>
<td>1,62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>1,25</td>
<td>1,28</td>
<td>1,30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>1,12</td>
<td>1,16</td>
<td>1,18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>1,09</td>
<td>1,12</td>
<td>1,14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>1,06</td>
<td>1,08</td>
<td>1,10</td>
<td></td>
</tr>
<tr>
<td>1,25</td>
<td>0,02</td>
<td>1,64</td>
<td>1,73</td>
<td>1,80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>1,40</td>
<td>1,45</td>
<td>1,48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>1,20</td>
<td>1,27</td>
<td>1,32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>1,15</td>
<td>1,20</td>
<td>1,24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>1,09</td>
<td>1,13</td>
<td>1,16</td>
<td></td>
</tr>
<tr>
<td>1,5</td>
<td>0,02</td>
<td>1,76</td>
<td>1,97</td>
<td>2,14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>1,43</td>
<td>1,56</td>
<td>1,62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>1,24</td>
<td>1,32</td>
<td>1,38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>1,19</td>
<td>1,25</td>
<td>1,29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>1,10</td>
<td>1,18</td>
<td>1,24</td>
<td></td>
</tr>
<tr>
<td>№ п.п.</td>
<td>Схема нагружения элемента конструкции или детали</td>
<td>Теоретический коэффициент концентрации напряжений (\alpha)</td>
<td>Эффективный коэффициент концентрации напряжений (\beta)</td>
<td>Коэффициент чувствительности к концентрации напряжений (q = \frac{\beta - 1}{\alpha - 1})</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---------------------------------</td>
<td></td>
</tr>
</tbody>
</table>
| 4 | Валы, оси с выточками | Схема определения исходной величины \(\alpha \) показана штрихами | Для чугуна — 1,1—1,4 | Для сплава МЛ4 \(\left(\frac{r}{d} = 0,1 - 0,12 \right) - 1,4 - 1,8 \) | Для сплава МЛ4 \((r/d mm = 0,1 - 0,12) 0,4 - 0,8 \)
Для сплавов МА2, МА3, МА5 — 0,7 — 1
Для сплавов AL5, AL7, AL8, AL9 — 0,3 — 0,8
Для сплавов AL6, AK2, AK8 — 0,5 — 0,8 |
| | | | Для сплавов AL5, AL7, AL8, AL9 — 1,3 — 1,8
Для сплавов AL6, AK2, AK8 — 1,6 — 1,8
Для сталей \(\beta \) находят из таблицы, приведенной для схемы 5 | |
Для сталей при \(\sigma_b < \approx 500 \text{ МПа} \) |
| | | | Для стали при \(d = 30—50 \text{ мм и } t/r = 1 \) | \(t/r \) | \(r/d \) | \(q \) |
| | | | \(1 — \sigma_b = 1000 \text{ МПа} \)
\(2 — \sigma_b = 500 \text{ МПа} \) | 0,5 | 0,02 | 0,6 |
| | | | | 0,05 | 0,69 | |
| | | | | 0,10 | 0,74 | |
| | | | | 0,15 | 0,75 | |
| | | | | 0,20 | 0,75 | |
При \(t/r \neq 1 \), \(\beta_v = 1 + v(\beta - 1) \).

Значения \(v \) находятся из графика.

![Graph](image)

Некоторые значения \(\beta \)

<table>
<thead>
<tr>
<th>(t/r)</th>
<th>(r/d)</th>
<th>(\sigma_y), МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(< 500)</td>
</tr>
<tr>
<td>0,5</td>
<td>0,02</td>
<td>1,77</td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>1,72</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>1,59</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>1,45</td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>1,37</td>
</tr>
<tr>
<td>1,0</td>
<td>0,02</td>
<td>1,85</td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>1,80</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>1,65</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>1,50</td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>1,45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(t/r)</th>
<th>(r/d)</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(500)</td>
</tr>
<tr>
<td>0,5</td>
<td>0,02</td>
<td>0,78</td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>0,83</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>0,84</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>0,85</td>
</tr>
<tr>
<td>1,0</td>
<td>0,02</td>
<td>0,66</td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>0,71</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>0,84</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>0,85</td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>0,86</td>
</tr>
</tbody>
</table>

Для сталей при \(\sigma_y = 800 \) МПа.
<table>
<thead>
<tr>
<th>(l/r)</th>
<th>(r/d)</th>
<th>(\sigma_y) MPa</th>
<th>(t/r)</th>
<th>(r/d)</th>
<th>(q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,0</td>
<td>0,02</td>
<td>1,92</td>
<td>2,31</td>
<td>2,46</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>1,86</td>
<td>2,03</td>
<td>2,19</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>1,70</td>
<td>1,82</td>
<td>1,92</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>1,54</td>
<td>1,63</td>
<td>1,70</td>
<td>0,15</td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>1,48</td>
<td>1,58</td>
<td>1,54</td>
<td>0,20</td>
</tr>
</tbody>
</table>

Для сталей при \(\sigma_y \geq 1000 \) MPa

<table>
<thead>
<tr>
<th>(l/r)</th>
<th>(r/d)</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>0,02</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>0,93</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>0,94</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>0,95</td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>0,95</td>
</tr>
</tbody>
</table>
Для серого чугуна при
\(\sigma_n = 290 \) МПа

При \(d = 8 \) мм и
\[\frac{D - d}{D} = 0,33 \]

При \(\frac{D - d}{D} \neq 0,33 \)
\[\beta_v = v^b \]
<table>
<thead>
<tr>
<th>№</th>
<th>Схема нагружения элемента конструкции или детали</th>
<th>Теоретический коэффициент концентрации напряжений (\alpha)</th>
<th>Эффективный коэффициент концентрации напряжений (\beta)</th>
<th>Коэффициент чувствительности к концентрации напряжений (q = \frac{\beta - 1}{\alpha - 1})</th>
</tr>
</thead>
</table>
| 28 | | | Значения \(\nu \) находятся из графика | Для сплавов (\(d = 8 \) мм; \(D/d = 1,25 - 1,5) \)
ML4 — 0,4—1
Ma2, Ma3, Ma5 — 0,7—1
AL5, AL7, AL8, AL9 — 0—0,3
D16, AK2, AK8 — 0,5—1 |

Для сплавов (\(d = 8 \) мм; \(D/d = 1,25 - 1,5) \)
ML4 — 1,4—2
Ma2, Ma3, Ma5 — 1,7—2
AL5, AL7, AL8, AL9 — 1—1,3
D16, AK2, AK8 — 1,5—2 |

6 | Валы, оси с выточками | Схема определения искомой величины \(\alpha \) показана штрихами | Для сталей | Для сталей при \(\sigma_b < 500 \) МПа |
<table>
<thead>
<tr>
<th>(t/r)</th>
<th>(r/d)</th>
<th>(\sigma_v, \text{ МПа})</th>
<th>(\varphi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 500)</td>
<td>800</td>
<td>(>1000)</td>
<td>(\leq 500)</td>
</tr>
<tr>
<td>0,5</td>
<td>0,02</td>
<td>1,46</td>
<td>1,61</td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>1,43</td>
<td>1,52</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>1,36</td>
<td>1,42</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>1,27</td>
<td>1,32</td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>1,22</td>
<td>1,25</td>
</tr>
<tr>
<td>1,0</td>
<td>0,02</td>
<td>1,51</td>
<td>1,67</td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>1,48</td>
<td>1,58</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>1,39</td>
<td>1,47</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>1,30</td>
<td>1,35</td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>1,27</td>
<td>1,29</td>
</tr>
<tr>
<td>2,0</td>
<td>0,02</td>
<td>1,56</td>
<td>1,73</td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>1,51</td>
<td>1,62</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>1,42</td>
<td>1,50</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>1,33</td>
<td>1,38</td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>1,29</td>
<td>1,30</td>
</tr>
</tbody>
</table>

при \(\sigma_v = 800 \text{ МПа} \)

<table>
<thead>
<tr>
<th>(t/r)</th>
<th>(r/d)</th>
<th>(\varphi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>0,02</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>0,73</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>0,91</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>0,91</td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>1,00</td>
</tr>
</tbody>
</table>
7 Валы, оси с выточками

При $d = 8$ мм;
$D/d = 1,02 - 1,6$
$t = 0,05 мм;
$r/d = 0,0056$; $t/r = 4 - 4,5$;
$\alpha = 4,5 - 6$

Для сплавов
МЛ4 — 1,8 — 4,3
МА2, МА3, МА5 — 1,9 — 2,5
АЛ5, АЛ7, АЛ8, АЛ9 — 1,1 — 1,4
Д16, АК2, АК8 — 1,1 — 2,6

Для сплавов МЛ4 — 0,2 — 0,8
МА2, МА3, МА5 — 0,25 — 0,26
АЛ5, АЛ7, АЛ8, АЛ9 — 0 — 0,07
Д16, АК2, АК8 — 0,03 — 0,07
Валы, оси с поперечными круглыми отверстиями

Если при $a/d = 0,1-0,33$

Для сталей

1 — $a/d = 0,05-0,1$
2 — $a/d = 0,15-0,25$
($d = 30-50$ мм)

Некоторые числовые значения β приведены в таблице

<table>
<thead>
<tr>
<th>a/d</th>
<th>σ_b, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05-0,1</td>
<td>1,90 1,95 2,05 2,15</td>
</tr>
<tr>
<td>0,15-0,25</td>
<td>1,74 1,77 1,86 1,95</td>
</tr>
</tbody>
</table>

Для серого чугуна с $\sigma_b = -200$ МПа и при $a/d = 0,1-0,15$

Diagram
<table>
<thead>
<tr>
<th>№ п. п.</th>
<th>Схема нагружения элемента конструкции или детали</th>
<th>Теоретический коэффициент концентрации напряжений α</th>
<th>Эффективный коэффициент концентрации напряжений β</th>
<th>Коэффициент чувствительности к концентрации напряжений $s = \frac{\beta - 1}{\alpha - 1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Валы, оси с поперечным круглым отверстием</td>
<td>—</td>
<td>—</td>
<td>Для сталей при $d = 30—50$ мм и $a/d = 0.05—0.25$</td>
</tr>
</tbody>
</table>

При других величинах σ_s следует применять поправочный коэффициент ξ, который находится с помощью нижеприведенного графика.

Верхняя граница соответствует высоколегированным чугунам, нижняя — малоуглеродистым чугунам.
Некоторые числовые значения \(\beta \), соответствующие графику, приведены в таблице:

<table>
<thead>
<tr>
<th>(a/d)</th>
<th>(\sigma_\alpha,) МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500</td>
</tr>
<tr>
<td>0,05—0,25</td>
<td>1,75</td>
</tr>
</tbody>
</table>

Для серого чугуна с \(\sigma_\alpha = 220 \) МПа и при \(a/d = 0,1 \):

\[
\beta = \frac{1}{100} \left(\frac{a}{d} \right)^{1/3}
\]

Для расчетов: при одной шпоночной канавке

\[
W_n = \frac{3}{32} \frac{bt}{d} (d - t)^2
\]

при двух шпоночных канавках

\[
W_n = \frac{3}{32} \frac{bt}{d} (d - t)^2
\]

где \(W_n \) — момент сопротивления сечения при изгибе.
<table>
<thead>
<tr>
<th>№</th>
<th>Схема нагружения элемента конструкции или детали</th>
<th>Геометрический коэффициент концентрации напряжений α</th>
<th>Эффективный коэффициент концентрации напряжений β</th>
<th>Коэффициент чувствительности $\psi = \frac{| - 1}{\alpha - 1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Для сталей</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>σ_0, МПа</td>
<td>β</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>1,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>1,72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>1,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>1,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>2,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Кручение</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Для расчетов:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>при одной шпоночной канавке</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$W_k = \frac{nd^3}{16} - \frac{bt(d - l)^3}{2d}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>при двух шпоночных канавках</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$W_k = \frac{nt^3}{16} - \frac{bt(d - l)^3}{d}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>где W_k — момент сопротивления сечения при кручении.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_b, МПа</td>
<td>β</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1,9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Для валов, осей с шлицевыми (зубчатыми) участками изгиба требуется:

Для сталей при расчетах в случае прямоугольных сечений момент сопротивления сечения определяют по формуле

$$ W = \frac{\pi d^3}{32} $$

где d — внутренний диаметр; ξ — поправочный коэффициент, равный:

- для легкой серии — 1,09—1,16;
- для средней серии — 1,14—1,27;
- для тяжелой серии — 1,14—1,39

Меньшие значения ξ соответствуют большим d.

Для эвольвентных шлицевых соединений W_n определяется как
<table>
<thead>
<tr>
<th>М. п. п</th>
<th>Схема нагружения элемента конструкции или детали</th>
<th>Теоретический коэффициент концентрации напряжений (\alpha)</th>
<th>Эффективный коэффициент концентрации напряжений (\beta)</th>
<th>Коэффициент чувствительности к концентрации напряжений (q = \frac{\beta - 1}{\alpha - 1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>для сплошного круглого сечения с диаметром, равным диаметру делительной окружности</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma_{\text{в}}), МПа</td>
<td>Прямоугольные шлицы</td>
<td>Эвольвентные шлицы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>1,35</td>
<td>1,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>1,45</td>
<td>1,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>1,55</td>
<td>1,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>1,60</td>
<td>1,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>1,65</td>
<td>1,65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>1,70</td>
<td>1,70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>1,72</td>
<td>1,72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>1,75</td>
<td>1,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кручение</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Для прямобочных шлицев (\alpha = 2,5—4,2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Для эвольвентных шлицев (\alpha = 1,0—1,5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma_{\text{в}}), МПа</td>
<td>Прямоугольные шлицы</td>
<td>Эвольвентные шлицы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>2,10</td>
<td>1,40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>2,25</td>
<td>1,43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>2,35</td>
<td>1,46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Для прямобочных шлицев (q = 0,5—1,2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Для эвольвентных шлицев (q = 0,8—3,0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Момент сопротивления сечения с прямоугольными шлицами при кручении

$$W_k = 2W_n$$

Для эвольвентных шлицевых соединений W_k определяется как для сплошного круглого сечения с диаметром, равным диаметру делительной окружности

<table>
<thead>
<tr>
<th>Q</th>
<th>500</th>
<th>1000</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1</td>
<td>$1,70$</td>
<td>$1,58$</td>
<td>$1,60$</td>
</tr>
<tr>
<td>F_2</td>
<td>$1,49$</td>
<td>$1,52$</td>
<td>$1,55$</td>
</tr>
</tbody>
</table>

Некорректированные шестерни эвольвентного профиля с углом $\alpha = 20^\circ$ при нагрузке, приложенной к вершине зуба

При количестве зубьев $z = 20—80$

$$\beta = 1 + q (\alpha - 1)$$

Для сталей

![Diagram](image)
<table>
<thead>
<tr>
<th>Элемент конструкции</th>
<th>Теоретический коэффициент концентрации напряжений α</th>
<th>Эффективный коэффициент концентрации напряжений β</th>
<th>Коэффициент чувствительности ξ к концентрации напряжений $\eta = \frac{1}{\xi - 1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $r_1/r_0 = 0,124-0,222$</td>
<td>$_1 \geq 1,2-1.3$</td>
<td>$1 - \sigma_0/\sigma = 0,8$</td>
<td>$1 - \sigma_0/\sigma = 0,8$</td>
</tr>
<tr>
<td>2. $r_2/r_0 = 0,124-0,17$</td>
<td></td>
<td>$2 - \sigma_0/\sigma = 0,7$</td>
<td>$2 - \sigma_0/\sigma = 0,7$</td>
</tr>
<tr>
<td>3. $r_3/r_0 = 0,258-0,36$</td>
<td></td>
<td>$3 - \sigma_0/\sigma = 0,6$</td>
<td>$3 - \sigma_0/\sigma = 0,6$</td>
</tr>
<tr>
<td>4. $r_4/r_0 = 0,305-0,317$</td>
<td></td>
<td>$4 - \sigma_0/\sigma = 0,55$</td>
<td>$4 - \sigma_0/\sigma = 0,55$</td>
</tr>
<tr>
<td>5. $r_5/r_0 = 0,55$</td>
<td></td>
<td>$5 - \sigma_0/\sigma = 0,4-0,5$</td>
<td>$5 - \sigma_0/\sigma = 0,4-0,5$</td>
</tr>
<tr>
<td>6. $r_6/r_0 = 0,495-0,6$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Здесь s — толщина основания зуба в опасном сечении, l — плечно действия изгибающей силы, m — модуль зацепления, r_1 — радиус закругления вершины зуба инструмента.

<table>
<thead>
<tr>
<th>Болтовые соединения при растяжении — сжатии для $d = 12$ мм</th>
<th>Для стали</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_0, МПа</td>
<td>Метрическая резьба</td>
<td>Дюймовая резьба</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>3.0</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>3.9</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Прямоугольная ступенчатая полоса</td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>α</td>
<td>0</td>
</tr>
<tr>
<td>Растяжение — сжатие</td>
<td>1 — $H/h = 1,1$</td>
<td>β = 1 + $q(α - 1)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 — $H/h = 1,2$</td>
<td></td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>3 — $H/h = 1,5$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4 — $H/h = 4$</td>
<td></td>
<td>2,5</td>
</tr>
</tbody>
</table>

| 15 | Прямоугольная ступенчатая полоса | | | | | |
|----|--------------------------------|---|-----|-----|-----|
| | M | α | 0 | 0,2 | 0,4 |
| Изгиб | 1 — $H/h = 1,1$ | β = 1 + $q(α - 1)$ | | |
| | 2 — $H/h = 2$ | | 1,5 | | |
| | 3 — $H/h = 4$ | | 2 | | |

Значения q могут быть взяты из графика, приведенного для схемы 12.
Продолжение приложения 2

<table>
<thead>
<tr>
<th>№ п. п.</th>
<th>Схема нагружения элемента конструкции или детали</th>
<th>Теоретический коэффициент концентрации напряжений α</th>
<th>Эффективный коэффициент концентрации напряжений β</th>
<th>Коэффициент чувствительности к концентрации напряжений $a = \frac{\beta - 1}{\alpha - 1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Прямоугольная пластинка с отверстием</td>
<td>$\frac{d}{B}$</td>
<td>α</td>
<td>Для сталей</td>
</tr>
<tr>
<td></td>
<td>[Иллюстрация]</td>
<td>0</td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Иллюстрация]</td>
<td>0,1</td>
<td>3,03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Иллюстрация]</td>
<td>0,2</td>
<td>3,14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Иллюстрация]</td>
<td>0,3</td>
<td>3,36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Иллюстрация]</td>
<td>0,4</td>
<td>3,74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Иллюстрация]</td>
<td>0,5</td>
<td>4,32</td>
<td></td>
</tr>
</tbody>
</table>

Для силков MA2, MA3, M15, D16, AK2, AK8 при $B = 40$ мм; $d = 1-6$ мм, толщина $h = 1,5-5$ мм

$2,5-3$ | $1,2-1,8$ | $0,1-0,53$

17	Прямоугольная пластинка с отверстием	α	σ_b, МПа
	[Иллюстрация]	0	0,3
	[Иллюстрация]	0,1	0,39
	[Иллюстрация]	0,2	0,36
	[Иллюстрация]	0,3	0,4
	[Иллюстрация]	0,4	0,29
	[Иллюстрация]	0,5	0,24

Некоторые значения α при $B/h = 3$ и $d/B = 0,1-0,9$
Для стали с $\sigma_b = 600$ МПа — 0,37-1,46; $\sigma_b = 800$ МПа — 0,5-2, $\sigma_b = 1000$ МПа — 0,63-2,5
<table>
<thead>
<tr>
<th>18</th>
<th>Плоскостная резка пластины с боковыми вырезами</th>
<th>$\beta = 1 + q (\alpha - 1)$</th>
<th>Значения q могут быть взяты из графика, приведенного для схемы 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Плоскостная резка пластины с боковыми вырезами</td>
<td>$\beta = 1 + q (\alpha - 1)$</td>
<td>Значения q могут быть взяты из графика, приведенного для схемы 12</td>
</tr>
<tr>
<td>№ п.п.</td>
<td>Схема нагружения ленты, каната, ремня или детали</td>
<td>Геометрический коэффициент концентрации напряжений (r)</td>
<td>Эффективный коэффициент концентрации напряжений (\beta)</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>20</td>
<td>Прямоугольная пластина с боковым вырезом</td>
<td>2</td>
<td>1,5—2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Изгиб</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Полоса с односторонним или двухсторонним надрезом</td>
<td>4—7</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Растяжение — сжатие или изгиб</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Для сплавов МА2, МА3, МА5, Д16, АК2, АК8 при \(B = 12 \) мм;
\(r = 16 \) мм; \(a = 0,5 \) мм.

