Медный металлопрокат - опт, розница
Выберите из списка:

МЕДЬ В НАЛИЧИИ:
ПРУТКИ | ТРУБЫ |
ЛЕНТЫ |
ВЫБИРИТЕ В ТАБЛИЦЕ НУЖНЫЙ ТОВАР И СПЛАВ И КЛИКНИТЕ НА НЕГО МЫШКОЙ
Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.
Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску,отличную от серой или серебристой у прочих металлов.
Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C: 55,5-58 МСм/м. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4%/°С и в широком диапазоне температур слабо зависит от температуры. Медь является диамагнетиком.
Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем и другие.
В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые, помимо олова и цинка,могут входить никель, висмут и другие металлы. Например, в состав пушечной бронзы, использовавшейся для изготовления артиллерийских орудий вплоть до XIX века, входят все три основных металла — медь, олово, цинк; рецептура менялась от времени и места изготовления орудия. Большое количество латуни идёт на изготовление гильз артиллерийских боеприпасов и оружейных гильз, благодаря технологичности и высокой пластичности. Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей прочности: 30—40 кгс/мм² у сплавов и 25—29 кгс/мм² у технически чистой меди. Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не изменяют механических свойств при термической обработке, и их механические свойства и износостойкость определяются только химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900—12000кгс/мм², ниже, чем у стали). Основное преимущество медных сплавов — низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред (медно-никелевые сплавы и алюминиевые бронзы) и хорошей электропроводностью. Величина коэффициента трения практически одинакова у всех медных сплавов, тогда как механические свойства и износостойкость, а также поведение в условиях коррозии зависят от состава сплавов,а следовательно , от структуры. Прочность выше у двухфазных сплавов, а пластичность у однофазных. Медно-никелевый сплав (мельхиор) используются для чеканки разменной монеты. Медно-никелевые сплавы, в том числе и так называемый«адмиралтейский» сплав, широко используются в судостроении (трубки конденсаторов отработавшего пара турбин, охлаждаемых забортной водой) и областях применения, связанных с возможностью агрессивного воздействия морской воды из-за высокой коррозионной устойчивости. Медь является важным компонентом твёрдых припоев — сплавов с температурой плавления590—880 градусов Цельсия, обладающих хорошей адгезией к большинству металлов, и применяющихся для прочного соединения разнообразных металлических деталей,особенно из разнородных металлов, от трубопроводной арматуры до жидкостных ракетных двигателей.
Марки меди и их химический состав определен в ГОСТ 859-2001. Сокращенная информация о марках меди приведена ниже (указано минимальное содержание меди и предельное содержание только двух примесей – кислорода и фосфора):
Марка | Медь | О2 | P | Способ получения, основные примеси |
М00к | 99.98 | 0.01 | - | Медные катоды:продукт электролитического рафинирования, заключительная стадия переработки медной руды. |
М0к | 99.97 | 0.015 | 0.001 | |
М1к | 99.95 | 0.02 | 0.002 | |
М2к | 99.93 | 0.03 | 0.002 | |
М00 | 99.99 | 0.001 | 0.0003 | Переплавка катодов в вакууме, инертной или восстановительной атмосфере.Уменьшает содержание кислорода. |
М0 | 99.97 | 0.001 | 0.002 | |
М1 | 99.95 | 0.003 | 0.002 | |
М00 | 99.96 | 0.03 | 0.0005 | Переплавка катодов в обычной атмосфере.Повышенное содержание кислорода. Отсутствие фосфора |
М0 | 99.93 | 0.04 | - | |
М1 | 99.9 | 0.05 | - | |
М2 | 99.7 | 0.07 | - | Переплавка лома.Повышенное содержание кислорода, фосфора нет |
М3 | 99.5 | 0.08 | - | |
М1ф | 99.9 | - | 0.012 - 0.04 | Переплавка катодов и лома медис раскислением фосфором.Уменьшает содержание кислорода, но приводит к повышенному содержанию фосфора |
М1р | 99.9 | 0.01 | 0.002 - 0.01 | |
М2р | 99.7 | 0.01 | 0.005 - 0.06 | |
М3р | 99.5 | 0.01 | 0.005 - 0.06 |
Первая группа марок относится к катодной меди, остальные - отражают химический состав различных медных полуфабрикатов (медные слитки, катанка и изделия из неё, прокат).
Специфические особенности меди, присущие разным маркам, определяются не содержанием меди (различия составляют не более 0.5%), а содержанием конкретных примесей (их количество может различаться в 10 – 50 раз). Часто используют классификацию марок меди по содержанию кислорода:
- бескислородная медь (М00 , М0 и М1 ) с содержанием кислорода до 0.001%.
- рафинированная медь (М1ф, М1р, М2р, М3р) с содержанием кислорода до 0.01%, но с
повышенным содержанием фосфора.
- медь высокой чистоты (М00, М0, М1) с содержанием кислорода 0.03-0.05%.
- медь общего назначения (М2, М3) с содержанием кислорода до 0.08%.
Примерное соответствие марок меди, выпускаемой по разным стандартам, приведено ниже:
ГОСТ |
EN, DIN |
М00 |
Cu-OFE |
М0 | Cu-PHC, OF-Cu |
М1 |
Cu-OF, Cu-OF1 |
М1 |
Cu-ETP, Cu-ETP1,Cu-FRTP, Cu-FRHC, SE-Cu, E-Cu, E Cu57, E Cu58 |
М1ф | Cu-DHP, SF-Cu |
М1р | Cu-DLP, SW-Cu |
Разные марки меди имеют различное применение, а отличия в условиях их производства определяют существенные различия в цене.
Для производства кабельно-проводниковой продукции катоды переплавляют по технологии, которая исключает насыщение меди кислородом при изготовлении продукции. Поэтому медь в таких изделях соответствует маркам М00, М0 , М1 .
Требованиям большинства технических задач удовлетворяют относительно дешевые марки М2 и М3. Это определяет массовое производство основных видов медного проката из М2 и М3.
Прокат из марок М1, М1ф, М1р, М2р, М3р производится в основном для конкретных потребителей и стоит намного дороже.
Физические свойства меди
Главное свойство меди, которое определяет её преимущественное использование – очень высокая электропроводность (или низкое удельное электросопротивление). Такие примеси как фосфор, железо, мышьяк, сурьма, олово, существенно ухудшают её электропроводность. На величину электропроводности существенное влияние оказывает способ получения полуфабриката и его механическое состояние. Это иллюстрируется приведенной ниже таблицей:
Удельное электрическое сопротивление меди для различных полуфабрикатов разных марок (гарантированные значения) при 20оС.
мкОм*м | марка | Вид и состояние полуфабриката | ГОСТ, ТУ |
0.01707 |
М00 |
Слитки (непрерывное вертикальное литье) |
193-79 |
М00 |
Катанка кл.А ( кислород: 0.02-0.035%) |
ТУ 1844 01003292517 -2004 |
|
0.01718 |
М0 |
Катанка кл.В (кислород: 0.045%) |
|
0.01724 |
М1 |
Катанка кл.С (кислород: 0.05%) |
|
М1 |
Слитки (горизонтальное литье) |
193-79 |
|
М1 |
Слитки (горизонтальное литье) |
||
0.01748 |
М1 |
Ленты |
1173-2006 |
М1 |
Прутки отожженные |
1535-2006 |
|
0.01790 |
М1 |
Прутки полутвердые, твердые, прессованные |
Различия в сопротивлении катанки марок М00, М0 и М1, обусловлены разным количеством примесей и составляют около 1%. В то же время различия в сопротивлении, обусловленные разным механическим состоянием, достигают 2 – 3%. Удельное сопротивление изделий из меди маркиМ2 примерно 0.020 мкОм*м.
Второе важнейшее свойство меди - очень высокая теплопроводность.
Примеси и легирующие добавки уменьшают электро- и теплопроводность меди, поэтому сплавы на медной основе значительно уступают меди по этим показателям. Значения параметров основных физических свойств меди в сравнении с другими металлами приведены в таблице (данные приведены в двух разных системах единиц измерения):
Показатели при |
Единица измерения |
Медь |
Алю- миний |
Латунь Л63, ЛС |
Бронза БрАЖ |
Сталь 12Х18Н10 |
Удельное элетросопротивление, |
мкОм*м |
0.0172 – 0.0179 |
0.027- 0.030 |
0.065 |
0.123 |
0.725 |
Теплопроводность, |
кал/см*с*град |
0.93 |
0.52 |
0.25 |
0.14 |
0.035 |
Вт/м*град |
386 - 390 |
217 |
106 |
59 |
15 |
По электро- и теплопроводности медь незначительно уступает только серебру.