Для сплавов МА2, МА3, МА5 при \(r = 0,02—0,05 \) мм; \(t/r = 3—15; \ h/t = 20 \).
<table>
<thead>
<tr>
<th>22</th>
<th>Профиль с входящим углом</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>23</th>
<th>Элемент конструкции с входящим углом</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Для стаей

1 — легированная

\(\sigma_s = 990 \text{ МПа} \)

2 — углеродистая

\(\sigma_s = 500—700 \text{ МПа} \)

<table>
<thead>
<tr>
<th>(r/h)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1—0,3</td>
<td>0,33—0,47</td>
</tr>
</tbody>
</table>

Для чугуна с \(\sigma_s = 290 \text{ МПа} \)

<table>
<thead>
<tr>
<th>(r/h)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1—0,6</td>
<td>0,2—0,35</td>
</tr>
</tbody>
</table>
Приложение 3. Функции Крылова S, T, U, V

$$S\ (kz) = \frac{1}{2} \left(\cosh kz + \cos kz \right);$$

$$T\ (kz) = \frac{1}{2} \left(\sinh kz + \sin kz \right);$$

$$U\ (kz) = \frac{1}{2} \left(\cosh kz - \cos kz \right);$$

$$V\ (kz) = \frac{1}{2} \left(\sinh kz - \sin kz \right),$$

причем

$$S'\ (kz) = kV\ (kz); \quad S''\ (kz) = k^2U\ (kz); \quad S'''\ (kz) = k^3T\ (kz)$$

$$T'\ (kz) = kS\ (kz); \quad T''\ (kz) = k^2V\ (kz); \quad T'''\ (kz) = k^3U\ (kz)$$

$$U'\ (kz) = kT\ (kz), \quad U''\ (kz) = k^2S\ (kz), \quad U'''\ (kz) = k^3V\ (kz)$$

$$V'\ (kz) = kU\ (kz); \quad V''\ (kz) = k^2T\ (kz), \quad V'''\ (kz) = k^3S\ (kz)$$