Влияние примесей и особенности свойств меди различных марок
Отличия в свойствах меди разных марок связаны с влиянием примесей на базовые свойства меди. О влиянии примесей на физические свойства (тепло- и электропроводность) говорилось выше. Рассмотрим их влияние на другие группы свойств.
Влияние на механические свойства.
Железо, кислород, висмут, свинец, сурьма ухудшают пластичность. Примеси, малорастворимые в меди (свинец, висмут, кислород, сера), приводят к хрупкости при высоких температурах.
Температура рекристаллизации меди для разных марок составляет 150-240оС. Чем больше примесей, тем выше эта температура. Существенное увеличение температуры рекристаллизации меди дает серебро, цирконий. Например введение 0.05% Ag увеличивает температуру рекристаллизации вдвое, что проявляется в увеличении температуры размягчения и уменьшении ползучести при высоких температурах, причем без потери тепло- и электропроводности.
Влияние на технологические свойства.
К технологическим свойствам относятся 1) способность к обработке давлением при низких и высоких температурах, 2) паяемость и свариваемость изделий.
Примеси, особенно легкоплавкие, формируют зоны хрупкости при высоких температурах, что затрудняет горячую обработку давлением. Однако уровень примесей в марках М1 и М2 обеспечивают необходимую технологическую пластичность.
При холодном деформировании влияние примесей заметно проявляется при производстве проволоки. При одинаковом пределе прочности на разрыв ( ?в =16 кгс/мм2 ) катанки из марок М00, М0 и М1 имеют разное относительное удлинение ? (38%, 35% и 30% соответственно). Поэтому катанка класса А (ей соответствует марка М00) более технологична при производстве проволоки, особенно малых диаметров. Использование бескислородной меди для производства проводников тока обусловлено не столько величиной электропроводности, сколько технологическим фактором.
Процессы сварки и пайки существенно затрудняются при увеличении содержания кислорода, а также свинца и висмута.
Влияние кислорода и водорода на эксплуатационные свойства.
При обычных условиях эксплуатационные свойства меди (прежде всего долговечность эксплуатации) практически одинаковы для разных марок. В то же время при высоких температурах может проявиться вредное влияние кислорода, содержащегося в меди. Эта возможность обычно реализуется при нагреве меди в среде, содержащей водород.
Кислород изначально содержится в меди марок М0, М1, М2, М3. Кроме этого, если бескислородную медь отжечь на воздухе при высоких температурах, то вследствие диффузии кислорода поверхностный слой изделия станет кислородсодержащим. Кислород в меди присутствует в виде закиси меди, которая локализуется по границам зерен.
Кроме кислорода в меди может присутствовать водород. Водород попадает в медь в процессе электролиза или при отжиге в атмосфере, содержащей водяной пар. Водяной пар всегда присутствует в воздухе. При высокой температуре он разлагается с образованием водорода, который легко диффундирует в медь.
В бескислородной меди атомы водорода располагаются в междоузлиях кристаллической решетки и особо не сказываются на свойствах металла.
В кислородсодержащей меди при высоких температурах водород взаимодействует с закисью меди. При этом в толще меди образуется водяной пар высокого давления, что приводит к вздутиям, разрывам и трещинам. Это явление известно как «водородная болезнь» или «водородное охрупчивание». Оно проявляется при эксплуатации медного изделия при температурах свыше 200оС в атмосфере, содержащей водород или водяной пар.
Степень охрупчивания тем сильнее, чем больше содержание кислорода в меди и выше температура эксплуатации. При 200оС срок службы составляет 1.5 года, при 400оС - 70 часов.
Особенно сильно оно проявляется в изделиях малой толщины (трубки, ленты).