<table>
<thead>
<tr>
<th>kz</th>
<th>$S\ (kz)$</th>
<th>$T\ (kz)$</th>
<th>$U\ (kz)$</th>
<th>$V\ (kz)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>1,000000</td>
<td>0,000000</td>
<td>0,000000</td>
<td>0,000000</td>
</tr>
<tr>
<td>0,01</td>
<td>1,000000</td>
<td>0,010000</td>
<td>0,000005</td>
<td>0,000000</td>
</tr>
<tr>
<td>0,02</td>
<td>1,000000</td>
<td>0,020000</td>
<td>0,000200</td>
<td>0,000000</td>
</tr>
<tr>
<td>0,03</td>
<td>1,000000</td>
<td>0,030000</td>
<td>0,000450</td>
<td>0,000000</td>
</tr>
<tr>
<td>0,04</td>
<td>1,000000</td>
<td>0,040000</td>
<td>0,000800</td>
<td>0,000001</td>
</tr>
<tr>
<td>0,05</td>
<td>1,000000</td>
<td>0,050000</td>
<td>0,001250</td>
<td>0,000002</td>
</tr>
<tr>
<td>0,06</td>
<td>1,000000</td>
<td>0,060000</td>
<td>0,001800</td>
<td>0,000004</td>
</tr>
<tr>
<td>0,07</td>
<td>1,000000</td>
<td>0,070000</td>
<td>0,002450</td>
<td>0,000006</td>
</tr>
<tr>
<td>0,08</td>
<td>1,000000</td>
<td>0,080000</td>
<td>0,003200</td>
<td>0,000009</td>
</tr>
<tr>
<td>0,09</td>
<td>1,000000</td>
<td>0,090000</td>
<td>0,004050</td>
<td>0,000012</td>
</tr>
<tr>
<td>0,10</td>
<td>1,000000</td>
<td>0,100000</td>
<td>0,005000</td>
<td>0,000017</td>
</tr>
<tr>
<td>0,11</td>
<td>1,000001</td>
<td>0,110000</td>
<td>0,006050</td>
<td>0,000022</td>
</tr>
<tr>
<td>0,12</td>
<td>1,000001</td>
<td>0,120000</td>
<td>0,007200</td>
<td>0,000029</td>
</tr>
<tr>
<td>0,13</td>
<td>1,000001</td>
<td>0,130000</td>
<td>0,008450</td>
<td>0,000037</td>
</tr>
<tr>
<td>0,14</td>
<td>1,000002</td>
<td>0,140000</td>
<td>0,009800</td>
<td>0,000046</td>
</tr>
<tr>
<td>0,15</td>
<td>1,000002</td>
<td>0,150000</td>
<td>0,011250</td>
<td>0,000056</td>
</tr>
<tr>
<td>0,16</td>
<td>1,000003</td>
<td>0,160000</td>
<td>0,012800</td>
<td>0,000068</td>
</tr>
<tr>
<td>0,17</td>
<td>1,000003</td>
<td>0,170000</td>
<td>0,014450</td>
<td>0,000082</td>
</tr>
<tr>
<td>0,18</td>
<td>1,000004</td>
<td>0,180000</td>
<td>0,016200</td>
<td>0,000097</td>
</tr>
<tr>
<td>0,19</td>
<td>1,000005</td>
<td>0,190000</td>
<td>0,018050</td>
<td>0,000115</td>
</tr>
<tr>
<td>0,20</td>
<td>1,000007</td>
<td>0,200000</td>
<td>0,020000</td>
<td>0,000134</td>
</tr>
<tr>
<td>0,21</td>
<td>1,000008</td>
<td>0,210000</td>
<td>0,022050</td>
<td>0,000155</td>
</tr>
<tr>
<td>0,22</td>
<td>1,000010</td>
<td>0,220000</td>
<td>0,024200</td>
<td>0,000178</td>
</tr>
<tr>
<td>0,23</td>
<td>1,000012</td>
<td>0,230000</td>
<td>0,026450</td>
<td>0,000203</td>
</tr>
<tr>
<td>0,24</td>
<td>1,000014</td>
<td>0,240000</td>
<td>0,028800</td>
<td>0,000231</td>
</tr>
<tr>
<td>0,25</td>
<td>1,000016</td>
<td>0,250000</td>
<td>0,031250</td>
<td>0,000261</td>
</tr>
<tr>
<td>0,26</td>
<td>1,000019</td>
<td>0,260001</td>
<td>0,033800</td>
<td>0,000293</td>
</tr>
<tr>
<td>0,27</td>
<td>1,000022</td>
<td>0,270001</td>
<td>0,036450</td>
<td>0,000328</td>
</tr>
<tr>
<td>0,28</td>
<td>1,000026</td>
<td>0,280001</td>
<td>0,039200</td>
<td>0,000366</td>
</tr>
<tr>
<td>0,29</td>
<td>1,000029</td>
<td>0,290001</td>
<td>0,042050</td>
<td>0,000407</td>
</tr>
<tr>
<td>kz</td>
<td>S (kz)</td>
<td>T (l_1)</td>
<td>U (kz)</td>
<td>V (kz)</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>0.30</td>
<td>1.00034</td>
<td>0.30002</td>
<td>0.04500</td>
<td>0.00450</td>
</tr>
<tr>
<td>0.31</td>
<td>1.00038</td>
<td>0.31002</td>
<td>0.04805</td>
<td>0.00497</td>
</tr>
<tr>
<td>0.32</td>
<td>1.00044</td>
<td>0.32003</td>
<td>0.05120</td>
<td>0.00546</td>
</tr>
<tr>
<td>0.33</td>
<td>1.00049</td>
<td>0.33003</td>
<td>0.05445</td>
<td>0.00599</td>
</tr>
<tr>
<td>0.34</td>
<td>1.00055</td>
<td>0.34004</td>
<td>0.05780</td>
<td>0.00653</td>
</tr>
<tr>
<td>0.35</td>
<td>1.000625</td>
<td>0.35004</td>
<td>0.06125</td>
<td>0.00715</td>
</tr>
<tr>
<td>0.36</td>
<td>1.00070</td>
<td>0.36005</td>
<td>0.06480</td>
<td>0.00778</td>
</tr>
<tr>
<td>0.37</td>
<td>1.00078</td>
<td>0.37006</td>
<td>0.06845</td>
<td>0.00844</td>
</tr>
<tr>
<td>0.38</td>
<td>1.00086</td>
<td>0.38006</td>
<td>0.07220</td>
<td>0.00915</td>
</tr>
<tr>
<td>0.39</td>
<td>1.00096</td>
<td>0.39007</td>
<td>0.07605</td>
<td>0.00989</td>
</tr>
<tr>
<td>0.40</td>
<td>1.00106</td>
<td>0.40008</td>
<td>0.08000</td>
<td>0.01067</td>
</tr>
<tr>
<td>0.41</td>
<td>1.00117</td>
<td>0.41009</td>
<td>0.08405</td>
<td>0.01149</td>
</tr>
<tr>
<td>0.42</td>
<td>1.00129</td>
<td>0.42011</td>
<td>0.08820</td>
<td>0.01235</td>
</tr>
<tr>
<td>0.43</td>
<td>1.00142</td>
<td>0.43012</td>
<td>0.09245</td>
<td>0.01325</td>
</tr>
<tr>
<td>0.44</td>
<td>1.00156</td>
<td>0.44014</td>
<td>0.09681</td>
<td>0.01420</td>
</tr>
<tr>
<td>0.45</td>
<td>1.00171</td>
<td>0.45015</td>
<td>0.10126</td>
<td>0.01519</td>
</tr>
<tr>
<td>0.46</td>
<td>1.00186</td>
<td>0.46017</td>
<td>0.10581</td>
<td>0.01625</td>
</tr>
<tr>
<td>0.47</td>
<td>1.00203</td>
<td>0.47019</td>
<td>0.11047</td>
<td>0.01731</td>
</tr>
<tr>
<td>0.48</td>
<td>1.00221</td>
<td>0.48021</td>
<td>0.11522</td>
<td>0.01844</td>
</tr>
<tr>
<td>0.49</td>
<td>1.00240</td>
<td>0.49023</td>
<td>0.12007</td>
<td>0.01961</td>
</tr>
<tr>
<td>0.50</td>
<td>1.00260</td>
<td>0.50026</td>
<td>0.12502</td>
<td>0.02084</td>
</tr>
<tr>
<td>0.51</td>
<td>1.00280</td>
<td>0.51029</td>
<td>0.13007</td>
<td>0.02211</td>
</tr>
<tr>
<td>0.52</td>
<td>1.00304</td>
<td>0.52031</td>
<td>0.13522</td>
<td>0.02344</td>
</tr>
<tr>
<td>0.53</td>
<td>1.00329</td>
<td>0.53024</td>
<td>0.14048</td>
<td>0.02481</td>
</tr>
<tr>
<td>0.54</td>
<td>1.00354</td>
<td>0.54038</td>
<td>0.14583</td>
<td>0.02624</td>
</tr>
<tr>
<td>0.55</td>
<td>1.00381</td>
<td>0.55042</td>
<td>0.15129</td>
<td>0.02773</td>
</tr>
<tr>
<td>0.56</td>
<td>1.00410</td>
<td>0.56046</td>
<td>0.15684</td>
<td>0.02927</td>
</tr>
<tr>
<td>0.57</td>
<td>1.00440</td>
<td>0.57050</td>
<td>0.16250</td>
<td>0.03037</td>
</tr>
<tr>
<td>0.58</td>
<td>1.00471</td>
<td>0.58054</td>
<td>0.16825</td>
<td>0.03253</td>
</tr>
<tr>
<td>0.59</td>
<td>1.00505</td>
<td>0.59060</td>
<td>0.17411</td>
<td>0.03424</td>
</tr>
<tr>
<td>0.60</td>
<td>1.00540</td>
<td>0.60074</td>
<td>0.18006</td>
<td>0.03601</td>
</tr>
<tr>
<td>0.61</td>
<td>1.00577</td>
<td>0.61070</td>
<td>0.18612</td>
<td>0.03884</td>
</tr>
<tr>
<td>0.62</td>
<td>1.00616</td>
<td>0.62076</td>
<td>0.19228</td>
<td>0.03973</td>
</tr>
<tr>
<td>0.63</td>
<td>1.00656</td>
<td>0.63082</td>
<td>0.19833</td>
<td>0.04169</td>
</tr>
<tr>
<td>0.64</td>
<td>1.00699</td>
<td>0.64089</td>
<td>0.20449</td>
<td>0.04369</td>
</tr>
<tr>
<td>0.65</td>
<td>1.00742</td>
<td>0.65097</td>
<td>0.21136</td>
<td>0.04578</td>
</tr>
<tr>
<td>0.66</td>
<td>1.00790</td>
<td>0.66104</td>
<td>0.21791</td>
<td>0.04793</td>
</tr>
<tr>
<td>0.67</td>
<td>1.00830</td>
<td>0.67112</td>
<td>0.22458</td>
<td>0.05013</td>
</tr>
<tr>
<td>0.68</td>
<td>1.00891</td>
<td>0.68121</td>
<td>0.23134</td>
<td>0.05248</td>
</tr>
<tr>
<td>0.69</td>
<td>1.00945</td>
<td>0.69130</td>
<td>0.23820</td>
<td>0.05477</td>
</tr>
<tr>
<td>0.70</td>
<td>1.01000</td>
<td>0.70140</td>
<td>0.24516</td>
<td>0.05718</td>
</tr>
<tr>
<td>0.71</td>
<td>1.01059</td>
<td>0.71150</td>
<td>0.25223</td>
<td>0.05957</td>
</tr>
<tr>
<td>0.72</td>
<td>1.01120</td>
<td>0.72161</td>
<td>0.25939</td>
<td>0.06232</td>
</tr>
<tr>
<td>0.73</td>
<td>1.01183</td>
<td>0.73173</td>
<td>0.26666</td>
<td>0.06486</td>
</tr>
<tr>
<td>0.74</td>
<td>1.01249</td>
<td>0.74185</td>
<td>0.27403</td>
<td>0.06776</td>
</tr>
<tr>
<td>0.75</td>
<td>1.01318</td>
<td>0.75198</td>
<td>0.28149</td>
<td>0.07034</td>
</tr>
<tr>
<td>0.76</td>
<td>1.01390</td>
<td>0.76211</td>
<td>0.28906</td>
<td>0.07319</td>
</tr>
<tr>
<td>0.77</td>
<td>1.01465</td>
<td>0.77226</td>
<td>0.29674</td>
<td>0.07612</td>
</tr>
<tr>
<td>0.78</td>
<td>1.01542</td>
<td>0.78240</td>
<td>0.30451</td>
<td>0.07913</td>
</tr>
<tr>
<td>0.79</td>
<td>1.01623</td>
<td>0.79256</td>
<td>0.31238</td>
<td>0.08225</td>
</tr>
<tr>
<td>kx</td>
<td>S (kx)</td>
<td>T (kx)</td>
<td>U (kx)</td>
<td>V (kx)</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>0,80</td>
<td>1,01707</td>
<td>0,80273</td>
<td>0,32036</td>
<td>0,08538</td>
</tr>
<tr>
<td>0,81</td>
<td>1,01794</td>
<td>0,81290</td>
<td>0,32844</td>
<td>0,08502</td>
</tr>
<tr>
<td>0,82</td>
<td>1,01884</td>
<td>0,82309</td>
<td>0,33662</td>
<td>0,09194</td>
</tr>
<tr>
<td>0,83</td>
<td>1,01978</td>
<td>0,83328</td>
<td>0,34490</td>
<td>0,09533</td>
</tr>
<tr>
<td>0,84</td>
<td>1,02075</td>
<td>0,84348</td>
<td>0,35329</td>
<td>0,09885</td>
</tr>
<tr>
<td>0,85</td>
<td>1,02175</td>
<td>0,85380</td>
<td>0,36177</td>
<td>0,10242</td>
</tr>
<tr>
<td>0,86</td>
<td>1,02280</td>
<td>0,86392</td>
<td>0,37036</td>
<td>0,10608</td>
</tr>
<tr>
<td>0,87</td>
<td>1,02388</td>
<td>0,87415</td>
<td>0,37905</td>
<td>0,10983</td>
</tr>
<tr>
<td>0,88</td>
<td>1,02400</td>
<td>0,88440</td>
<td>0,38785</td>
<td>0,11366</td>
</tr>
<tr>
<td>0,89</td>
<td>1,02615</td>
<td>0,89465</td>
<td>0,39674</td>
<td>0,11758</td>
</tr>
<tr>
<td>0,90</td>
<td>1,02735</td>
<td>0,90492</td>
<td>0,40573</td>
<td>0,12159</td>
</tr>
<tr>
<td>0,91</td>
<td>1,02858</td>
<td>0,91520</td>
<td>0,41483</td>
<td>0,12570</td>
</tr>
<tr>
<td>0,92</td>
<td>1,02986</td>
<td>0,92549</td>
<td>0,42404</td>
<td>0,12990</td>
</tr>
<tr>
<td>0,93</td>
<td>1,03118</td>
<td>0,93582</td>
<td>0,43335</td>
<td>0,13418</td>
</tr>
<tr>
<td>0,94</td>
<td>1,03254</td>
<td>0,94612</td>
<td>0,44275</td>
<td>0,13856</td>
</tr>
<tr>
<td>0,95</td>
<td>1,03395</td>
<td>0,95645</td>
<td>0,45227</td>
<td>0,14303</td>
</tr>
<tr>
<td>0,96</td>
<td>1,03540</td>
<td>0,96679</td>
<td>0,46188</td>
<td>0,14761</td>
</tr>
<tr>
<td>0,97</td>
<td>1,03690</td>
<td>0,97716</td>
<td>0,47161</td>
<td>0,15297</td>
</tr>
<tr>
<td>0,98</td>
<td>1,03845</td>
<td>0,98753</td>
<td>0,48143</td>
<td>0,15804</td>
</tr>
<tr>
<td>0,99</td>
<td>1,04005</td>
<td>0,99793</td>
<td>0,49136</td>
<td>0,16310</td>
</tr>
<tr>
<td>1,00</td>
<td>1,04169</td>
<td>1,00833</td>
<td>0,50139</td>
<td>0,16827</td>
</tr>
<tr>
<td>1,01</td>
<td>1,04338</td>
<td>1,01876</td>
<td>0,51152</td>
<td>0,17343</td>
</tr>
<tr>
<td>1,02</td>
<td>1,04513</td>
<td>1,02920</td>
<td>0,52176</td>
<td>0,17870</td>
</tr>
<tr>
<td>1,03</td>
<td>1,04693</td>
<td>1,03953</td>
<td>0,53211</td>
<td>0,18407</td>
</tr>
<tr>
<td>1,04</td>
<td>1,04878</td>
<td>1,05014</td>
<td>0,54256</td>
<td>0,18973</td>
</tr>
<tr>
<td>1,05</td>
<td>1,05068</td>
<td>1,06064</td>
<td>0,55311</td>
<td>0,19522</td>
</tr>
<tr>
<td>1,06</td>
<td>1,05264</td>
<td>1,07116</td>
<td>0,56377</td>
<td>0,19980</td>
</tr>
<tr>
<td>1,07</td>
<td>1,05466</td>
<td>1,08169</td>
<td>0,57454</td>
<td>0,20449</td>
</tr>
<tr>
<td>1,08</td>
<td>1,05673</td>
<td>1,09225</td>
<td>0,58540</td>
<td>0,20929</td>
</tr>
<tr>
<td>1,09</td>
<td>1,05887</td>
<td>1,10283</td>
<td>0,59638</td>
<td>0,21620</td>
</tr>
<tr>
<td>1,10</td>
<td>1,06106</td>
<td>1,11343</td>
<td>0,60746</td>
<td>0,22222</td>
</tr>
<tr>
<td>1,11</td>
<td>1,06333</td>
<td>1,12405</td>
<td>0,61865</td>
<td>0,22835</td>
</tr>
<tr>
<td>1,12</td>
<td>1,06562</td>
<td>1,13469</td>
<td>0,62995</td>
<td>0,23460</td>
</tr>
<tr>
<td>1,13</td>
<td>1,06800</td>
<td>1,14536</td>
<td>0,64134</td>
<td>0,24095</td>
</tr>
<tr>
<td>1,14</td>
<td>1,07044</td>
<td>1,15605</td>
<td>0,65285</td>
<td>0,24742</td>
</tr>
<tr>
<td>1,15</td>
<td>1,07295</td>
<td>1,16677</td>
<td>0,66446</td>
<td>0,25401</td>
</tr>
<tr>
<td>1,16</td>
<td>1,07552</td>
<td>1,17750</td>
<td>0,67619</td>
<td>0,26071</td>
</tr>
<tr>
<td>1,17</td>
<td>1,07816</td>
<td>1,18828</td>
<td>0,68801</td>
<td>0,26753</td>
</tr>
<tr>
<td>1,18</td>
<td>1,08087</td>
<td>1,19908</td>
<td>0,69995</td>
<td>0,27447</td>
</tr>
<tr>
<td>1,19</td>
<td>1,08365</td>
<td>1,20990</td>
<td>0,71200</td>
<td>0,28153</td>
</tr>
<tr>
<td>1,20</td>
<td>1,08651</td>
<td>1,22075</td>
<td>0,72415</td>
<td>0,28871</td>
</tr>
<tr>
<td>1,21</td>
<td>1,08934</td>
<td>1,23163</td>
<td>0,73641</td>
<td>0,29601</td>
</tr>
<tr>
<td>1,22</td>
<td>1,09224</td>
<td>1,24254</td>
<td>0,74878</td>
<td>0,30344</td>
</tr>
<tr>
<td>1,23</td>
<td>1,09550</td>
<td>1,25348</td>
<td>0,76196</td>
<td>0,31099</td>
</tr>
<tr>
<td>1,24</td>
<td>1,09885</td>
<td>1,26444</td>
<td>0,77385</td>
<td>0,31867</td>
</tr>
<tr>
<td>1,25</td>
<td>1,10187</td>
<td>1,27545</td>
<td>0,78588</td>
<td>0,32647</td>
</tr>
<tr>
<td>1,26</td>
<td>1,10518</td>
<td>1,28648</td>
<td>0,79936</td>
<td>0,33430</td>
</tr>
<tr>
<td>1,27</td>
<td>1,10856</td>
<td>1,29750</td>
<td>0,81228</td>
<td>0,34245</td>
</tr>
<tr>
<td>1,28</td>
<td>1,11203</td>
<td>1,30866</td>
<td>0,82531</td>
<td>0,35064</td>
</tr>
<tr>
<td>1,29</td>
<td>1,11557</td>
<td>1,31980</td>
<td>0,83845</td>
<td>0,35896</td>
</tr>
<tr>
<td>k2</td>
<td>S (kz)</td>
<td>T (kz)</td>
<td>U (kz)</td>
<td>V (l)</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>1.30</td>
<td>1.11920</td>
<td>1.33097</td>
<td>0.85163</td>
<td>0.36741</td>
</tr>
<tr>
<td>1.31</td>
<td>1.12292</td>
<td>1.34218</td>
<td>0.86507</td>
<td>0.37600</td>
</tr>
<tr>
<td>1.32</td>
<td>1.12673</td>
<td>1.35343</td>
<td>0.87855</td>
<td>0.38471</td>
</tr>
<tr>
<td>1.33</td>
<td>1.13062</td>
<td>1.36471</td>
<td>0.89214</td>
<td>0.39307</td>
</tr>
<tr>
<td>1.34</td>
<td>1.13460</td>
<td>1.37604</td>
<td>0.90585</td>
<td>0.40176</td>
</tr>
<tr>
<td>1.35</td>
<td>1.13867</td>
<td>1.38740</td>
<td>0.91966</td>
<td>0.41069</td>
</tr>
<tr>
<td>1.36</td>
<td>1.14283</td>
<td>1.39881</td>
<td>0.93336</td>
<td>0.42096</td>
</tr>
<tr>
<td>1.37</td>
<td>1.14709</td>
<td>1.41026</td>
<td>0.94764</td>
<td>0.43153</td>
</tr>
<tr>
<td>1.38</td>
<td>1.15144</td>
<td>1.42175</td>
<td>0.96180</td>
<td>0.44291</td>
</tr>
<tr>
<td>1.39</td>
<td>1.15588</td>
<td>1.43329</td>
<td>0.97607</td>
<td>0.45459</td>
</tr>
<tr>
<td>1.40</td>
<td>1.16043</td>
<td>1.44487</td>
<td>0.99047</td>
<td>0.46633</td>
</tr>
<tr>
<td>1.41</td>
<td>1.16507</td>
<td>1.45655</td>
<td>1.00497</td>
<td>0.47841</td>
</tr>
<tr>
<td>1.42</td>
<td>1.16982</td>
<td>1.46817</td>
<td>1.01959</td>
<td>0.49052</td>
</tr>
<tr>
<td>1.43</td>
<td>1.17466</td>
<td>1.47990</td>
<td>1.03434</td>
<td>0.49880</td>
</tr>
<tr>
<td>1.44</td>
<td>1.17961</td>
<td>1.49167</td>
<td>1.04920</td>
<td>0.50021</td>
</tr>
<tr>
<td>1.45</td>
<td>1.18467</td>
<td>1.50349</td>
<td>1.06417</td>
<td>0.51078</td>
</tr>
<tr>
<td>1.46</td>
<td>1.18984</td>
<td>1.51537</td>
<td>1.07926</td>
<td>0.52149</td>
</tr>
<tr>
<td>1.47</td>
<td>1.19510</td>
<td>1.52728</td>
<td>1.09448</td>
<td>0.53237</td>
</tr>
<tr>
<td>1.48</td>
<td>1.20048</td>
<td>1.53926</td>
<td>1.10981</td>
<td>0.54339</td>
</tr>
<tr>
<td>1.49</td>
<td>1.20597</td>
<td>1.55130</td>
<td>1.12526</td>
<td>0.55546</td>
</tr>
<tr>
<td>1.50</td>
<td>1.21157</td>
<td>1.56338</td>
<td>1.14083</td>
<td>0.56759</td>
</tr>
<tr>
<td>1.51</td>
<td>1.21729</td>
<td>1.57553</td>
<td>1.15653</td>
<td>0.57728</td>
</tr>
<tr>
<td>1.52</td>
<td>1.22312</td>
<td>1.58773</td>
<td>1.17235</td>
<td>0.58903</td>
</tr>
<tr>
<td>1.53</td>
<td>1.22907</td>
<td>1.59999</td>
<td>1.18828</td>
<td>0.60083</td>
</tr>
<tr>
<td>1.54</td>
<td>1.23514</td>
<td>1.61231</td>
<td>1.20435</td>
<td>0.61279</td>
</tr>
<tr>
<td>1.55</td>
<td>1.24132</td>
<td>1.62469</td>
<td>1.22053</td>
<td>0.62492</td>
</tr>
<tr>
<td>1.56</td>
<td>1.24769</td>
<td>1.63714</td>
<td>1.23679</td>
<td>0.63720</td>
</tr>
<tr>
<td>1.57</td>
<td>1.25407</td>
<td>1.64965</td>
<td>1.25327</td>
<td>0.64965</td>
</tr>
<tr>
<td>1.58</td>
<td>1.26063</td>
<td>1.66222</td>
<td>1.26983</td>
<td>0.66226</td>
</tr>
<tr>
<td>1.59</td>
<td>1.26732</td>
<td>1.67486</td>
<td>1.28662</td>
<td>0.67504</td>
</tr>
<tr>
<td>1.60</td>
<td>1.27413</td>
<td>1.68757</td>
<td>1.30333</td>
<td>0.68800</td>
</tr>
<tr>
<td>1.61</td>
<td>1.28108</td>
<td>1.70034</td>
<td>1.32027</td>
<td>0.70112</td>
</tr>
<tr>
<td>1.62</td>
<td>1.28815</td>
<td>1.71319</td>
<td>1.33734</td>
<td>0.71441</td>
</tr>
<tr>
<td>1.63</td>
<td>1.29536</td>
<td>1.72608</td>
<td>1.35453</td>
<td>0.72786</td>
</tr>
<tr>
<td>1.64</td>
<td>1.30271</td>
<td>1.73910</td>
<td>1.37186</td>
<td>0.74149</td>
</tr>
<tr>
<td>1.65</td>
<td>1.31019</td>
<td>1.75216</td>
<td>1.38932</td>
<td>0.75530</td>
</tr>
<tr>
<td>1.66</td>
<td>1.31782</td>
<td>1.76530</td>
<td>1.40690</td>
<td>0.76928</td>
</tr>
<tr>
<td>1.67</td>
<td>1.32558</td>
<td>1.77852</td>
<td>1.42462</td>
<td>0.78344</td>
</tr>
<tr>
<td>1.68</td>
<td>1.33348</td>
<td>1.79181</td>
<td>1.44248</td>
<td>0.79678</td>
</tr>
<tr>
<td>1.69</td>
<td>1.34154</td>
<td>1.80519</td>
<td>1.46046</td>
<td>0.81229</td>
</tr>
<tr>
<td>1.70</td>
<td>1.34974</td>
<td>1.81864</td>
<td>1.47858</td>
<td>0.82989</td>
</tr>
<tr>
<td>1.71</td>
<td>1.35808</td>
<td>1.83219</td>
<td>1.49683</td>
<td>0.84186</td>
</tr>
<tr>
<td>1.72</td>
<td>1.36657</td>
<td>1.84581</td>
<td>1.51523</td>
<td>0.85692</td>
</tr>
<tr>
<td>1.73</td>
<td>1.37522</td>
<td>1.85952</td>
<td>1.53375</td>
<td>0.87216</td>
</tr>
<tr>
<td>1.74</td>
<td>1.38401</td>
<td>1.87331</td>
<td>1.55242</td>
<td>0.88759</td>
</tr>
<tr>
<td>1.75</td>
<td>1.39297</td>
<td>1.88720</td>
<td>1.57122</td>
<td>0.90321</td>
</tr>
<tr>
<td>1.76</td>
<td>1.40208</td>
<td>1.90117</td>
<td>1.59016</td>
<td>0.91903</td>
</tr>
<tr>
<td>1.77</td>
<td>1.41135</td>
<td>1.91524</td>
<td>1.60924</td>
<td>0.93502</td>
</tr>
<tr>
<td>1.78</td>
<td>1.42078</td>
<td>1.92940</td>
<td>1.62846</td>
<td>0.95120</td>
</tr>
<tr>
<td>1.79</td>
<td>1.43038</td>
<td>1.94366</td>
<td>1.64783</td>
<td>0.96759</td>
</tr>
<tr>
<td>τ</td>
<td>$S(\tau)$</td>
<td>$I(\tau)$</td>
<td>$U(\tau)$</td>
<td>$V(\tau)$</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>1,80</td>
<td>1,14013</td>
<td>1,90501</td>
<td>1,66734</td>
<td>0,98416</td>
</tr>
<tr>
<td>1,81</td>
<td>1,15006</td>
<td>1,97246</td>
<td>1,68699</td>
<td>1,0093</td>
</tr>
<tr>
<td>1,82</td>
<td>1,16015</td>
<td>1,98697</td>
<td>1,7079</td>
<td>1,0291</td>
</tr>
<tr>
<td>1,83</td>
<td>1,17042</td>
<td>2,00166</td>
<td>1,72073</td>
<td>1,0350</td>
</tr>
<tr>
<td>1,84</td>
<td>1,18086</td>
<td>2,01642</td>
<td>1,74682</td>
<td>1,0624</td>
</tr>
<tr>
<td>1,85</td>
<td>1,19147</td>
<td>2,03128</td>
<td>1,76706</td>
<td>1,0700</td>
</tr>
<tr>
<td>1,86</td>
<td>1,20225</td>
<td>2,04625</td>
<td>1,78745</td>
<td>1,0878</td>
</tr>
<tr>
<td>1,87</td>
<td>1,21322</td>
<td>2,06133</td>
<td>1,80798</td>
<td>1,1057</td>
</tr>
<tr>
<td>1,88</td>
<td>1,22437</td>
<td>2,07652</td>
<td>1,82868</td>
<td>1,1239</td>
</tr>
<tr>
<td>1,89</td>
<td>1,23570</td>
<td>2,09182</td>
<td>1,84952</td>
<td>1,1433</td>
</tr>
<tr>
<td>1,90</td>
<td>1,24722</td>
<td>2,10723</td>
<td>1,87051</td>
<td>1,1603</td>
</tr>
<tr>
<td>1,91</td>
<td>1,25892</td>
<td>2,12276</td>
<td>1,89166</td>
<td>1,1794</td>
</tr>
<tr>
<td>1,92</td>
<td>1,27081</td>
<td>2,13841</td>
<td>1,91297</td>
<td>1,1987</td>
</tr>
<tr>
<td>1,93</td>
<td>1,28290</td>
<td>2,15418</td>
<td>1,93443</td>
<td>1,2180</td>
</tr>
<tr>
<td>1,94</td>
<td>1,29518</td>
<td>2,17006</td>
<td>1,95605</td>
<td>1,2374</td>
</tr>
<tr>
<td>1,95</td>
<td>1,30765</td>
<td>2,18608</td>
<td>1,97783</td>
<td>1,2571</td>
</tr>
<tr>
<td>1,96</td>
<td>1,32032</td>
<td>2,20222</td>
<td>1,99977</td>
<td>1,2770</td>
</tr>
<tr>
<td>1,97</td>
<td>1,33319</td>
<td>2,21849</td>
<td>2,02187</td>
<td>1,2972</td>
</tr>
<tr>
<td>1,98</td>
<td>1,34626</td>
<td>2,23489</td>
<td>2,04415</td>
<td>1,3174</td>
</tr>
<tr>
<td>1,99</td>
<td>1,35954</td>
<td>2,25142</td>
<td>2,06707</td>
<td>1,3380</td>
</tr>
<tr>
<td>2,00</td>
<td>1,37302</td>
<td>2,26808</td>
<td>2,08918</td>
<td>1,3587</td>
</tr>
<tr>
<td>2,01</td>
<td>1,38671</td>
<td>2,28337</td>
<td>2,11193</td>
<td>1,3782</td>
</tr>
<tr>
<td>2,02</td>
<td>1,40062</td>
<td>2,30181</td>
<td>2,13487</td>
<td>1,4010</td>
</tr>
<tr>
<td>2,03</td>
<td>1,41474</td>
<td>2,31889</td>
<td>2,15797</td>
<td>1,4224</td>
</tr>
<tr>
<td>2,04</td>
<td>1,42907</td>
<td>2,33611</td>
<td>2,18125</td>
<td>1,4441</td>
</tr>
<tr>
<td>2,05</td>
<td>1,44362</td>
<td>2,35347</td>
<td>2,20470</td>
<td>1,4661</td>
</tr>
<tr>
<td>2,06</td>
<td>1,45840</td>
<td>2,37098</td>
<td>2,22832</td>
<td>1,4882</td>
</tr>
<tr>
<td>2,07</td>
<td>1,47360</td>
<td>2,38864</td>
<td>2,25212</td>
<td>1,5106</td>
</tr>
<tr>
<td>2,08</td>
<td>1,48861</td>
<td>2,40645</td>
<td>2,27609</td>
<td>1,5332</td>
</tr>
<tr>
<td>2,09</td>
<td>1,50405</td>
<td>2,42441</td>
<td>2,30024</td>
<td>1,5562</td>
</tr>
<tr>
<td>2,10</td>
<td>1,51973</td>
<td>2,44253</td>
<td>2,32458</td>
<td>1,5793</td>
</tr>
<tr>
<td>2,11</td>
<td>1,53563</td>
<td>2,46081</td>
<td>2,34910</td>
<td>1,6026</td>
</tr>
<tr>
<td>2,12</td>
<td>1,55179</td>
<td>2,47925</td>
<td>2,37380</td>
<td>1,6263</td>
</tr>
<tr>
<td>2,13</td>
<td>1,56817</td>
<td>2,49785</td>
<td>2,39868</td>
<td>1,6501</td>
</tr>
<tr>
<td>2,14</td>
<td>1,58479</td>
<td>2,51661</td>
<td>2,42375</td>
<td>1,6742</td>
</tr>
<tr>
<td>2,15</td>
<td>1,59065</td>
<td>2,53554</td>
<td>2,44902</td>
<td>1,6965</td>
</tr>
<tr>
<td>2,16</td>
<td>1,59676</td>
<td>2,55464</td>
<td>2,47447</td>
<td>1,7237</td>
</tr>
<tr>
<td>2,17</td>
<td>1,60212</td>
<td>2,57392</td>
<td>2,50011</td>
<td>1,7481</td>
</tr>
<tr>
<td>2,18</td>
<td>1,60783</td>
<td>2,59337</td>
<td>2,52594</td>
<td>1,7726</td>
</tr>
<tr>
<td>2,19</td>
<td>1,61380</td>
<td>2,61300</td>
<td>2,55198</td>
<td>1,7986</td>
</tr>
<tr>
<td>2,20</td>
<td>1,61910</td>
<td>2,63208</td>
<td>2,57820</td>
<td>1,8143</td>
</tr>
<tr>
<td>2,21</td>
<td>1,62458</td>
<td>2,65279</td>
<td>2,60464</td>
<td>1,8302</td>
</tr>
<tr>
<td>2,22</td>
<td>1,63026</td>
<td>2,67286</td>
<td>2,63126</td>
<td>1,8574</td>
</tr>
<tr>
<td>2,23</td>
<td>1,63600</td>
<td>2,69332</td>
<td>2,65810</td>
<td>1,8840</td>
</tr>
<tr>
<td>2,24</td>
<td>1,64193</td>
<td>2,71388</td>
<td>2,68513</td>
<td>1,9028</td>
</tr>
<tr>
<td>2,25</td>
<td>1,64799</td>
<td>2,73462</td>
<td>2,71237</td>
<td>1,9295</td>
</tr>
<tr>
<td>2,26</td>
<td>1,65399</td>
<td>2,75556</td>
<td>2,73982</td>
<td>1,9565</td>
</tr>
<tr>
<td>2,27</td>
<td>1,65906</td>
<td>2,77760</td>
<td>2,76748</td>
<td>1,9838</td>
</tr>
<tr>
<td>2,28</td>
<td>1,66412</td>
<td>2,79804</td>
<td>2,79536</td>
<td>2,0113</td>
</tr>
<tr>
<td>2,29</td>
<td>1,66965</td>
<td>2,81958</td>
<td>2,82345</td>
<td>2,0391</td>
</tr>
</tbody>
</table>

710
<table>
<thead>
<tr>
<th>12</th>
<th>S (лс)</th>
<th>T (лс)</th>
<th>U (лс)</th>
<th>V (лс)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,40</td>
<td>2,18547</td>
<td>2,84133</td>
<td>2,85175</td>
<td>2,09503</td>
</tr>
<tr>
<td>2,31</td>
<td>2,20657</td>
<td>2,86329</td>
<td>2,88027</td>
<td>2,12429</td>
</tr>
<tr>
<td>2,32</td>
<td>2,22795</td>
<td>2,88546</td>
<td>2,90902</td>
<td>2,15331</td>
</tr>
<tr>
<td>2,33</td>
<td>2,24964</td>
<td>2,90785</td>
<td>2,93798</td>
<td>2,18217</td>
</tr>
<tr>
<td>2,34</td>
<td>2,27161</td>
<td>2,93045</td>
<td>2,96717</td>
<td>2,21200</td>
</tr>
<tr>
<td>2,35</td>
<td>2,29388</td>
<td>2,95328</td>
<td>2,99659</td>
<td>2,24182</td>
</tr>
<tr>
<td>2,36</td>
<td>2,31645</td>
<td>2,97631</td>
<td>3,02621</td>
<td>2,27193</td>
</tr>
<tr>
<td>2,37</td>
<td>2,33932</td>
<td>2,99962</td>
<td>3,05612</td>
<td>2,30234</td>
</tr>
<tr>
<td>2,38</td>
<td>2,36250</td>
<td>3,02312</td>
<td>3,08624</td>
<td>2,33306</td>
</tr>
<tr>
<td>2,39</td>
<td>2,38598</td>
<td>3,04686</td>
<td>3,11658</td>
<td>2,36406</td>
</tr>
<tr>
<td>2,40</td>
<td>2,40978</td>
<td>3,07084</td>
<td>3,14717</td>
<td>2,39539</td>
</tr>
<tr>
<td>2,41</td>
<td>2,43389</td>
<td>3,09506</td>
<td>3,17800</td>
<td>2,42700</td>
</tr>
<tr>
<td>2,42</td>
<td>2,45832</td>
<td>3,11952</td>
<td>3,20907</td>
<td>2,45895</td>
</tr>
<tr>
<td>2,43</td>
<td>2,48307</td>
<td>3,14423</td>
<td>3,24039</td>
<td>2,49119</td>
</tr>
<tr>
<td>2,44</td>
<td>2,50814</td>
<td>3,16919</td>
<td>3,27196</td>
<td>2,52375</td>
</tr>
<tr>
<td>2,45</td>
<td>2,53354</td>
<td>3,19439</td>
<td>3,30378</td>
<td>2,55644</td>
</tr>
<tr>
<td>2,46</td>
<td>2,55927</td>
<td>3,21986</td>
<td>3,33585</td>
<td>2,58983</td>
</tr>
<tr>
<td>2,47</td>
<td>2,58535</td>
<td>3,24558</td>
<td>3,36817</td>
<td>2,62335</td>
</tr>
<tr>
<td>2,48</td>
<td>2,61174</td>
<td>3,27156</td>
<td>3,40076</td>
<td>2,65720</td>
</tr>
<tr>
<td>2,49</td>
<td>2,63848</td>
<td>3,29781</td>
<td>3,43360</td>
<td>2,69136</td>
</tr>
<tr>
<td>2,50</td>
<td>2,66557</td>
<td>3,32433</td>
<td>3,46672</td>
<td>2,72587</td>
</tr>
<tr>
<td>2,51</td>
<td>2,69300</td>
<td>3,35113</td>
<td>3,50010</td>
<td>2,76070</td>
</tr>
<tr>
<td>2,52</td>
<td>2,72079</td>
<td>3,37820</td>
<td>3,53374</td>
<td>2,79584</td>
</tr>
<tr>
<td>2,53</td>
<td>2,74893</td>
<td>3,40555</td>
<td>3,56765</td>
<td>2,83137</td>
</tr>
<tr>
<td>2,54</td>
<td>2,77742</td>
<td>3,43318</td>
<td>3,60175</td>
<td>2,86722</td>
</tr>
<tr>
<td>2,55</td>
<td>2,80627</td>
<td>3,46110</td>
<td>3,63672</td>
<td>2,90149</td>
</tr>
<tr>
<td>2,56</td>
<td>2,83549</td>
<td>3,48931</td>
<td>3,67107</td>
<td>2,93493</td>
</tr>
<tr>
<td>2,57</td>
<td>2,86507</td>
<td>3,51780</td>
<td>3,70001</td>
<td>2,97153</td>
</tr>
<tr>
<td>2,58</td>
<td>2,89502</td>
<td>3,54660</td>
<td>3,74144</td>
<td>3,00108</td>
</tr>
<tr>
<td>2,59</td>
<td>2,92535</td>
<td>3,57571</td>
<td>3,77715</td>
<td>3,03167</td>
</tr>
<tr>
<td>2,60</td>
<td>2,95606</td>
<td>3,60511</td>
<td>3,81295</td>
<td>3,06892</td>
</tr>
<tr>
<td>2,61</td>
<td>2,98714</td>
<td>3,63483</td>
<td>3,84915</td>
<td>3,11293</td>
</tr>
<tr>
<td>2,62</td>
<td>3,01862</td>
<td>3,66486</td>
<td>3,88565</td>
<td>3,16660</td>
</tr>
<tr>
<td>2,63</td>
<td>3,05047</td>
<td>3,69521</td>
<td>3,92325</td>
<td>3,22966</td>
</tr>
<tr>
<td>2,64</td>
<td>3,08273</td>
<td>3,72587</td>
<td>3,96555</td>
<td>3,29305</td>
</tr>
<tr>
<td>2,65</td>
<td>3,11538</td>
<td>3,75186</td>
<td>3,99696</td>
<td>3,32493</td>
</tr>
<tr>
<td>2,66</td>
<td>3,14843</td>
<td>3,77818</td>
<td>4,03469</td>
<td>3,34999</td>
</tr>
<tr>
<td>2,67</td>
<td>3,18188</td>
<td>3,81931</td>
<td>4,07273</td>
<td>3,36552</td>
</tr>
<tr>
<td>2,68</td>
<td>3,21755</td>
<td>3,85182</td>
<td>4,11108</td>
<td>3,40045</td>
</tr>
<tr>
<td>2,69</td>
<td>3,25001</td>
<td>3,88415</td>
<td>4,14926</td>
<td>3,44755</td>
</tr>
<tr>
<td>2,70</td>
<td>3,28470</td>
<td>3,91682</td>
<td>4,18877</td>
<td>3,48444</td>
</tr>
<tr>
<td>2,71</td>
<td>3,31980</td>
<td>3,94985</td>
<td>4,22810</td>
<td>3,53152</td>
</tr>
<tr>
<td>2,72</td>
<td>3,35533</td>
<td>3,98231</td>
<td>4,26717</td>
<td>3,57401</td>
</tr>
<tr>
<td>2,73</td>
<td>3,39128</td>
<td>4,01695</td>
<td>4,30777</td>
<td>3,61578</td>
</tr>
<tr>
<td>2,74</td>
<td>3,42767</td>
<td>4,05105</td>
<td>4,34811</td>
<td>3,66117</td>
</tr>
<tr>
<td>2,75</td>
<td>3,46449</td>
<td>4,08530</td>
<td>4,38879</td>
<td>3,70784</td>
</tr>
<tr>
<td>2,76</td>
<td>3,50175</td>
<td>4,12044</td>
<td>4,42982</td>
<td>3,74704</td>
</tr>
<tr>
<td>2,77</td>
<td>3,53945</td>
<td>4,15554</td>
<td>4,47190</td>
<td>3,79144</td>
</tr>
<tr>
<td>2,78</td>
<td>3,57760</td>
<td>4,19112</td>
<td>4,51293</td>
<td>3,83736</td>
</tr>
<tr>
<td>2,79</td>
<td>3,61619</td>
<td>4,22700</td>
<td>4,55503</td>
<td>3,88271</td>
</tr>
<tr>
<td>(z)</td>
<td>(S) (к2)</td>
<td>(T) (к2)</td>
<td>(U') (к2)</td>
<td>(V)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2,80</td>
<td>3,65525</td>
<td>4,26345</td>
<td>4,59748</td>
<td>3,92847</td>
</tr>
<tr>
<td>2,81</td>
<td>3,89746</td>
<td>4,50020</td>
<td>4,64030</td>
<td>3,97465</td>
</tr>
<tr>
<td>2,82</td>
<td>3,73493</td>
<td>4,33735</td>
<td>4,68330</td>
<td>4,02127</td>
</tr>
<tr>
<td>2,83</td>
<td>3,77520</td>
<td>4,37490</td>
<td>4,72705</td>
<td>4,06832</td>
</tr>
<tr>
<td>2,84</td>
<td>3,81612</td>
<td>4,41285</td>
<td>4,77098</td>
<td>4,11582</td>
</tr>
<tr>
<td>2,85</td>
<td>3,85751</td>
<td>4,45122</td>
<td>4,81350</td>
<td>4,16375</td>
</tr>
<tr>
<td>2,86</td>
<td>3,89940</td>
<td>4,49001</td>
<td>4,86000</td>
<td>4,21212</td>
</tr>
<tr>
<td>2,87</td>
<td>3,94176</td>
<td>4,52921</td>
<td>4,90510</td>
<td>4,26095</td>
</tr>
<tr>
<td>2,88</td>
<td>3,98461</td>
<td>4,56884</td>
<td>4,95059</td>
<td>4,31028</td>
</tr>
<tr>
<td>2,89</td>
<td>4,02796</td>
<td>4,60991</td>
<td>4,99648</td>
<td>4,35996</td>
</tr>
<tr>
<td>2,90</td>
<td>4,07181</td>
<td>4,64940</td>
<td>5,04277</td>
<td>4,41016</td>
</tr>
<tr>
<td>2,91</td>
<td>4,11617</td>
<td>4,69034</td>
<td>5,08947</td>
<td>4,46082</td>
</tr>
<tr>
<td>2,92</td>
<td>4,16103</td>
<td>4,73173</td>
<td>5,13658</td>
<td>4,51195</td>
</tr>
<tr>
<td>2,93</td>
<td>4,20640</td>
<td>4,77357</td>
<td>5,18410</td>
<td>4,56355</td>
</tr>
<tr>
<td>2,94</td>
<td>4,25230</td>
<td>4,81586</td>
<td>5,23206</td>
<td>4,61563</td>
</tr>
<tr>
<td>2,95</td>
<td>4,29875</td>
<td>4,85862</td>
<td>5,28042</td>
<td>4,66820</td>
</tr>
<tr>
<td>2,96</td>
<td>4,34567</td>
<td>4,90181</td>
<td>5,32923</td>
<td>4,72124</td>
</tr>
<tr>
<td>2,97</td>
<td>4,39315</td>
<td>4,94553</td>
<td>5,37846</td>
<td>4,77478</td>
</tr>
<tr>
<td>2,98</td>
<td>4,44117</td>
<td>4,98970</td>
<td>5,42814</td>
<td>4,82881</td>
</tr>
<tr>
<td>2,99</td>
<td>4,48972</td>
<td>5,03435</td>
<td>5,47825</td>
<td>4,88335</td>
</tr>
<tr>
<td>3,00</td>
<td>4,53883</td>
<td>5,07949</td>
<td>5,52883</td>
<td>4,93838</td>
</tr>
<tr>
<td>3,01</td>
<td>4,58850</td>
<td>5,12513</td>
<td>5,57988</td>
<td>4,99392</td>
</tr>
<tr>
<td>3,02</td>
<td>4,63872</td>
<td>5,17127</td>
<td>5,63133</td>
<td>5,04968</td>
</tr>
<tr>
<td>3,03</td>
<td>4,68990</td>
<td>5,21791</td>
<td>5,68327</td>
<td>5,10655</td>
</tr>
<tr>
<td>3,04</td>
<td>4,74085</td>
<td>5,26556</td>
<td>5,73569</td>
<td>5,16664</td>
</tr>
<tr>
<td>3,05</td>
<td>4,79277</td>
<td>5,31272</td>
<td>5,78858</td>
<td>5,22326</td>
</tr>
<tr>
<td>3,06</td>
<td>4,84527</td>
<td>5,36090</td>
<td>5,84195</td>
<td>5,27942</td>
</tr>
<tr>
<td>3,07</td>
<td>4,89836</td>
<td>5,40963</td>
<td>5,89560</td>
<td>5,33810</td>
</tr>
<tr>
<td>3,08</td>
<td>4,95204</td>
<td>5,45888</td>
<td>5,95014</td>
<td>5,39734</td>
</tr>
<tr>
<td>3,09</td>
<td>5,00631</td>
<td>5,50868</td>
<td>6,00498</td>
<td>5,45711</td>
</tr>
<tr>
<td>3,10</td>
<td>5,06118</td>
<td>5,55901</td>
<td>6,06032</td>
<td>5,51744</td>
</tr>
<tr>
<td>3,11</td>
<td>5,11666</td>
<td>5,60990</td>
<td>6,11616</td>
<td>5,57832</td>
</tr>
<tr>
<td>3,12</td>
<td>5,17275</td>
<td>5,66135</td>
<td>6,17252</td>
<td>5,63976</td>
</tr>
<tr>
<td>3,13</td>
<td>5,22931</td>
<td>5,71336</td>
<td>6,22936</td>
<td>5,70177</td>
</tr>
<tr>
<td>3,14</td>
<td>5,28678</td>
<td>5,76594</td>
<td>6,28678</td>
<td>5,76425</td>
</tr>
<tr>
<td>3,15</td>
<td>5,34475</td>
<td>5,81910</td>
<td>6,34471</td>
<td>5,82751</td>
</tr>
<tr>
<td>3,16</td>
<td>5,40316</td>
<td>5,87284</td>
<td>6,40317</td>
<td>5,89195</td>
</tr>
<tr>
<td>3,17</td>
<td>5,46257</td>
<td>5,92717</td>
<td>6,46217</td>
<td>5,95657</td>
</tr>
<tr>
<td>3,18</td>
<td>5,52245</td>
<td>5,98209</td>
<td>6,52171</td>
<td>6,02049</td>
</tr>
<tr>
<td>3,19</td>
<td>5,58298</td>
<td>6,03762</td>
<td>6,58182</td>
<td>6,08601</td>
</tr>
<tr>
<td>3,20</td>
<td>5,64418</td>
<td>6,09375</td>
<td>6,64247</td>
<td>6,15213</td>
</tr>
<tr>
<td>3,21</td>
<td>5,70603</td>
<td>6,15050</td>
<td>6,70369</td>
<td>6,21885</td>
</tr>
<tr>
<td>3,22</td>
<td>5,76855</td>
<td>6,20787</td>
<td>6,76349</td>
<td>6,28621</td>
</tr>
<tr>
<td>3,23</td>
<td>5,83161</td>
<td>6,26688</td>
<td>6,82800</td>
<td>6,35417</td>
</tr>
<tr>
<td>3,24</td>
<td>5,89564</td>
<td>6,32541</td>
<td>6,89080</td>
<td>6,42277</td>
</tr>
<tr>
<td>3,25</td>
<td>5,95021</td>
<td>6,38379</td>
<td>6,95384</td>
<td>6,49199</td>
</tr>
<tr>
<td>3,26</td>
<td>6,00535</td>
<td>6,44372</td>
<td>7,01848</td>
<td>6,56185</td>
</tr>
<tr>
<td>3,27</td>
<td>6,05145</td>
<td>6,50431</td>
<td>7,08322</td>
<td>6,63256</td>
</tr>
<tr>
<td>3,28</td>
<td>6,15813</td>
<td>6,56555</td>
<td>7,14557</td>
<td>6,70352</td>
</tr>
<tr>
<td>3,29</td>
<td>6,22552</td>
<td>6,62747</td>
<td>7,21454</td>
<td>6,77533</td>
</tr>
<tr>
<td>z</td>
<td>S (кz)</td>
<td>T (кz)</td>
<td>U (кz)</td>
<td>V (l/кz)</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>3.30</td>
<td>6.29364</td>
<td>6.69006</td>
<td>7.28112</td>
<td>6.84782</td>
</tr>
<tr>
<td>3.31</td>
<td>6.36248</td>
<td>6.75334</td>
<td>7.34833</td>
<td>6.92095</td>
</tr>
<tr>
<td>3.32</td>
<td>6.43206</td>
<td>6.81732</td>
<td>7.41619</td>
<td>6.99478</td>
</tr>
<tr>
<td>3.33</td>
<td>6.50238</td>
<td>6.88199</td>
<td>7.48460</td>
<td>7.06928</td>
</tr>
<tr>
<td>3.34</td>
<td>6.57345</td>
<td>6.94737</td>
<td>7.55383</td>
<td>7.14448</td>
</tr>
<tr>
<td>3.35</td>
<td>6.64527</td>
<td>7.01346</td>
<td>7.62363</td>
<td>7.22036</td>
</tr>
<tr>
<td>3.36</td>
<td>6.71786</td>
<td>7.08027</td>
<td>7.69410</td>
<td>7.29696</td>
</tr>
<tr>
<td>3.37</td>
<td>6.79121</td>
<td>7.14782</td>
<td>7.76524</td>
<td>7.37425</td>
</tr>
<tr>
<td>3.38</td>
<td>6.86534</td>
<td>7.21610</td>
<td>7.83706</td>
<td>7.45226</td>
</tr>
<tr>
<td>3.39</td>
<td>6.94026</td>
<td>7.28513</td>
<td>7.90957</td>
<td>7.53099</td>
</tr>
<tr>
<td>3.40</td>
<td>7.01597</td>
<td>7.35491</td>
<td>7.98277</td>
<td>7.61045</td>
</tr>
<tr>
<td>3.41</td>
<td>7.09247</td>
<td>7.42546</td>
<td>8.05666</td>
<td>7.69065</td>
</tr>
<tr>
<td>3.42</td>
<td>7.16978</td>
<td>7.49747</td>
<td>8.13028</td>
<td>7.77159</td>
</tr>
<tr>
<td>3.43</td>
<td>7.24790</td>
<td>7.56885</td>
<td>8.20661</td>
<td>7.85326</td>
</tr>
<tr>
<td>3.44</td>
<td>7.32685</td>
<td>7.64172</td>
<td>8.28266</td>
<td>7.93573</td>
</tr>
<tr>
<td>3.45</td>
<td>7.40662</td>
<td>7.71539</td>
<td>8.35945</td>
<td>8.01893</td>
</tr>
<tr>
<td>3.46</td>
<td>7.48723</td>
<td>7.78986</td>
<td>8.43697</td>
<td>8.10291</td>
</tr>
<tr>
<td>3.47</td>
<td>7.56858</td>
<td>7.86514</td>
<td>8.51535</td>
<td>8.18768</td>
</tr>
<tr>
<td>3.48</td>
<td>7.65099</td>
<td>7.94124</td>
<td>8.59427</td>
<td>8.27322</td>
</tr>
<tr>
<td>3.49</td>
<td>7.73415</td>
<td>8.01816</td>
<td>8.67407</td>
<td>8.35956</td>
</tr>
<tr>
<td>3.50</td>
<td>7.81818</td>
<td>8.09592</td>
<td>8.75464</td>
<td>8.44671</td>
</tr>
<tr>
<td>3.51</td>
<td>7.90309</td>
<td>8.17453</td>
<td>8.83599</td>
<td>8.53466</td>
</tr>
<tr>
<td>3.52</td>
<td>7.98888</td>
<td>8.25398</td>
<td>8.91813</td>
<td>8.62343</td>
</tr>
<tr>
<td>3.53</td>
<td>8.07556</td>
<td>8.33431</td>
<td>9.00107</td>
<td>8.71302</td>
</tr>
<tr>
<td>3.54</td>
<td>8.16315</td>
<td>8.41550</td>
<td>9.08482</td>
<td>8.80346</td>
</tr>
<tr>
<td>3.55</td>
<td>8.25164</td>
<td>8.49717</td>
<td>9.16938</td>
<td>8.89472</td>
</tr>
<tr>
<td>3.56</td>
<td>8.34104</td>
<td>8.58054</td>
<td>9.25478</td>
<td>8.98685</td>
</tr>
<tr>
<td>3.57</td>
<td>8.43137</td>
<td>8.66440</td>
<td>9.34100</td>
<td>9.07982</td>
</tr>
<tr>
<td>3.60</td>
<td>8.70801</td>
<td>8.92147</td>
<td>9.60477</td>
<td>9.36399</td>
</tr>
<tr>
<td>3.64</td>
<td>9.09035</td>
<td>9.27738</td>
<td>9.96870</td>
<td>9.75541</td>
</tr>
<tr>
<td>3.68</td>
<td>9.48864</td>
<td>9.64891</td>
<td>10.34717</td>
<td>10.16168</td>
</tr>
<tr>
<td>3.70</td>
<td>9.68159</td>
<td>9.84072</td>
<td>10.54206</td>
<td>10.37075</td>
</tr>
<tr>
<td>3.72</td>
<td>9.90349</td>
<td>10.03670</td>
<td>10.74082</td>
<td>10.58339</td>
</tr>
<tr>
<td>3.73</td>
<td>10.00986</td>
<td>10.13626</td>
<td>10.84169</td>
<td>10.69130</td>
</tr>
<tr>
<td>3.74</td>
<td>10.11732</td>
<td>10.23690</td>
<td>10.94355</td>
<td>10.80023</td>
</tr>
<tr>
<td>3.75</td>
<td>10.22587</td>
<td>10.33861</td>
<td>11.04643</td>
<td>10.91017</td>
</tr>
<tr>
<td>3.76</td>
<td>10.33552</td>
<td>10.44141</td>
<td>11.15033</td>
<td>11.02116</td>
</tr>
<tr>
<td>3.77</td>
<td>10.44630</td>
<td>10.54533</td>
<td>11.25526</td>
<td>11.13318</td>
</tr>
<tr>
<td>3.78</td>
<td>10.55819</td>
<td>10.64034</td>
<td>11.36124</td>
<td>11.24627</td>
</tr>
<tr>
<td>3.79</td>
<td>10.67123</td>
<td>10.75649</td>
<td>11.46878</td>
<td>11.36041</td>
</tr>
<tr>
<td>kz</td>
<td>S (кг)</td>
<td>T (л/с)</td>
<td>U (л/с)</td>
<td>V (л/с)</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>3,80</td>
<td>10,78540</td>
<td>10,87377</td>
<td>11,57638</td>
<td>11,47564</td>
</tr>
<tr>
<td>3,81</td>
<td>10,90074</td>
<td>10,97221</td>
<td>11,68555</td>
<td>11,59195</td>
</tr>
<tr>
<td>3,82</td>
<td>11,01725</td>
<td>11,08180</td>
<td>11,79582</td>
<td>11,70935</td>
</tr>
<tr>
<td>3,83</td>
<td>11,13413</td>
<td>11,19255</td>
<td>11,90719</td>
<td>11,82786</td>
</tr>
<tr>
<td>3,84</td>
<td>11,24830</td>
<td>11,30449</td>
<td>12,01969</td>
<td>11,94750</td>
</tr>
<tr>
<td>3,85</td>
<td>11,35230</td>
<td>11,41763</td>
<td>12,13299</td>
<td>12,06826</td>
</tr>
<tr>
<td>3,86</td>
<td>11,45181</td>
<td>11,53198</td>
<td>12,24803</td>
<td>12,19017</td>