При нагреве в вакууме изначально содержащийся в меди водород взаимодействует с закисью меди и также ведет к охрупчиванию изделия и ухудшению вакуума. Поэтому изделия, которые эксплуатируются при высокой температуре, производятся из бескислородных (рафинированных) марок меди М1р, М2р, М3р.
Механические свойства медного проката
Большая часть медного проката, поступающего в свободную продажу, производится из марки М2. Прокат из марки М1 производится в основном под заказ, кроме того он примерно на 20% дороже.
Холоднодеформированный прокат – это тянутые (прутки, проволока, трубы) и холоднокатаные (листы, лента, фольга) изделия. Он выпускается в твердом, полутвердом и мягком (отожженном) состояниях. Такой прокат маркируется буквой «Д», а состояния поставки буквами Т, П или М.
Горячедеформированный прокат – результат прессования (прутки, трубы) или горячей прокатки (листы, плиты) при температурах выше температуры рекристаллизации. Такой прокат маркируется буквой «Г». По механическим свойствам горячедеформированный прокат близок (но не идентичен) к холоднодеформированному прокату в мягком состоянии.
Параметры при комнатной темп. |
М |
Т |
Модуль упругости E, кгс/мм2 |
11000 |
13000 |
Модуль сдвига G, кгс/мм2 |
4000 |
4900 |
Предел текучести ?0.2 , кгс/мм2 |
5 - 10 |
25 - 34 |
Предел прочности ?в , кгс/мм2 |
19 – 27 |
31 – 42 |
Относ. удлинение ? |
40 – 52 |
2 - 11 |
Твердость НВ |
40 - 45 |
70 - 110 |
Сопротивление срезу, кгс/мм2 |
10 - 15 |
18 - 21 |
Ударная вязкость, |
16 - 18 |
|
Обрабатываем. резанием, % к Л63-3 |
18 |
|
Предел усталости ?-1 при 100 млн циклов |
7 |
12 |
Высокий предел прочности на сжатие (55 - 65 кгс/мм2) в сочетании с высокой пластичностью определяет широкое использование меди в качестве прокладок в уплотнениях неподвижных соединений с температурой эксплуатации до 250оС (давление 35 Кгс\см2 для пара и 100 Кгс\см2 для воды).
Медь широко используется в технике низких температур, вплоть до гелиевых. При низких температурах она сохраняет показатели прочности, пластичности и вязкости, характерные для комнатной температуры. Наиболее часто используемое свойство меди в криогенной технике – её высокая теплопроводность. При криогенных температурах теплопроводность марок М1 и М2становится существенной, поэтому в криогенной технике применение марки М1 становится принципиальным.
Медные прутки выпускаются прессованными (20 – 180 мм) и холоднодеформированными, в твердом, полутвердом и мягком состояниях (диаметр 3 - 50 мм) по ГОСТ 1535-2006.
Плоский медный прокат общего назначения выпускается в виде фольги, ленты, листов и плит по ГОСТ 1173-2006:
Фольга медная – холоднокатаная: 0.05 – 0.1 мм (выпускается только в твердом состоянии)
Ленты медные - холоднокатаные: 0.1 – 6 мм.
Листы медные - холоднокатаные: 0.2 – 12 мм
- горячекатаные: 3 – 25 мм (механич. свойства регламентируются до 12 мм)
Плиты медные – горячекатаные: свыше 25 мм (механические свойства не регламентируются)
Горячекатаные и мягкие холоднокатаные медные листы и ленты выдерживают испытание на изгиб вокруг оправки диаметром равным толщине листа. При толщине до 5 мм они выдерживают изгиб до соприкосновения сторон, а при толщине 6 – 12 мм - до параллельности сторон. Холоднокатанные полутвердые листы и ленты выдерживают испытание на изгиб на 90 град.
Таким образом допустимый радиус изгиба медных листов и лент равен толщине листа (ленты).
Глубина выдавливания лент и листов пуансоном радиусом 10 мм составляет не менее 7 мм для листов толщиной 0.1-0.14 мм и не менее 10 мм для листов толщиной 1-1.5 мм. По этому показателю (выдавливаемость) медь уступает латуням Л63 и Л68.
Медные трубы общего назначения изготавливаются холоднодеформированными (в мягком, полутвердом и твердом состояниях) и прессованными (больших сечений) по ГОСТ 617-2006.