</tr>
<tr>
<td>3,87</td>
<td>11,54696</td>
<td>11,64754</td>
<td>12,36393</td>
<td>12,31322</td>
</tr>
<tr>
<td>3,88</td>
<td>11,64145</td>
<td>11,76434</td>
<td>12,48099</td>
<td>12,43745</td>
</tr>
<tr>
<td>3,89</td>
<td>11,73664</td>
<td>11,88238</td>
<td>12,59922</td>
<td>12,56285</td>
</tr>
<tr>
<td>3,90</td>
<td>11,83271</td>
<td>12,00166</td>
<td>12,71864</td>
<td>12,68944</td>
</tr>
<tr>
<td>3,91</td>
<td>11,92824</td>
<td>12,12224</td>
<td>12,83926</td>
<td>12,81723</td>
</tr>
<tr>
<td>3,92</td>
<td>12,02405</td>
<td>12,24407</td>
<td>12,96109</td>
<td>12,94623</td>
</tr>
<tr>
<td>3,93</td>
<td>12,11917</td>
<td>12,36722</td>
<td>13,08415</td>
<td>13,07615</td>
</tr>
<tr>
<td>3,94</td>
<td>12,21595</td>
<td>12,49167</td>
<td>13,20844</td>
<td>13,20797</td>
</tr>
<tr>
<td>3,95</td>
<td>12,31233</td>
<td>12,61744</td>
<td>13,33398</td>
<td>13,34063</td>
</tr>
<tr>
<td>3,96</td>
<td>12,40874</td>
<td>12,74453</td>
<td>13,46079</td>
<td>13,47460</td>
</tr>
<tr>
<td>3,97</td>
<td>12,50513</td>
<td>12,87299</td>
<td>13,58885</td>
<td>13,60966</td>
</tr>
<tr>
<td>3,98</td>
<td>12,60156</td>
<td>13,00280</td>
<td>13,71825</td>
<td>13,74637</td>
</tr>
<tr>
<td>3,99</td>
<td>12,69801</td>
<td>13,13398</td>
<td>13,84893</td>
<td>13,88421</td>
</tr>
<tr>
<td>4,00</td>
<td>13,23730</td>
<td>13,26656</td>
<td>13,98094</td>
<td>14,02366</td>
</tr>
<tr>
<td>4,01</td>
<td>13,46823</td>
<td>13,40053</td>
<td>14,11427</td>
<td>14,16384</td>
</tr>
<tr>
<td>4,02</td>
<td>13,61057</td>
<td>13,53593</td>
<td>14,24805</td>
<td>14,30565</td>
</tr>
<tr>
<td>4,03</td>
<td>13,75435</td>
<td>13,67275</td>
<td>14,38500</td>
<td>14,44882</td>
</tr>
<tr>
<td>4,04</td>
<td>13,89955</td>
<td>13,81102</td>
<td>14,52242</td>
<td>14,59335</td>
</tr>
<tr>
<td>4,05</td>
<td>14,04622</td>
<td>13,95074</td>
<td>14,66122</td>
<td>14,73228</td>
</tr>
<tr>
<td>4,06</td>
<td>14,19135</td>
<td>14,09195</td>
<td>14,80144</td>
<td>14,88658</td>
</tr>
<tr>
<td>4,07</td>
<td>14,33495</td>
<td>14,23464</td>
<td>14,94306</td>
<td>15,02350</td>
</tr>
<tr>
<td>4,08</td>
<td>14,49506</td>
<td>14,37883</td>
<td>15,08163</td>
<td>15,18545</td>
</tr>
<tr>
<td>4,09</td>
<td>14,64767</td>
<td>14,52455</td>
<td>15,23065</td>
<td>15,33703</td>
</tr>
<tr>
<td>4,10</td>
<td>14,80180</td>
<td>14,67179</td>
<td>15,37663</td>
<td>15,43707</td>
</tr>
<tr>
<td>4,11</td>
<td>14,95747</td>
<td>14,82058</td>
<td>15,57408</td>
<td>15,64476</td>
</tr>
<tr>
<td>4,12</td>
<td>15,11470</td>
<td>14,97095</td>
<td>15,67304</td>
<td>15,80055</td>
</tr>
<tr>
<td>4,13</td>
<td>15,27350</td>
<td>15,12888</td>
<td>15,82351</td>
<td>15,96304</td>
</tr>
<tr>
<td>4,14</td>
<td>15,43286</td>
<td>15,27641</td>
<td>15,97551</td>
<td>16,11703</td>
</tr>
<tr>
<td>4,15</td>
<td>15,59333</td>
<td>15,43157</td>
<td>16,12905</td>
<td>16,27755</td>
</tr>
<tr>
<td>4,16</td>
<td>15,75942</td>
<td>15,58835</td>
<td>16,28415</td>
<td>16,43962</td>
</tr>
<tr>
<td>4,17</td>
<td>15,92464</td>
<td>15,74676</td>
<td>16,44862</td>
<td>16,60324</td>
</tr>
<tr>
<td>4,18</td>
<td>16,09150</td>
<td>15,90648</td>
<td>16,59909</td>
<td>16,76844</td>
</tr>
<tr>
<td>4,19</td>
<td>16,26001</td>
<td>16,06860</td>
<td>16,75746</td>
<td>16,93522</td>
</tr>
<tr>
<td>4,20</td>
<td>16,43020</td>
<td>16,23404</td>
<td>16,92146</td>
<td>17,10363</td>
</tr>
<tr>
<td>4,21</td>
<td>16,60208</td>
<td>16,40721</td>
<td>17,08360</td>
<td>17,27121</td>
</tr>
<tr>
<td>4,22</td>
<td>16,77568</td>
<td>16,56409</td>
<td>17,24841</td>
<td>17,44530</td>
</tr>
<tr>
<td>4,23</td>
<td>16,95099</td>
<td>16,73272</td>
<td>17,41490</td>
<td>17,61862</td>
</tr>
<tr>
<td>4,24</td>
<td>17,12805</td>
<td>16,90312</td>
<td>17,58307</td>
<td>17,79360</td>
</tr>
<tr>
<td>4,25</td>
<td>17,30677</td>
<td>17,07529</td>
<td>17,75297</td>
<td>17,97028</td>
</tr>
<tr>
<td>4,26</td>
<td>17,48546</td>
<td>17,24926</td>
<td>17,92458</td>
<td>18,14867</td>
</tr>
<tr>
<td>4,27</td>
<td>17,66985</td>
<td>17,42505</td>
<td>18,09795</td>
<td>18,32678</td>
</tr>
<tr>
<td>4,28</td>
<td>17,85405</td>
<td>17,60266</td>
<td>18,27309</td>
<td>18,51064</td>
</tr>
<tr>
<td>4,29</td>
<td>18,04008</td>
<td>17,78214</td>
<td>18,45002</td>
<td>18,69425</td>
</tr>
<tr>
<td>ζ</td>
<td>$S (\zeta)$</td>
<td>$I (\zeta)$</td>
<td>$U (\zeta)$</td>
<td>$V (\zeta)$</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>4,30</td>
<td>18,22794</td>
<td>17,96367</td>
<td>18,62874</td>
<td>18,87964</td>
</tr>
<tr>
<td>4,31</td>
<td>18,41767</td>
<td>18,14670</td>
<td>18,80929</td>
<td>19,06683</td>
</tr>
<tr>
<td>4,32</td>
<td>18,60928</td>
<td>18,31832</td>
<td>18,99168</td>
<td>19,25583</td>
</tr>
<tr>
<td>4,33</td>
<td>18,80280</td>
<td>18,51889</td>
<td>19,17594</td>
<td>19,44637</td>
</tr>
<tr>
<td>4,34</td>
<td>18,99823</td>
<td>18,70790</td>
<td>19,36207</td>
<td>19,63935</td>
</tr>
<tr>
<td>4,35</td>
<td>19,19558</td>
<td>18,89887</td>
<td>19,55010</td>
<td>19,83392</td>
</tr>
<tr>
<td>4,36</td>
<td>19,39491</td>
<td>19,09182</td>
<td>19,74005</td>
<td>20,03037</td>
</tr>
<tr>
<td>4,37</td>
<td>19,59620</td>
<td>19,28677</td>
<td>19,93194</td>
<td>20,22872</td>
</tr>
<tr>
<td>4,38</td>
<td>19,79949</td>
<td>19,48374</td>
<td>20,12579</td>
<td>20,42901</td>
</tr>
<tr>
<td>4,39</td>
<td>20,00479</td>
<td>19,68277</td>
<td>20,32162</td>
<td>20,63121</td>
</tr>
<tr>
<td>4,40</td>
<td>20,21212</td>
<td>19,88385</td>
<td>20,51945</td>
<td>20,83545</td>
</tr>
<tr>
<td>4,41</td>
<td>20,42150</td>
<td>20,08701</td>
<td>20,71931</td>
<td>21,04161</td>
</tr>
<tr>
<td>4,42</td>
<td>20,63296</td>
<td>20,29229</td>
<td>20,92120</td>
<td>21,24965</td>
</tr>
<tr>
<td>4,43</td>
<td>20,84651</td>
<td>20,49968</td>
<td>21,12516</td>
<td>21,46007</td>
</tr>
<tr>
<td>4,44</td>
<td>21,06217</td>
<td>20,70922</td>
<td>21,32120</td>
<td>21,67235</td>
</tr>
<tr>
<td>4,45</td>
<td>21,27996</td>
<td>20,92093</td>
<td>21,53935</td>
<td>21,88670</td>
</tr>
<tr>
<td>4,46</td>
<td>21,49991</td>
<td>21,13483</td>
<td>21,74963</td>
<td>22,10315</td>
</tr>
<tr>
<td>4,47</td>
<td>21,72204</td>
<td>21,35094</td>
<td>21,96236</td>
<td>22,32170</td>
</tr>
<tr>
<td>4,48</td>
<td>21,94635</td>
<td>21,56927</td>
<td>22,17665</td>
<td>22,54240</td>
</tr>
<tr>
<td>4,49</td>
<td>22,17288</td>
<td>21,78587</td>
<td>22,39345</td>
<td>22,76524</td>
</tr>
<tr>
<td>4,50</td>
<td>22,40166</td>
<td>22,01274</td>
<td>22,61246</td>
<td>22,99027</td>
</tr>
<tr>
<td>4,51</td>
<td>22,63270</td>
<td>22,23791</td>
<td>22,83371</td>
<td>23,21750</td>
</tr>
<tr>
<td>4,52</td>
<td>22,86602</td>
<td>22,46540</td>
<td>23,05722</td>
<td>23,44695</td>
</tr>
<tr>
<td>4,53</td>
<td>23,10165</td>
<td>22,69524</td>
<td>23,28303</td>
<td>23,67865</td>
</tr>
<tr>
<td>4,54</td>
<td>23,33965</td>
<td>22,92744</td>
<td>23,51114</td>
<td>23,91962</td>
</tr>
<tr>
<td>4,55</td>
<td>23,57990</td>
<td>23,16204</td>
<td>23,74159</td>
<td>24,14888</td>
</tr>
<tr>
<td>4,56</td>
<td>23,82259</td>
<td>23,39905</td>
<td>23,97439</td>
<td>24,38796</td>
</tr>
<tr>
<td>4,57</td>
<td>24,06766</td>
<td>23,63850</td>
<td>24,20957</td>
<td>24,62888</td>
</tr>
<tr>
<td>4,58</td>
<td>24,31766</td>
<td>23,88041</td>
<td>24,44916</td>
<td>24,87166</td>
</tr>
<tr>
<td>4,59</td>
<td>24,55610</td>
<td>24,12481</td>
<td>24,68719</td>
<td>25,11733</td>
</tr>
<tr>
<td>4,60</td>
<td>24,81752</td>
<td>24,37172</td>
<td>24,92967</td>
<td>25,46541</td>
</tr>
<tr>
<td>4,61</td>
<td>25,07242</td>
<td>24,62117</td>
<td>25,17463</td>
<td>25,61593</td>
</tr>
<tr>
<td>4,62</td>
<td>25,32984</td>
<td>24,87318</td>
<td>25,42210</td>
<td>25,86892</td>
</tr>
<tr>
<td>4,63</td>
<td>25,58930</td>
<td>25,12777</td>
<td>25,67210</td>
<td>26,12438</td>
</tr>
<tr>
<td>4,64</td>
<td>25,85233</td>
<td>25,38498</td>
<td>25,92467</td>
<td>26,38236</td>
</tr>
<tr>
<td>4,65</td>
<td>26,11746</td>
<td>25,64843</td>
<td>26,14981</td>
<td>26,64288</td>
</tr>
<tr>
<td>4,66</td>
<td>26,35520</td>
<td>25,90734</td>
<td>26,43757</td>
<td>26,90597</td>
</tr>
<tr>
<td>4,67</td>
<td>26,66559</td>
<td>26,17254</td>
<td>26,69797</td>
<td>27,17164</td>
</tr>
<tr>
<td>4,68</td>
<td>26,92865</td>
<td>26,44046</td>
<td>26,96103</td>
<td>27,43994</td>
</tr>
<tr>
<td>4,69</td>
<td>27,20440</td>
<td>26,71113</td>
<td>27,22678</td>
<td>27,71087</td>
</tr>
<tr>
<td>4,70</td>
<td>27,48287</td>
<td>26,98456</td>
<td>27,49526</td>
<td>27,98448</td>
</tr>
<tr>
<td>4,71</td>
<td>27,76410</td>
<td>27,26079</td>
<td>27,76799</td>
<td>28,26079</td>
</tr>
<tr>
<td>4,72</td>
<td>28,04810</td>
<td>27,53985</td>
<td>28,04045</td>
<td>28,53982</td>
</tr>
<tr>
<td>4,73</td>
<td>28,33490</td>
<td>27,82177</td>
<td>28,31729</td>
<td>28,82160</td>
</tr>
<tr>
<td>4,74</td>
<td>28,62454</td>
<td>28,10655</td>
<td>28,59693</td>
<td>29,10618</td>
</tr>
<tr>
<td>4,75</td>
<td>28,91704</td>
<td>28,39327</td>
<td>28,87944</td>
<td>29,39356</td>
</tr>
<tr>
<td>4,76</td>
<td>29,21242</td>
<td>28,68490</td>
<td>29,16483</td>
<td>29,68378</td>
</tr>
<tr>
<td>4,77</td>
<td>29,51072</td>
<td>28,97852</td>
<td>29,45314</td>
<td>29,97686</td>
</tr>
<tr>
<td>4,78</td>
<td>29,81197</td>
<td>29,27513</td>
<td>29,74440</td>
<td>30,27285</td>
</tr>
<tr>
<td>4,79</td>
<td>30,11619</td>
<td>29,57477</td>
<td>30,03855</td>
<td>30,57176</td>
</tr>
<tr>
<td>t</td>
<td>S (t, z)</td>
<td>T (t, z)</td>
<td>U (t, z)</td>
<td>V (t, z)</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>4.80</td>
<td>30,42341</td>
<td>29,87746</td>
<td>30,33591</td>
<td>30,87363</td>
</tr>
<tr>
<td>4.81</td>
<td>30,73367</td>
<td>30,18325</td>
<td>30,73367</td>
<td>31,17849</td>
</tr>
<tr>
<td>4.82</td>
<td>31,04699</td>
<td>30,49215</td>
<td>30,93599</td>
<td>31,45637</td>
</tr>
<tr>
<td>4.83</td>
<td>31,36340</td>
<td>30,80420</td>
<td>31,24607</td>
<td>31,79729</td>
</tr>
<tr>
<td>4.84</td>
<td>31,68295</td>
<td>31,11943</td>
<td>31,55569</td>
<td>32,11330</td>
</tr>
<tr>
<td>4.85</td>
<td>32,00565</td>
<td>31,43787</td>
<td>31,86817</td>
<td>32,42812</td>
</tr>
<tr>
<td>4.86</td>
<td>32,33153</td>
<td>31,75955</td>
<td>32,18445</td>
<td>32,74868</td>
</tr>
<tr>
<td>4.87</td>
<td>32,66063</td>
<td>32,08450</td>
<td>32,53670</td>
<td>33,07212</td>
</tr>
<tr>
<td>4.88</td>
<td>33,99298</td>
<td>32,41277</td>
<td>32,82615</td>
<td>33,39876</td>
</tr>
<tr>
<td>4.89</td>
<td>33,32862</td>
<td>32,74438</td>
<td>33,15194</td>
<td>33,72865</td>
</tr>
<tr>
<td>4.90</td>
<td>33,66756</td>
<td>33,07936</td>
<td>33,48105</td>
<td>34,06181</td>
</tr>
<tr>
<td>4.91</td>
<td>34,00976</td>
<td>33,41774</td>
<td>33,81353</td>
<td>34,39828</td>
</tr>
<tr>
<td>4.92</td>
<td>34,35554</td>
<td>33,79570</td>
<td>34,14942</td>
<td>34,73810</td>
</tr>
<tr>
<td>4.93</td>
<td>34,70464</td>
<td>34,10486</td>
<td>34,48879</td>
<td>35,08128</td>
</tr>
<tr>
<td>4.94</td>
<td>35,05718</td>
<td>34,45367</td>
<td>34,83153</td>
<td>35,42798</td>
</tr>
<tr>
<td>4.95</td>
<td>35,41320</td>
<td>34,80602</td>
<td>35,17782</td>
<td>35,77792</td>
</tr>
<tr>
<td>4.96</td>
<td>35,77275</td>
<td>35,16195</td>
<td>35,52765</td>
<td>35,83145</td>
</tr>
<tr>
<td>4.97</td>
<td>36,13585</td>
<td>35,52149</td>
<td>35,88107</td>
<td>36,48849</td>
</tr>
<tr>
<td>4.98</td>
<td>36,50253</td>
<td>35,88467</td>
<td>36,23810</td>
<td>36,84098</td>
</tr>
<tr>
<td>4.99</td>
<td>36,87284</td>
<td>36,25155</td>
<td>36,59878</td>
<td>37,21326</td>
</tr>
<tr>
<td>5.0</td>
<td>37,24680</td>
<td>36,62214</td>
<td>36,96314</td>
<td>37,58106</td>
</tr>
<tr>
<td>5.1</td>
<td>41,19599</td>
<td>40,54105</td>
<td>40,81801</td>
<td>41,46686</td>
</tr>
<tr>
<td>5.2</td>
<td>45,55370</td>
<td>44,87495</td>
<td>45,08518</td>
<td>45,75840</td>
</tr>
<tr>
<td>5.3</td>
<td>50,36263</td>
<td>49,66822</td>
<td>49,80826</td>
<td>50,49909</td>
</tr>
<tr>
<td>5.4</td>
<td>55,67008</td>
<td>54,96409</td>
<td>55,03593</td>
<td>55,73685</td>
</tr>
<tr>
<td>5.5</td>
<td>61,52834</td>
<td>60,81919</td>
<td>60,81967</td>
<td>61,52473</td>
</tr>
<tr>
<td>5.6</td>
<td>67,99531</td>
<td>67,29004</td>
<td>66,21974</td>
<td>67,92131</td>
</tr>
<tr>
<td>5.7</td>
<td>75,13504</td>
<td>74,44067</td>
<td>74,30033</td>
<td>74,99136</td>
</tr>
<tr>
<td>5.8</td>
<td>83,01840</td>
<td>82,34183</td>
<td>82,13288</td>
<td>82,80633</td>
</tr>
<tr>
<td>5.9</td>
<td>91,72379</td>
<td>91,07172</td>
<td>90,79631</td>
<td>91,44562</td>
</tr>
<tr>
<td>6.0</td>
<td>101,33790</td>
<td>100,71837</td>
<td>100,37773</td>
<td>100,99629</td>
</tr>
<tr>
<td>6.1</td>
<td>111,95664</td>
<td>111,32820</td>
<td>110,97337</td>
<td>111,55491</td>
</tr>
<tr>
<td>6.2</td>
<td>123,68604</td>
<td>123,19521</td>
<td>122,68950</td>
<td>123,22830</td>
</tr>
<tr>
<td>6.3</td>
<td>134,37338</td>
<td>133,87245</td>
<td>133,37238</td>
<td>133,87245</td>
</tr>
<tr>
<td>6.4</td>
<td>136,64336</td>
<td>136,15092</td>
<td>135,64350</td>
<td>136,13411</td>
</tr>
<tr>
<td>6.5</td>
<td>150,96826</td>
<td>150,46912</td>
<td>149,97508</td>
<td>150,35257</td>
</tr>
<tr>
<td>6.6</td>
<td>166,77508</td>
<td>166,39259</td>
<td>165,79749</td>
<td>166,17747</td>
</tr>
<tr>
<td>6.7</td>
<td>184,24925</td>
<td>183,92922</td>
<td>183,29902</td>
<td>183,61768</td>
</tr>
<tr>
<td>6.8</td>
<td>203,55895</td>
<td>203,20357</td>
<td>202,64547</td>
<td>202,98972</td>
</tr>
<tr>
<td>6.9</td>
<td>224,89590</td>
<td>224,70860</td>
<td>224,02740</td>
<td>224,21449</td>
</tr>
<tr>
<td>7.0</td>
<td>248,47679</td>
<td>248,35764</td>
<td>247,66106</td>
<td>247,77920</td>
</tr>
<tr>
<td>7.1</td>
<td>274,53547</td>
<td>274,48655</td>
<td>273,78157</td>
<td>273,82956</td>
</tr>
<tr>
<td>7.2</td>
<td>303,33425</td>
<td>303,28381</td>
<td>302,64970</td>
<td>302,62707</td>
</tr>
<tr>
<td>7.3</td>
<td>335,16205</td>
<td>335,25434</td>
<td>334,55370</td>
<td>334,46067</td>
</tr>
<tr>
<td>7.4</td>
<td>370,33819</td>
<td>370,50003</td>
<td>369,81211</td>
<td>369,64954</td>
</tr>
<tr>
<td>7.5</td>
<td>409,21553</td>
<td>409,44531</td>
<td>408,77698</td>
<td>408,54660</td>
</tr>
<tr>
<td>7.6</td>
<td>452,18406</td>
<td>452,92446</td>
<td>451,73742</td>
<td>451,54146</td>
</tr>
<tr>
<td>7.7</td>
<td>499,67473</td>
<td>500,03281</td>
<td>499,42347</td>
<td>499,06489</td>
</tr>
<tr>
<td>7.8</td>
<td>552,16384</td>
<td>552,58097</td>
<td>552,01042</td>
<td>551,58780</td>
</tr>
<tr>
<td>7.9</td>
<td>610,17757</td>
<td>610,64966</td>
<td>610,12361</td>
<td>609,65112</td>
</tr>
</tbody>
</table>
Продолжение приложения 3

<table>
<thead>
<tr>
<th>kz</th>
<th>$S (l_1)$</th>
<th>$T (kz)$</th>
<th>$U (kz)$</th>
<th>$V (z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>643,99272</td>
<td>644,49252</td>
<td>643,99272</td>
<td>643,46252</td>
</tr>
<tr>
<td>$\frac{3}{2}$</td>
<td>674,29767</td>
<td>674,81986</td>
<td>674,34367</td>
<td>673,52102</td>
</tr>
<tr>
<td>7,9</td>
<td>745,16683</td>
<td>745,73409</td>
<td>745,31233</td>
<td>744,74473</td>
</tr>
<tr>
<td>8,0</td>
<td>823,49532</td>
<td>823,95189</td>
<td>823,73886</td>
<td>823,28200</td>
</tr>
<tr>
<td>8,1</td>
<td>910,06807</td>
<td>910,70787</td>
<td>910,49722</td>
<td>909,76714</td>
</tr>
<tr>
<td>8,2</td>
<td>1005,75247</td>
<td>1006,41912</td>
<td>1006,18385</td>
<td>1005,51695</td>
</tr>
<tr>
<td>8,3</td>
<td>1111,50710</td>
<td>1112,18393</td>
<td>1112,02639</td>
<td>1111,33933</td>
</tr>
<tr>
<td>8,4</td>
<td>1229,39125</td>
<td>1229,09140</td>
<td>1229,99326</td>
<td>1229,29291</td>
</tr>
<tr>
<td>8,5</td>
<td>1357,57558</td>
<td>1358,28205</td>
<td>1358,25430</td>
<td>1357,54765</td>
</tr>
<tr>
<td>8,6</td>
<td>1500,35377</td>
<td>1501,05950</td>
<td>1501,10242</td>
<td>1500,9658</td>
</tr>
<tr>
<td>8,7</td>
<td>1658,15549</td>
<td>1658,85342</td>
<td>1658,96658</td>
<td>1658,66550</td>
</tr>
<tr>
<td>8,8</td>
<td>1832,56070</td>
<td>1833,42607</td>
<td>1833,42614</td>
<td>1832,71454</td>
</tr>
<tr>
<td>8,9</td>
<td>2025,31545</td>
<td>2025,97701</td>
<td>2026,22568</td>
<td>2025,56898</td>
</tr>
<tr>
<td>9,0</td>
<td>2238,34934</td>
<td>2238,98270</td>
<td>2239,29706</td>
<td>2238,6160</td>
</tr>
<tr>
<td>9,1</td>
<td>2473,79487</td>
<td>2474,39373</td>
<td>2474,76971</td>
<td>2474,17097</td>
</tr>
<tr>
<td>9,2</td>
<td>2734,00871</td>
<td>2734,56071</td>
<td>2735,00934</td>
<td>2734,42555</td>
</tr>
<tr>
<td>9,3</td>
<td>3021,59536</td>
<td>3022,10755</td>
<td>3022,59505</td>
<td>3022,08297</td>
</tr>
<tr>
<td>3π</td>
<td>3097,41192</td>
<td>3097,91193</td>
<td>3097,41197</td>
<td>3097,91193</td>
</tr>
<tr>
<td>9,5</td>
<td>3339,43314</td>
<td>3339,89411</td>
<td>3340,43031</td>
<td>3339,96926</td>
</tr>
<tr>
<td>9,6</td>
<td>3690,70306</td>
<td>3691,11321</td>
<td>3691,68775</td>
<td>3691,27754</td>
</tr>
<tr>
<td>9,7</td>
<td>4078,92063</td>
<td>4079,26590</td>
<td>4079,88299</td>
<td>4079,53766</td>
</tr>
<tr>
<td>9,8</td>
<td>4508,47103</td>
<td>4508,25298</td>
<td>4508,90146</td>
<td>4508,61946</td>
</tr>
<tr>
<td>9,9</td>
<td>4982,14802</td>
<td>4982,35202</td>
<td>4983,03721</td>
<td>4982,32136</td>
</tr>
<tr>
<td>10,0</td>
<td>5506,19606</td>
<td>5506,34442</td>
<td>5507,03599</td>
<td>5506,88844</td>
</tr>
</tbody>
</table>