Медные трубы используются не только для технологических жидкостей, но и для питьевой воды. Медь инертна по отношению к хлору и озону, которые используются для очистки воды, ингибирует рост бактерий, при замерзании воды медные трубы деформируются без разрыва. Медные трубы для воды производятся по ГОСТ Р 52318-2005, для них ограничено содержание органических веществ на внутренней поверхности. Минимальные радиусы изгиба и допустимые давления для мягких медных труб приведены ниже:
Размер трубы, мм |
Допустимое давление, бар |
Радиус изгиба, мм |
Размер трубы |
Допустимое давление, бар |
Дюймы (мм) |
||||
6*1 |
230 |
30 |
1/4” (6.35*0.8) |
220 |
8*1 |
163 |
35 |
- |
- |
10*1 |
130 |
40 |
3/8” (9.52*0.8) |
120 |
12*1 |
105 |
45 |
1/2” (12.7*0.8) |
100 |
14*1 |
90 | 52 |
- |
- |
16*1 |
80 |
60 |
5/8” (15, 87*1) |
80 |
18*1 |
67 |
70 |
3/4” (19,05*1) |
67 |
20*1 |
60 | 75 |
- |
- |
22*1 |
54 |
80 |
7/8” (22.22*1) |
54 |
Коррозионные свойства меди.
При нормальных температурах медь устойчива в следующих средах:
- сухой воздух
- пресная вода (аммиак, сероводород, хлориды, кислоты ускоряют коррозию)
- в морской воде при небольших скоростях движения воды
- в неокислительных кислотах и растворах солей (в отсутствии кислорода)
- щелочные растворы (кроме аммиака и солей аммония)
- сухие газы-галогены
- органические кислоты, спирты, фенольные смолы
Медь неустойчива в следующих средах:
- аммиак, хлористый аммоний
- окислительные минеральные кислоты и растворы кислых солей
Коррозионные свойства меди в некоторых средах заметно ухудшаются с увеличением количества примесей.
Контактная коррозия.
Допускается контакт меди с медными сплавами, свинцом, оловом во влажной атмосфере, пресной и морской воде. В то же время не допускается контакт с алюминием, цинком вследствие их быстрого разрушения.
Свариваемость меди
Высокая тепло- и электропроводность меди затрудняют её электросварку (точечную и роликовую). Особенно это касается массивных изделий. Тонкие детали можно сварить вольфрамовыми электродами. Детали толщиной более 2-х мм можно сваривать нейтральным ацетилено-кислородным пламенем. Надежный способ соединения медных изделий – пайка мягкими и твердыми припоями.
Техническая медь имеет низкую прочность и износоустойчивость, плохие литейные и антифрикционные свойства. Этих недостатков лишены сплавы на медной основе - латуни и бронзы. Правда эти улучшения достигаются за счет ухудшения тепло- и электропроводности.
Имеются особые случаи, когда нужно сохранить высокую электро- или теплопроводность меди, но придать ей жаропрочность или износоустойчивость.
При нагревании меди выше температуры рекристаллизации происходит резкое снижение предела текучести и твердости. Это затрудняет использование меди в электродах для контакной сварки. Поэтому, для этой цели используют специальные медные сплавы с хромом, цирконием, никелем, кадмием (БрХ, БрХЦр, БрКН, БрКд). Электродные сплавы сохраняют относительно высокую твердость и удовлетворительную электро- и теплопроводность при температурах сварочного процесса (порядка 600С ).
Жаропрочность достигается также легированием серебром. Такие сплавы (МС) имеют меньшую ползучесть при неизменной электро- и теплопроводности.
Для использования в подвижных контактах (коллекторные пластины, контактный провод) применяют медь с небольшим уровнем легирования магнием или кадмием БрКд, БрМг. Они имеют повышенную износоустойчивость при высокой электропроводности.
Для кристаллизаторов используют медь с добавками железа или олова. Такие сплавы имеют высокую теплопроводность при повышенной износоустойчивости.
Низколегированные марки меди по сути являются бронзами, но часто их относят к группе медного проката с соответствующей маркировкой (МС, МК, МЖ).