Приложение 4. Функции Крылова для расчета балок постоянного сечения на упругом основании

<table>
<thead>
<tr>
<th>ξ</th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0,010</td>
<td>1</td>
<td>0,0005</td>
<td>0</td>
<td>0,0000</td>
</tr>
<tr>
<td>0,020</td>
<td>1</td>
<td>0,0200</td>
<td>0</td>
<td>0,0002</td>
</tr>
<tr>
<td>0,05</td>
<td>1</td>
<td>0,0500</td>
<td>0</td>
<td>0,0000</td>
</tr>
<tr>
<td>0,10</td>
<td>1</td>
<td>0,1000</td>
<td>0</td>
<td>0,0002</td>
</tr>
<tr>
<td>0,20</td>
<td>0,9997</td>
<td>0,2000</td>
<td>0,0200</td>
<td>0,0014</td>
</tr>
<tr>
<td>0,30</td>
<td>0,9987</td>
<td>0,2999</td>
<td>0,0450</td>
<td>0,0045</td>
</tr>
<tr>
<td>0,40</td>
<td>0,9957</td>
<td>0,3997</td>
<td>0,0800</td>
<td>0,0107</td>
</tr>
<tr>
<td>0,50</td>
<td>0,9895</td>
<td>0,4990</td>
<td>0,1249</td>
<td>0,0208</td>
</tr>
<tr>
<td>0,60</td>
<td>0,9784</td>
<td>0,5974</td>
<td>0,1798</td>
<td>0,0360</td>
</tr>
<tr>
<td>0,70</td>
<td>0,9600</td>
<td>0,6944</td>
<td>0,2444</td>
<td>0,0571</td>
</tr>
<tr>
<td>0,80</td>
<td>0,9318</td>
<td>0,7891</td>
<td>0,3186</td>
<td>0,0852</td>
</tr>
<tr>
<td>0,90</td>
<td>0,8931</td>
<td>0,8804</td>
<td>0,4021</td>
<td>0,1211</td>
</tr>
<tr>
<td>1,00</td>
<td>0,8337</td>
<td>0,9668</td>
<td>0,4945</td>
<td>0,1659</td>
</tr>
<tr>
<td>z</td>
<td>J_1</td>
<td>J_2</td>
<td>J_3</td>
<td>J_4</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>1,10</td>
<td>0,7568</td>
<td>1,0463</td>
<td>0,5952</td>
<td>0,2703</td>
</tr>
<tr>
<td>1,20</td>
<td>0,6561</td>
<td>1,1173</td>
<td>0,7035</td>
<td>0,2852</td>
</tr>
<tr>
<td>1,30</td>
<td>0,5272</td>
<td>1,1767</td>
<td>0,6183</td>
<td>0,2612</td>
</tr>
<tr>
<td>1,40</td>
<td>0,3656</td>
<td>1,2217</td>
<td>0,9383</td>
<td>0,4490</td>
</tr>
<tr>
<td>1,50</td>
<td>0,1644</td>
<td>1,2486</td>
<td>1,0620</td>
<td>0,5430</td>
</tr>
<tr>
<td>π/2</td>
<td>0,0000</td>
<td>1,2546</td>
<td>1,1507</td>
<td>0,4273</td>
</tr>
<tr>
<td>1,60</td>
<td>-0,0753</td>
<td>1,2535</td>
<td>1,1873</td>
<td>0,6615</td>
</tr>
<tr>
<td>1,70</td>
<td>-0,3644</td>
<td>1,2322</td>
<td>1,3118</td>
<td>9,7563</td>
</tr>
<tr>
<td>1,80</td>
<td>-0,7060</td>
<td>1,1789</td>
<td>1,4326</td>
<td>0,9237</td>
</tr>
<tr>
<td>1,90</td>
<td>-1,1049</td>
<td>1,0888</td>
<td>1,5464</td>
<td>1,0727</td>
</tr>
<tr>
<td>2,00</td>
<td>-1,5656</td>
<td>0,9558</td>
<td>1,6490</td>
<td>1,2325</td>
</tr>
<tr>
<td>2,10</td>
<td>-2,0923</td>
<td>0,7735</td>
<td>1,7359</td>
<td>1,4920</td>
</tr>
<tr>
<td>2,20</td>
<td>-2,6882</td>
<td>0,5331</td>
<td>1,8018</td>
<td>1,5791</td>
</tr>
<tr>
<td>2,30</td>
<td>-3,3562</td>
<td>0,2335</td>
<td>1,8408</td>
<td>1,7614</td>
</tr>
<tr>
<td>2,40</td>
<td>-4,0976</td>
<td>0,1386</td>
<td>1,8461</td>
<td>1,9461</td>
</tr>
<tr>
<td>2,50</td>
<td>-4,9128</td>
<td>0,5885</td>
<td>1,8105</td>
<td>2,1293</td>
</tr>
<tr>
<td>2,60</td>
<td>-5,8003</td>
<td>1,1236</td>
<td>1,7256</td>
<td>2,3065</td>
</tr>
<tr>
<td>2,70</td>
<td>-6,7565</td>
<td>-1,1509</td>
<td>1,5827</td>
<td>2,4725</td>
</tr>
<tr>
<td>2,80</td>
<td>-7,7439</td>
<td>-2,4770</td>
<td>1,3721</td>
<td>2,6208</td>
</tr>
<tr>
<td>2,90</td>
<td>-8,8471</td>
<td>-3,3079</td>
<td>1,0838</td>
<td>2,7433</td>
</tr>
<tr>
<td>3,00</td>
<td>-9,9669</td>
<td>-4,2485</td>
<td>0,7069</td>
<td>2,8746</td>
</tr>
<tr>
<td>3,10</td>
<td>-11,1119</td>
<td>-5,3023</td>
<td>0,2303</td>
<td>2,5833</td>
</tr>
<tr>
<td>3,20</td>
<td>-12,2656</td>
<td>-6,4711</td>
<td>-0,3574</td>
<td>2,8769</td>
</tr>
<tr>
<td>3,30</td>
<td>-13,4048</td>
<td>-7,5491</td>
<td>-1,0678</td>
<td>2,8608</td>
</tr>
<tr>
<td>3,40</td>
<td>-14,5008</td>
<td>-9,1507</td>
<td>-1,9121</td>
<td>2,6589</td>
</tr>
<tr>
<td>3,50</td>
<td>-15,5198</td>
<td>-10,6525</td>
<td>-2,9014</td>
<td>2,4195</td>
</tr>
<tr>
<td>3,60</td>
<td>-16,4218</td>
<td>-12,2508</td>
<td>-4,059</td>
<td>2,0735</td>
</tr>
<tr>
<td>3,70</td>
<td>-17,1622</td>
<td>-13,9315</td>
<td>-5,3844</td>
<td>1,6049</td>
</tr>
<tr>
<td>3,80</td>
<td>-17,6857</td>
<td>-15,6761</td>
<td>-6,8343</td>
<td>0,9569</td>
</tr>
<tr>
<td>3,90</td>
<td>-17,9387</td>
<td>-17,4599</td>
<td>-8,4909</td>
<td>0,2321</td>
</tr>
<tr>
<td>4,00</td>
<td>-17,8948</td>
<td>-19,2524</td>
<td>-10,3265</td>
<td>-0,7073</td>
</tr>
<tr>
<td>4,10</td>
<td>-17,3472</td>
<td>-21,0160</td>
<td>-12,3404</td>
<td>-1,8392</td>
</tr>
<tr>
<td>4,20</td>
<td>-16,3505</td>
<td>-22,0755</td>
<td>-14,5274</td>
<td>-3,1812</td>
</tr>
<tr>
<td>4,30</td>
<td>-14,7722</td>
<td>-24,2669</td>
<td>-16,8773</td>
<td>-4,7501</td>
</tr>
<tr>
<td>4,40</td>
<td>-12,5180</td>
<td>-25,6373</td>
<td>-19,3743</td>
<td>-5,6145</td>
</tr>
<tr>
<td>4,50</td>
<td>-9,4890</td>
<td>-26,7447</td>
<td>-21,9969</td>
<td>-5,6829</td>
</tr>
<tr>
<td>4,60</td>
<td>-5,5791</td>
<td>-27,5057</td>
<td>-24,7117</td>
<td>-10,9638</td>
</tr>
<tr>
<td>4,70</td>
<td>-0,6812</td>
<td>-28,2724</td>
<td>-27,4823</td>
<td>-13,5732</td>
</tr>
<tr>
<td>4,80</td>
<td>5,3164</td>
<td>-27,6052</td>
<td>-30,2589</td>
<td>-16,4604</td>
</tr>
<tr>
<td>4,90</td>
<td>12,5239</td>
<td>-26,7239</td>
<td>-32,9814</td>
<td>-19,6232</td>
</tr>
<tr>
<td>5,00</td>
<td>21,0504</td>
<td>-25,0595</td>
<td>-35,5775</td>
<td>-23,0525</td>
</tr>
<tr>
<td>5,10</td>
<td>30,997</td>
<td>-22,4661</td>
<td>-37,9619</td>
<td>-26,7371</td>
</tr>
<tr>
<td>5,20</td>
<td>42,4661</td>
<td>-18,8057</td>
<td>-40,0350</td>
<td>-30,6346</td>
</tr>
<tr>
<td>5,30</td>
<td>55,5317</td>
<td>-13,9201</td>
<td>-41,6826</td>
<td>-34,7246</td>
</tr>
<tr>
<td>5,40</td>
<td>70,6337</td>
<td>-7,6430</td>
<td>-42,7727</td>
<td>-38,9524</td>
</tr>
<tr>
<td>5,50</td>
<td>89,7044</td>
<td>-0,1901</td>
<td>-43,1593</td>
<td>-43,2557</td>
</tr>
<tr>
<td>5,60</td>
<td>104,8637</td>
<td>9,7544</td>
<td>-42,6775</td>
<td>-47,5758</td>
</tr>
<tr>
<td>5,70</td>
<td>124,7352</td>
<td>21,2199</td>
<td>-41,1454</td>
<td>-51,7563</td>
</tr>
<tr>
<td>5,80</td>
<td>146,2448</td>
<td>34,7564</td>
<td>-38,3610</td>
<td>-55,7429</td>
</tr>
<tr>
<td>5,90</td>
<td>169,2837</td>
<td>50,5203</td>
<td>-34,1198</td>
<td>-59,0363</td>
</tr>
<tr>
<td></td>
<td>(I_1)</td>
<td>(I_2)</td>
<td>(I_3)</td>
<td>(I_4)</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>6.00</td>
<td>196,1881</td>
<td>70,6079</td>
<td>-27,4846</td>
<td>-92,7889</td>
</tr>
<tr>
<td>6.10</td>
<td>221,8019</td>
<td>91,4992</td>
<td>-19,4005</td>
<td>-65,1503</td>
</tr>
<tr>
<td>6.20</td>
<td>245,5231</td>
<td>112,5249</td>
<td>-10,2356</td>
<td>-60,4851</td>
</tr>
<tr>
<td>(2\pi)</td>
<td>267,7468</td>
<td>133,8725</td>
<td>0</td>
<td>-60,5362</td>
</tr>
<tr>
<td>6.30</td>
<td>272,2487</td>
<td>138,4120</td>
<td>2,2886</td>
<td>-63,9175</td>
</tr>
<tr>
<td>6.50</td>
<td>324,7861</td>
<td>198,1637</td>
<td>35,7713</td>
<td>-62,3165</td>
</tr>
<tr>
<td>7.00</td>
<td>413,3762</td>
<td>386,8072</td>
<td>180,1191</td>
<td>-13,2842</td>
</tr>
<tr>
<td>7.50</td>
<td>313,3700</td>
<td>580,6710</td>
<td>423,9858</td>
<td>133,6506</td>
</tr>
<tr>
<td>(5/2\pi)</td>
<td>0</td>
<td>643,9927</td>
<td>643,9926</td>
<td>321,9964</td>
</tr>
<tr>
<td>8.00</td>
<td>216,8647</td>
<td>628,8779</td>
<td>737,3101</td>
<td>422,8713</td>
</tr>
<tr>
<td>8.50</td>
<td>1479,3701</td>
<td>241,4136</td>
<td>981,0984</td>
<td>660,8917</td>
</tr>
<tr>
<td>9.00</td>
<td>-3691,4815</td>
<td>-1010,5800</td>
<td>834,8607</td>
<td>1340,3007</td>
</tr>
<tr>
<td>(3\pi)</td>
<td>-6195,8239</td>
<td>-3097,9120</td>
<td>0</td>
<td>1548,5560</td>
</tr>
<tr>
<td>9.50</td>
<td>-6660,9594</td>
<td>-3581,4756</td>
<td>-250,9959</td>
<td>1539,7410</td>
</tr>
<tr>
<td>10.0</td>
<td>-9240,8733</td>
<td>-7616,1462</td>
<td>-2995,7095</td>
<td>812,9636</td>
</tr>
<tr>
<td>Таблица 1</td>
<td>Геометрические характеристики плоских сечений</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таблица 2</td>
<td>Уголки стальные горячекатанные равнополочные. Сортамент (ГОСТ 8509—86)</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таблица 3</td>
<td>Уголки стальные горячекатанные неравнополочные. Сортамент (ГОСТ 8510—86)</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таблица 4</td>
<td>Сталь горячекатаная. Швеллеры. Сортамент (ГОСТ 8240—72). Швеллеры с уклоном внутренних граней полок</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таблица 5</td>
<td>Сталь горячекатаная. Швеллеры. Сортамент (ГОСТ 8240—72). Швеллеры с параллельными гранями полок</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таблица 6</td>
<td>Сталь горячекатаная. Балки двутавровые. Сортамент (ГОСТ 8239—72)</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таблица 7</td>
<td>Опорные реакции, поперечные силы и изгибающие моменты в статически определимых балках</td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таблица 8</td>
<td>Изгибающий момент М, нормальная N и поперечная Q силы в консольном круговом стержне при нагружении в его плоскости</td>
<td>141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таблица 9</td>
<td>Изгибающий МII и крутящий MK моменты в консольном круговом стержне при нагружении, перпендикулярном его плоскости</td>
<td>142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таблица 10</td>
<td>Модули упругости и коэффициент Пуассона</td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таблица 11</td>
<td>Модули упругости ряда конструкционных материалов при комнатной и пониженных температурах</td>
<td>166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таблица 12</td>
<td>Модули упругости и коэффициент Пуассона тугоплавких металлов при комнатной и высоких температурах</td>
<td>168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таблица 13</td>
<td>Соотношения между числами твердости по Бринеллю, Роквеллу и пределом прочности сталей</td>
<td>171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таблица 14</td>
<td>Числа твердости тугоплавких металлов и сплавов на их основе при комнатной и высоких температурах</td>
<td>172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таблица 15</td>
<td>Механические свойства некоторых материалов при высоких температурах</td>
<td>173</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таблица 16
Длительная прочность и ползучесть тугоплавких металлов и сплавов на их основе при высоких температурах... 175

Таблица 17
Механические характеристики некоторых конструкционных материалов при низких температурах... 178

Таблица 18
Ориентировочные величины основных допускаемых напряжений на растяжение и сжатие. 183

Таблица 19
Критерии предельного состояния пластичных материалов (при статическом нагружении)... 204

Таблица 20
Усилия в простейших стержневых системах. 213

Таблица 21
Допускаемые напряжения для сварных соединений... 216

Таблица 22
Допускаемые напряжения для древесины... 222

Таблица 23
Приближенные расчетные формулы для определения максимального касательного напряжения \(\tau_{\text{max}} \) через относительный угол закручивания \(\Theta \) в стержнях некруглого сечения... 246

Таблица 24
Схемы действительных и соответствующих им фиктивных балок... 252

Таблица 25
Балки равного сопротивления изгибу... 285

Таблица 26
Уравнения упрогой линии и угла поворота поперечных сечений консолевой балки переменной высоты... 288

Таблица 27
Уравнения упрогой линии, максимальные прогибы и углы поворота концевых и опорных сечений статически определяемых балок постоянного поперечного сечения... 289

Таблица 28
Форма и размеры ядра сечения... 315

Таблица 29
Выражения интеграла Мора \(\int M_t M_p dz \) для различных сочетаний эпюр \(M_t \) и \(M_p \)... 335

Таблица 30
Площади и координаты центров тяжести некоторых элементарных фигур... 338

Таблица 31
Опорные реакции, поперечные силы, изгибающие моменты и перемещения в статически неопределенных балках... 344

Таблица 32
Расчетные формулы, учитывающие смешение опор и изменение температуры в статически неопределенных балках (при постоянном \(EJ \))... 367

Таблица 33
Изгибающие моменты в Г-образной раме \(k = \frac{J_h h}{J_t t} \)... 370

Таблица 34
Изгибающие моменты в П-образной раме \(k = \frac{J_h h}{J_t t} \)... 376

Таблица 35
Изгибающие моменты в замкнутой раме... 380

721
Таблица 36. Усилия и перемещения при нагружении кольца в его плоскости. 384
Таблица 37. Радиус кривизны нейтрального слоя \(\rho \) для сечений различной формы. 399
Таблица 38. Значение коэффициента \(k \) в формуле \(e = kR \). 401
Таблица 39. Перемещения свободного конца консольного кругового стержня постоянного сечения при нагружении в его плоскости. 405
Таблица 40. Перемещения свободного конца консольного кругового стержня постоянного сечения при нагружении в перпендикулярной плоскости. 407
Таблица 41. Значения определенных интегралов, часто встречающихся при определении перемещений в кривых стержнях. 409
Таблица 42. Расчетные формулы для толстостенных цилиндров. 426
Таблица 43. Расчетные формулы для определения напряжений и перемещений в тонкостенных оболочках. 434
Таблица 44. Пластические моменты сопротивления для некоторых сечений балок. 445
Таблица 45. Коэффициенты \(\nu \) и \(\eta \) для определения критической нагрузки центрально сжатых стержней по формуле

\[
P_{kr} = \frac{\pi^2 EJ}{(\nu I)^2} = \frac{EJ}{I^2}
\]

461
Таблица 46. Критические нагрузки для полос и некоторых двутавровых балок. 493
Таблица 47. Коэффициенты условного допускаемого напряжения на сжатие. 502
Таблица 48. Уравнения изгибающего момента \(M(z) \) и упругой линии \(w(z) \) для некоторых случаев продольно-поперечного изгиба балок постоянного поперечного сечения

\[
(k = \sqrt{\frac{N}{EJ}})
\]

504
Таблица 49. Собственные частоты колебаний систем с одной и двумя степенями свободы. 560
Таблица 50. Частотные уравнения и собственные формы продольных и крутильных колебаний стержней постоянного сечения. 568
Таблица 51. Частотные уравнения и собственные формы поперечных колебаний стержней постоянного сечения. 572
Таблица 52. Корни частотных уравнений поперечных колебаний стержней постоянного сечения на упругих опорах. 573
Таблица 53. Корни частотных уравнений поперечных колебаний стержней постоянного сечения с сосредоточенными массами \(m \). 574
Таблица 54. Значения некоторых интегралов, встречающихся при расчетах поперечных колебаний стержней (χ₁ — i-я собственная форма колебаний)	575
Таблица 55. Собственные частоты поперечных колебаний стержней постоянного сечения, нагруженных продольными силами	576
Таблица 56. Варианты записи формул Рэлея (19.137) — (19.139) для определения квадрата собственной частоты колебаний стержня	577
Таблица 57. Выражения для определения квадрата собственной частоты по способу Граммеля	378
Таблица 58. Характеристики циклов повторно-переменного нагружения	604
Таблица 59. Значения коэффициента α, учитывющего массу ударяемого элемента в формуле коэффициента динамичности	614
Таблица 60. Расчетные формулы для определения параметров контакта двух тел	632
Таблица 61. Числовые значения коэффициентов n₁, n₂, n₃, n₄	642
Таблица 62. Допускаемые давления на площадке контакта при первоначальном контакте по линии и статическом нагружении	644
Использованная литература

Ананьев Н. В. Справочник по расчету собственных колебаний упругих систем.— М — Л: ОГИЗ — Гостехиздат.— 1946.

Иванов В. Ф., Игитин Г. В. Справочник по строительной механике.— Л: КУБУЧ, 1933.— Т. 1 — 488 с.

Любощиц М. И., Ицкович Г. М. Справочник по сопротивлению материалов.— Минск: Вышэйш. шк., 1969.— 464 с.

Матвеев Б. В. Демпфирование колебаний деформируемых тел.— Киев: Наук думка, 1985.— 264 с.

Писаренко Г. С. Рассеяние энергии при механических колебаниях.— Киев: Изд-во АН УССР, 1962.— 436 с.

Писаренко Г. С., Агарев В. А., Квитка А. Л. и др. Сопротивление материалов.— 2-е изд., перераб. и доп.— Киев: Техника, 1967.— 791 с.

Писаренко Г. С., Агарев В. А., Квитка А. Л. и др. Сопротивление материалов.— Киев: Вища шк.— 3-е изд., перераб. и доп.— 1973.— 672 с., 5-е изд., перераб. и доп.— 1986.— 775 с.

Писаренко Г. С., Лебедев А. А. Сопротивление материалов деформированию и разрушению при сложном напряженном состоянии.— Киев: Наук. думка, 1969.— 212 с.

Прочность материалов и элементов конструкций в экстремальных условиях / Под ред. Г. С. Писаренко.— Киев: Наук. думка, 1980.— Т. 1.— 535 с.

Прочность. Устойчивость. Колебания / Под ред. И. А. Биргера и Я. Г. Паново.— М: Машиностроение, 1968.— 3 т.

Рудицын М. И., Артемов П. Я., Любощиц М. И. Справочное пособие по сопротивлению материалов.— Минск: Вышэйш. шк., 1970.— 628 с.

Сервенис С. В., Когаев В. П., Шнейдерович Р. М. Несущая способность и расчеты деталей машин на прочность.— М: Машгиз, 1963.— 452 с.

Справочник по технической механике / Под ред. акад. А. Н. Дынника.— М.— Л: Гостехиздат, 1949.— 734 с.

724
Справочник по строительной механике корабля / Под ред акад Ю. А. Шиманского.— Л.: Судпромгиз, 1958.— Т. 2.— 520 с.
Справочник проектировщика промышленных, жилых и общественных зданий и сооружений / Под ред. А. А. Уманского.— М.: Госстройиздат, 1960.— 1040 с.
Справочник машиностроителя / Под ред. акад. АН УССР С. В. Серенсена.— М.: Машигиз, 1963.— Т. 3.— 651 с.
Технический справочник железнодорожника.— М.: Гострансжелдориздат, 1950.— Т. 2: Технические расчеты.— 796 с.
Трошёнко В. Г. Усталость и неупругость металлов.— Киев: Наук. думка, 1971.— 268 с.
Фесик С. П. Справочник по сопротивлению материалов.— Киев: Будівельник, 1982.— 208 с.
Химушин Ф. Ф. Жаропрочные стали и сплавы.— М.: Металлургия, 1969.— 749 с.
Автоколебания 512
Амплитуда колебаний 513, 516, 520
— цикла 581
Анизотропия 15, 158
База испытаний на выносливость 582
Баланда критерий 205
Балка фиктивная (взаимная) 265, 285
Балки 107
— двухопорные 107
— деформативность их 261
— изгиб их 13, 249
— консольные 107
— на упругом основании 278
— неразрезные 108, 356
— однопролетные 107
— опорные реакции 106, 107, 108
— опоры их 106
— переменного сечения 269
— перемещения в них 271, 286, 288, 289, 344
— равного сопротивления изгибу 271, 286
— расчет их 252, 269, 278
— статически неопределимые 108, 344, 367
— статически определимые 107, 116
— точностного профиля 275
— усилия и моменты в их сечениях 109, 116
Баллон сферический 430
Баушингер эффект 598
Бернулли гипотеза 143
Бетти теорема 326
Болтовые соединения 226
Боткин — Миролюбова критерий 206
Бредта формула 240
Бринелля способ определения твердости 151
Брус 11
— большой кривизны 392
— кривой 392
— его расчет на прочность 397
— определение перемещений 397, 405, 407
— малой кривизны 392
Бубнова — Галеркина способ 546
Вал 233
— критическая скорость вращения его 524
— расчет на прочность его 236
Веллера кривая 582
Верещагина способ 329
— формула 330
Взаимосвязь перемещений 326
— расчет 326
Виккерса способ определения твердости 151
Волкова критерий 206
Врубки 231
Выносливость материала 579
Галлилей — Лейбниц критерий 204
Гибкость стержня 454
Гипотеза об однородности и изотропности 15
— о линейной зависимости между деформациями и нагрузками 15, 192
— о малости деформаций 15
— о совершенной упругости 15
— о сплошности материала 15
Гипотеза относительной жесткости 15
— плоских сечений 15, 143
Гистерезис конструкционный 548
Граммеля способ 578
— формула 545
Графоаналитический метод 264
— способ 329
Гриффиша критерий разрушения 619
— теория 618
— формула 617
Губера — Мизеса — Генки критерий 205
Гука закон 15, 143, 141, 154
— обобщенный 192, 193, 195
— при изгибе 250
— при сдвиге 225
Давиденкова — Фридмана критерий прочности 202
Давление допускаемое 643
Даламбера принцип 525, 532, 536, 548
Декремент колебаний логарифмический 518
— его амплитудная зависимость 522
Демпфирующая способность материала 521
Деформация 13, 153
— виды ее 13
— компоненты ее 15
— контактная 625
— механизм ее образования 153
— объемная 192, 193
— остаточная 13, 161
— относительная 144, 145
— линейная 13
Деформация относительная угловая 14
— пластическая 13, 154, 160,
— полная 603
— поперечная абсолютная 145
— относительная 145
— при объемном напряжении со- состоянии 192
— скорость ее 158
— упругая 13
— чистого сдвига 224
Диаграмма кручення 233
— напряжений 149
— истинных 150
— предельных напряжений 583
— предельных амплитуд напряжений 58
— растяжения 146
— первичная 149
— сжатия 150
— усталости 581
Диск врачающийся 410, 421
Дислокация 155
Длина критическая нити 222
— стержня 209
— предельная стержня 457
— приведенная 151
Долговечность циклическая 602
Донкеррена формула 545
Друкера — Прандтля критерий 206
Жаропрочность 160
Жаростойкость 160
Жесткость 140
Жесткость вала при кручении 233
— поперечной поперечного сечения 261
— поперечного сечения стержня при растяжении (сжатии) 144
— при кручении 322
— стержня при растяжении (сжа- тии) 144
Журбевского формула 252
Зависимости дифференциальные
при изгибе балок 111
— плоских кривых стержней 136
Зависимость амплитудно-частотная 551
— фазо-частотная 553
Задача нахождения крутящих момен-тов и углов закручивания
при кручении стержня 235
— продольных сил и перемещений
при осевом растяжении — сжатии стержня 208, 209
— угловых деформаций и линейных сдвиговых перемещений 224, 225
— обратная для напряжений 187, 189
— моментов инерции 23
— прямая для напряжений 187, 188
— — моментов инерции 24
— статически неопределены 211, 279
Заделка 107
Заклепочные соединения 226
Закон парности касательных напря- жений 187
— сохранения энергии при колеба- ниях 539
Запас прочности 164
— при повторно-переменных на- грузках 590, 595
— с учетом динамической на- грузки 612
Зашемление жесткое 107
Изгиб 13, 249
Изгиб балок, материал которых не
следует закону Гука 282

727
коэффициент асимметрии цикла
влияния абсолютных размеров
динамики усилением 516, 520
динамичности 606, 614
запас прочности 164, 196, 201
— при повторнокеременных нагрузках 596
— при статически нагрузке 164
устойчивости 448, 456
интенсивности напряжений у вершины трещины 625, 629
концентрации напряжений 156, 245, 257, 664
— теоретический 157, 644
— эффективный (действительный) 157, 585, 644
коэффициент концентрации эффективный для детали 588
расширения температурный 219, 644
мягкости 203
превышения длины 451
чувствительности к концентрации напряжений 586
— к асимметрии цикла 591
уменьшения допускаемого напряжения на сжатие 456
условного допускаемого напряжения на сжатие 456, 502
устойчивости 461
— учитывающий массу ударамочного элемента 614
кривая ползучести 160
резонансная 551
усталости 582, 603
кривизна 250
крив — см. ползучесть
критерии наилучших касательных напряжений 198, 205
— нормальных напряжений 197, 204
— относительных линейных деформаций 197, 204
— остаточных касательных напряжений 205
— прочности (пределного состояния) 196, 204
разрушения 619
удельной потенциальной энергии 198
формоизменения 198
круги инерции 23, 189
момента 188, 189
напряжений 188, 189
кручение 13, 233
— замкнутых тонкостенных профилей 240
— с изгибом 311
— стержней некруглого сечения 238
— тонкостенных стержней открытого профиля 241
Крылова функции 280, 536
Кулон — Мора критерий 205
Кулона — Мора критерий 199, 200, 205
Купол сферический 432

Лагранжа теорема 332
— уравнение 526
Лапласа уравнение 431
Линия нейтральная 251
— упругая 261
— ее дифференциальное уравнение 262, 279, 459
— ее уравнение 262, 267, 289, 344
— цепная 217
Ляме задача 421
— формула 412

Мазинга модель 598
Максвелла теорема 326
— формула 328
Малолинковая усталость 596
Маршотта — Грасоффа критерий 204
Масса приведенная 543
— ударяемого элемента, ее учет 608, 614
Материал анизотропный 15, 231
— его испытание 146
—, его механические характеристики при растяжении, сжатии 148
— его физико-механические свойства 183
— изотропный 15
— пластичный 196, 439, 580
— хрупкий 196, 580
— циклически стабильный 600
— разрушающийся 600
— упрочняющийся 600
Манбере теорема 334
Метод графоаналитический определения перемещений балки 264
— начальных параметров 265
— перемещений 341
— перемещения усилий 327
— сечений 103
— сил 341
—, канонические уравнения 343
Механика разрушения (распространения трещин) 616
Модуль объемной деформации 194
— упругости второго рода 160, 170, 224, 644
— при растяжении 143, 149, 165—170, 644
— при сдвиге 165—170, 224, 644
— сжимающий 149
— Юнга 143, 644
Момент изгибающий 104, 109, 116
— приведенный 331
Момент инерции плоских фигур 17
— осевой 17, 30—101
— относительно параллельных осей 20
— полярный 18
— при повороте осей 20
— сложных сечений 19
— центробежный 19, 30—101
— экваториальный 17
— сил инерции 515
Моменты инерции главные 21
Момент крутящий 104, 106
Момент сопротивления 26
— осевой 26, 30—101
— пластический при крученении 442
— при изгибе 444, 445
— полярный 27, 30—101, 235
— при изгибе 251
— при кручении 238
— статический момент 16, 253
Мора метод 264, 326
— интеграл 327, 329, 335
— круг 188
— формула 327
Мэксона — Коффина формула 602
Навье формула 250
Нагружение жесткое 597, 600, 602
— мягкое 597, 601
Нагрузка 102, 103
— динамическая 103, 158
— допускаемая 448
—, ее интенсивность 102, 215
— критическая 447, 461, 493
— мгновенно приложенная 103
— погонная 102
— повторно-переменная 103
— предельная 439
— распределенная 102, 216, 264
— статическая 103, 164
— ударная 103, 606
— фиктивная 265
Напряжение 139, 192
— в брусьях большой кривизны 394
— в момент разрыва 147, 178 — 181

729
— во вращающемся диске 423, 425
— в толстостенном цилиндре 412, 417, 426
— в тонкостенных оболочках 430, 434
— главное 184—186, 190
— динамическое при ударе 608
— при скручиваемом ударе 610
— при ударном изгибе 611
— допускаемое 140, 163, 164, 182, 232
— на устойчивость 456
— при растяжении 143, 164, 182, 196
— при сдвиге 226
— касательное 139, 184, 185, 186, 187
— при изгибе 252, 253
— контактное 627
— критическое 617
— меридиональное 429
— нормальное 139, 184—186, 189
— при изгибе 249, 250
— окружное 429
— октаздрическое 192
— повторно-попеременное 579
— полное 139, 184
— по наклонным площадкам 186, 188, 189, 191
— предельное при повторно-попеременном нагружении 583
— при изгибе с кручением 311
— при растяжении 307
— при косом изгибе 305
— при кручении 233, 239, 240, 246
— при продольно-поперечном изгибе 460
— при растяжении 143, 147, 185
— при сдвиге 224
— при сжатом (неплоском) изгибе 304
— смятия 228
— среднее цикла 581
— температурное в толстостенном цилиндре 417
— эквивалентное 196—199
Натяжение шнура 217
Начало возможных перемещений 323
Ненасыщенные 211, 340
Неопределимость статическая 211, 340
Нить гибкая 215
Оболочка 11
— тонкостенная, ее расчет 428—430
— коническая 12, 436
— сферическая 12, 434
— торовая 438
— цилиндрическая 12
Опора, ее виды 106
Опора шарнирно-неподвижная 107
— шарнирно-подвижная 106
Опорные реакции в балках 106, 167, 116
— статически неопределимых балках 344
— устройства балок 106
Осевая нагрузка 19
— определение их направления 21
Ось балки 108, 261
— жесткости балки 278
— изогнутая балка 262
Относительное рассеяние энергии 522

Парность касательных напряжений 187, 237
Паузы, их влияние на предел выносливости 589
Перергузки, их влияние на предел выносливости 589
Перемещение, вызванное изменением температуры 328
— во вращающемся диске 424
— в статически неопределимых балках 344, 367
— в системах 361
— в толстостенном цилиндре 412, 426
— в тонкостенной оболочке 434
—, методы его определения 318
— обобщенное 318
— при изгибе 264
— при кривых брусьях 397, 405, 407
— растяжении (скатия) 209
— удельное 319
Период колебаний 510
—, его определение 514
Петля гистерезиса 521, 547, 597
—, площадь ее 521, 548
—, ширина ее 599
Пицаренко—Лебедева критерий 201, 207
Пластичность, ее характеристики 148
Площадь изгиба 306
— силовая 305
Площадка текущести 147
Площадки главные 184—186, 190
Площадь сечения 16, 30—100
Поверхности состояния, ее влияние на предел выносливости 588
Поверхности предельная 200
Ползучесть 160, 175
Правила построения загр внутренних 109
Правила выработок для изгибающего момента 109
— для касательных напряжений 186
— для крутящего момента 106
— для нормальных напряжений 186
— для поперечной силы 109
— для продольной силы 106
Правдильная диаграмма 440
Предел выносливости 178, 644
— влияние конструктивно-технических факторов 585
— , методы его определения 581
— длительной прочности 162, 173, 174
— ползучести 161, 173, 174
— пропорциональности 174, 178—181
— условный 147
— прочности 147, 159, 173, 174, 178—181, 644
— текучести 147, 158, 159, 164, 173, 174, 178—181, 644
— упругости 147
— условный 148
— суммирования действия сил 15
Принцип суперпозиции 15
Прогиб 14, 262
— полный 307
— формулы для балок постоянного поперечного сечения 289
— формулы для балок равного сопротивления изгибу 286
— формулы для статически неопределяемых балок 344, 367
Пролет балки 107
Профиль замкнутый 240
— открытый 241
Прочность 11
— длительная 162, 175
— термическая 605
Пружинные винтовые, их расчет 242
— коаксиальные 244
— цилиндрические 242
— их осадка 243
— их удлинение 243
Пуассона коэффициент 145, 159, 165, 166, 168—170
Работа внешних сил 320
— внутренних сил 321
— возможная (вращание) 323
— деформации 148
— удельная 149
— затраченная на растяжение 118
— , теорема о взаимности 198
Равнодействующая распределенной нагрузки 115
Равновесие упругое устойчива 447
— упругое неустановившееся 447
Радиус инерции 25
— удельный 158
— , значения для плоских сечений 30
— кривизны нейтрального слоя 393, 396, 399
Разрушение вязкое 616
— квазистатическое 601
— квазихрупкое 616
— пластическое 616
— при циклическом деформировании 601
— усталостное 579, 601
— хрупкое 616
Разма Г-образная 113, 370
— замкнутая 380
— П-образная 376
Растяжение 13, 208
— внешцентрное 308
— испытание материала 146
— , механические характеристики материала 146
— , модуль упругости 143
— напряжения и деформации 144, 145
— , с изгибом 307
— стержневой с учетом собственного веса 208
— , условие жесткости 145
— , прочности 145, 208
Рассеяние энергии относительное 522
Расчет колебаний с учетом рассеяния энергии 547
— на выносимость 590
— на изгиб с учетом сил инерции 274
— на прочность при повторно-постоянных нагрузках 590
— на срез 223
— на ударную нагрузку (удар) 606
— на устойчивость 456
— по предельным состояниям 439
— статически неопределяемых систем 210, 340
Реакции, их вычисление 108, 116—135

731
Свойства механические 146, 158, 644
— пластичности 148
— прочности 148
— физико-механические 614
Свойства упругие 147
Связи лишние 211
Сдвиг 13, 223
— абсолютный 13
— относительный 14
— чистый 224
— , условия прочности 226
— фазы колебаний 513
Сен-Венана критерий 204
Сен-Венана принцип 144
Сечение, его геометрические характеристики 16, 30—101
— опасное 145
Сжатие 13
— вращение 308
— , испытание 150
— , условия прочности 143
— шаров 627
— цилиндров 628
Сила внешняя 102
— внутренняя 102
— вышадающая 516, 518
— инерции 513, 525, 532, 536
Сила критическая 448
— , влияние условий закрепления стержня 450
— массовая 102
— обобщенная 318
— объемная 102
— поверхностная 102
— поперечная 104, 109, 116—135
— продольная 104, 106
— сопротивления, пропорциональная скорость 517
— сосредоточенная 102
— угловой сопротивления 321
Симпсона — Кормоухова формула 331
Система колебательная 511
— с двумя степенями свободы 511
— с одной степенью свободы 511, 513
— со многими (несколькими) степенями свободы 525
— основная 341
— статически неопределенная 215, 310, 361
— рамная пространственная 363
— эквивалентная 341
Скорость критическая вращения вала 524
Слой внутренний 249
Снимка диаграмма 583
Смятие 227
Соединения сварные 228, 232
Сопротивление временное 147, 158, 164
— действительно повторно-переменных напряжений 579
— сложное 303
Состояние деформированное 15, 184
— конструкции предельное 439
— напряженное 184
Состояние деформированное двухосное 186
— , его главные направления 185
— линейное 185
— объемное 185, 190, 194
— одноосное 185
— однородное 185
— плоское 185, 186, 188
— предельное (опасное) 196, 439
— трехосное 185, 190
— напряженно-деформированное предельное 196
Степень статической неопределенности системы 340
Стержень 11
— большой кривизны 397
— , его колебания 532, 535
— , его растижение (сжатие) 208
— кривой 114, 138
— круговой консольный 142
— ломанный пространственный 137
— малой гибкости 465
— кривизны 397
— равного сопротивления 209
— сжатый, его устойчивость 455
— статически неопределеный криволинейный 359
— ступенчатый 209, 210, 269
Стрела прогибания нити 218
Сужение относительное 148, 178—181
Твердость материала 150, 151, 159, 171
Температура, ее влияние на предел выносливости 590
Теорема наименьшей работы 334
— о взаимности работ и перемещений 326
— о минимуме потенциальной энергии 334
Теория оболочек безмоментная 428
— прочности 196
— механическая 197
Траектория главных напряжений 257
Трепинкова, ее влияние на предел выносливости 589
Трещина нормального отрыва 620
— поперечного сдвига 620
— продольного сдвига 620
Трещиностойкость, ее характеристики 625

Угол закручивания 14
— относительный 14, 234
— поворота сечения при изгибе 14
— его значения для консольной балки переменной высоты 288
— его значения для статически неопределенных балок 344, 367
— его значения для статически определимых балок 289
— его определение 262, 265, 267
Удлинение абсолютное 13, 209
— относительное среднее 13, 148, 178—181
— истинное 13, 178—181
Укорочение абсолютное 13
— относительное среднее 13
Уравнение дифференциальное колебаний круглых 535
— поперечных 537, 539
— продольных 533
— системы с несколькими степенями свободы 526, 529
— одной степенью свободы, вынуженные 516, 518
Уравнение дифференциальное колебаний круглых с одной степенью свободы, свободные 513, 517
— изогнутой оси (упругой линии) 262
— балки на упругом основании 279
— при продольно-поперечном изгибе 459
— — — — — — для балок постоянного сечения 262
— изогнутой оси (упругой линии) балки постоянного сечения 262, 267, 289, 344
— — — — — — для консольной балки переменной высоты 288
— — — — — — для статически неопределенных балок 344
— — — — — — для статически определимых балок 344
— — — — — — каноническое уравнение сил 343
— — — — — — кривой усталости 603
— — — — — — нейтральной линии 305
— — — — — — равновесия 211
— — — — — — совмещение деформации 211
— — — — — — состояния нити 221
— — — — — — статики 210
— трех моментов 356
— угла поворота балки 262, 288
— упругой линии балки 262, 267, 289, 344
— — — — — — универсальное 267
— — — — — — физическое 250
— — — — — — частотное (частоты) поперечных колебаний 538, 572
— — — — — — продольных и крутильных колебаний 534, 568
— частоты для системы с несколькими степенями свободы 529
Усилия в простейших стержневых системах (таблица 20) 213
— в сечениях балки 116, 135
— в сечении (см. сила внутренняя) 103, 104
— их эпюры 102, 103, 105, 108
Условие жесткости 142
— при кручении 236, 239
Условие жесткости при растяжении 145
— прочности 140, 197—199, 220, 226, 228, 236, 314, 397
— в общем случае действия сил на брус 314
— при внешнем растяжении (сжатии) 309
— при изгибе 255, 397
— при изгибе с кручением 312
— при контактных напряжениях 631
— — при косом изгибе 306
— — при кручении 236, 239
— — при одноосном напряженном состоянии 196
— при растяжении 145
— при сложном напряженном состоянии 196
— при чистом сдвиге 226
Усталость (см. также выносливость) 579
Частоты колебаний систем с одной степенью свободы 513, 515, 560
— — — с двумя степенями свободы 527, 532, 560
— поперечных колебаний стержней, нагруженных продольными силами 576
Число колебаний в секунду 514
— оборотов критическое 524
— степеней свободы 511
Шарнир пластический 444
Швы сварные, их расчет 226, 230
Шнека 147
Энтера гипербола 454
— формула 448, 449
Эллипс и эллипс 26
Энергия деформации потенциальная (см. также работа внутренних сил) 194
— — — в общем случае 194
— — при растяжении 194
— — — при сдвиге 225
— — — при ударе 607, 610
— поверхностная (напряжения) 617
— на сжатие материала в месте соединения 609, 613
— потенциальная удельная 194, 195
— — — изменения объема 195
— — — — — формулы 195
— — — — — при растяжении 194
— — — — — при сдвиге 226
— — — — — формообразования 200
Эпюры внутренних усилий 103
— — — для кривых стержней 114
— — — — для простых стержней 130—138
— — — — — для ряда 113
— — — — — правила построения 109
Эпюры напряжений касательных при изгибе 253, 276
— — — при кручении 235, 240
— — нормальных при изгибе 251
— — — поперечных сил и изгибающих моментов для балок 109, 110, 116—135
— — — — — — профильных (осевых) сил 106, 208
Ягода — Бужинский критериий прочности 205
Ядро сечения 308
— — — — формула 315
Ясанская формула 455